

School *of* Computing Science Essence: Data Science & Distributed Computing

Data-Driven Analytics Task Management at the Edge: A Fuzzy Reasoning Approach

Tahani Aladwani, Christos Anagnostopoulos Ibrahim Alghamdi, Kostas Kolomvatsos School of Computing Science, University of Glasgow

22nd – 24th August 2022

Outline

- Introduction
- Challenges
- Problem Statement
- Solution
- Experiment
- Management Reasoning
- Results
- **Conclusion**

School of Computing Science Essence: Data Science & Distributed Computing Solutio

Experime

Management Reasonin

Res

Reference

:IIL IVIC

School of Computing Science Essence: Data Science & Distributed Computing

Challenges related to data-driven tasks execution

Data-driven tasks refer to tasks that rely <u>heavily</u> on data generated by smart devices (e.g., sensors, smartphones) to build knowledge (e.g., ML models) and make decisions.

- Smart Devices
- Cloud Computing
- Edge Computing

22nd – 24th August 2022

School of Computing Science Essence: Data Science & **Distributed Computing**

Challenges related to data-driven tasks execution

- EC nodes execute locally data-driven tasks because they are equipped with specific computing resources.
- However, such resources can be limited for some tasks.
- Any decision of executing locally or offloading the tasks should be made carefully.

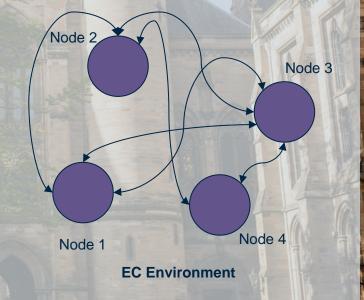
Solutio

Experime

Management Reasonin

Resul

Reference



School of Essence Distribut

School of Computing Science Essence: Data Science & Distributed Computing

Problem Statement

- EC system with $N = \{n_1, n_2, n_3, \dots, n_n\}$ EC nodes.
- Each n_i collects real-valued contextual data $\mathbf{x} = [x_1, x_2, ..., x_n]^T \in \mathbb{R}^d$, (e.g., temperature).
- n_i stores locally the dataset $D_i = \{x_k\}_{k=1}^{N_i}$
- Each node n_i has a neighbourhood $N_i \subset N$ directly communicating nodes $n_j \in \mathcal{N}_i$.
 - n_i communicates with applications and the cloud.

Soluti<u>on</u>

Experim

Management Reasonin

R

Conclusion

Reference

t ivianage

School of Computing Science Essence: Data Science & Distributed Computing

Proposed Solution

Each node n_i needs to obtain certain information based on:

- Data overlapping/availability per query
- Resources availability
- Delay/latency sensitivity

22nd - 24th August 2022

Illenges Problem Stateme

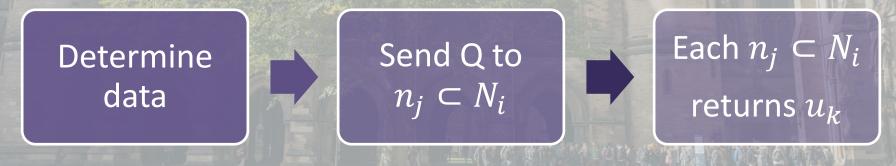
Solut

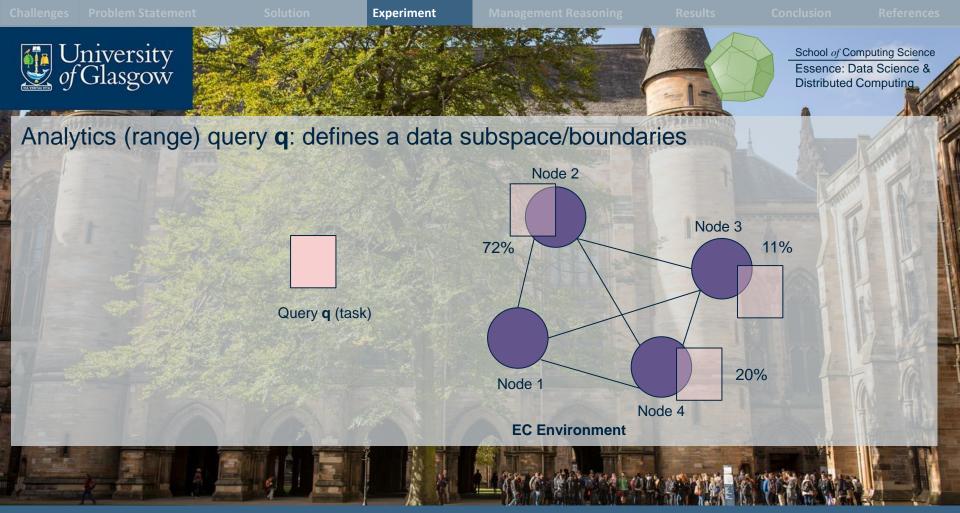
Experiment

/lanagement Reasoning

Res

Reference


School of Computing Science Essence: Data Science & Distributed Computing


Offloading factors:

