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Context 
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Cloud 

Sensing & Actuator Devices IoT Gateways (Edge/Fog Network) Cloud Environments 
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Constraints at the Edge 
 
1. Limited Bandwidth… 
2. Energy  
3. Limited Computational Power 
4. Storage Capacity 
5. Latency! 

Idea: Observe your Power & Push 
 
 Exploit the limited computational 

power of sensing & actuator devices 
 

 Push Intelligence to the Edge:  
 inferential tasks, on-line statistical 

learning, classification, localized 
detection,…are pushed at the Edge 

 

Introduction 



Hypotheses & Actions 
Given the constraints of an IoT network, let us hypothesise the following actions: 

◦ Action 1: Reduce