1st : Data overlapping & availability given analytics task/ range query (u_k) .

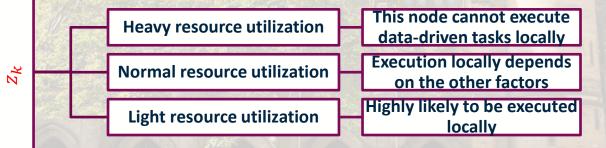
 $\boldsymbol{Q}_{k} = \left\{ \boldsymbol{q}_{1}^{min}, \boldsymbol{q}_{1}^{max}, \dots, \boldsymbol{q}_{d}^{min}, \boldsymbol{q}_{d}^{max} \right\}$

 $\mathcal{S}(q_k, x) \equiv \left(q_1^{\min} \le x_1 \le q_1^{\max}\right) \land \dots \land \left(q_d^{\min} \le x_d \le q_d^{\max}\right)$

Soluti

Experiment

Reference



School *of* Computing Science Essence: Data Science & Distributed Computing

Offloading factors:

2^{nd} : EC Resources Utilization (z_k) .

The current utilization of the VM hosted by the local edge server.

These decisions are defined according to specific threshold values ϑ_1, ϑ_2 .

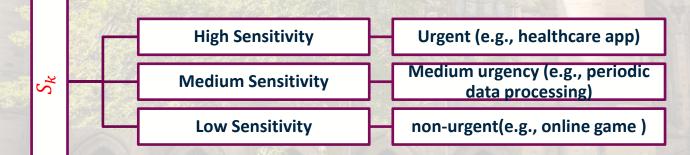
Soluti

Experiment

Management Reasonin

; Re

Reference



School of Computing Science Essence: Data Science & Distributed Computing

Offloading factors:

3^{rd} : Delay\ latency Sensitivity (S_k) .

Delay sensitivity reflects data-driven task delay/ failure tolerance.

When n_i receives a set of data-driven tasks, it classifies their sensitivities according to specific levels of thresholds ψ_1, ψ_2 .

22nd – 24th August 2022

Solution

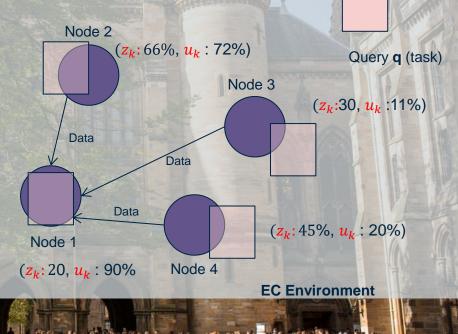
Experiment

Management Reasoning

Resu

Reference

School of Computing Science Essence: Data Science & Distributed Computing


Task Management Reasoning

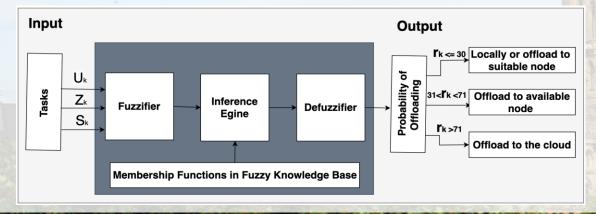
Step 1: Acquiring tasks information Step 2: Fuzzy Logic (FL) inference.

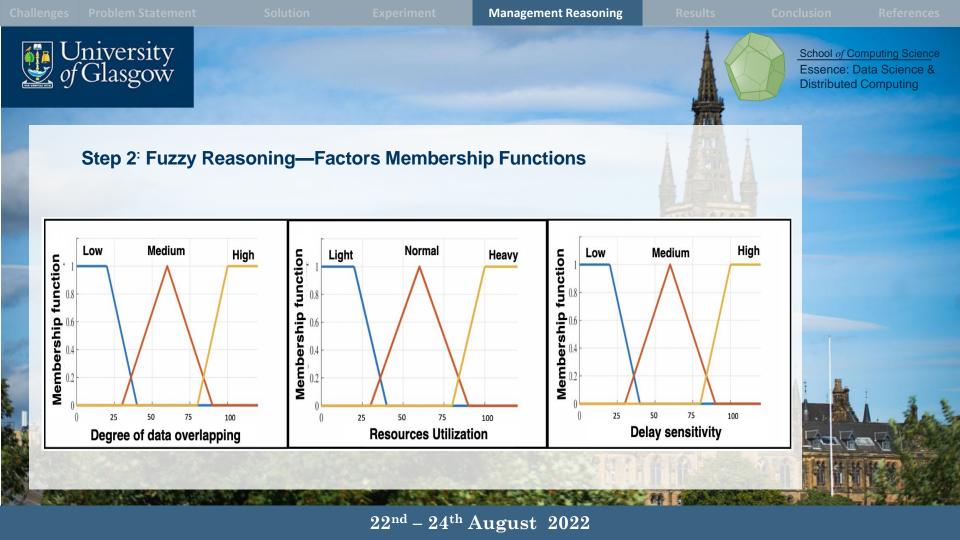
• n_i is assigned with the **leadership** role to execute the FL inference engine, where all the neighboring nodes $n_j \in \mathcal{N}_i$ directly communicate with their leader n_i .

Step 1 : Acquiring tasks information Matching between tasks and nodes.

Assigning task t_k to node n_k that gives the highest data overlapping, lowest resource utilization and a high possibility to execute a highly sensitive data-overlapping tasks.

Referenc



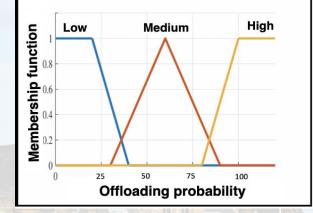


School of Computing Science Essence: Data Science & Distributed Computing

Step 2[:] Fuzzy Reasoning

Idea: All factors are feed to a Fuzzy Inference System to derive the **probability of offloading** for each task. In order to decide whether task t_k should execute locally on n_i (action a_0), offload to node n_k (action a_{11}) or offload to the cloud (action a_{12}).

Reference



University of Glasgow

Step 2[:] Fuzzy Reasoning—Probability of Task Offloading

Offloading probability r_k is transformed to a decision:

- First threshold is 30%, if r_k for task t_k in n_k is less than or equal 30%, the decision is **to locally execute** this task (action a_0) or offload it directly to the suitable node n_k (action a_0).
- Second threshold is 70%, if r_k for a task t_k is less than or equal 70%, the decision is **offload** to n_k , if it is available, or to the cloud.
- Third threshold is higher than 70%, if r_k for a task t_k in n_i is greater than 70%, the decision is to offload to the cloud. Since this task does not has a high data overlapping with any n_k .

Solution

Experimen

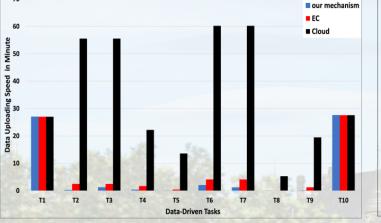
/lanagement Reasonir

Results

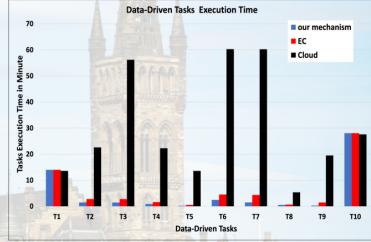
Conclusion

Reference

Experimental Results


School of Computing Science Essence: Data Science & Distributed Computing

Simulator: CloudSim Plus [*]


Performance Metrics:

- Data Uploading
 Speed
- Task Execution
 Time

Models: EC, Ours, Cloud

Data Uploading Speed According to Data Overlapping

Solution

Experime

Management Reasoni

Result

Reference

Conclusions

A mechanism for data-driven analytics task execution in EC environment with the objective of exploiting their resources efficiently.

Our mechanism focuses on three factors to make the decision for each task:

• Data overlapping, EC resource utilization and task sensitivity.

Factors are inputs to a FL system to derive the probability of task offloading.

Our mechanism outperforms other benchmarks in terms of reducing uploading data size, execution time and bandwidth and RAM usage.

School of Computing Science Essence: Data Science & Distributed Computing

Thank you! Questions?

http://www.dcs.gla.ac.uk/essence/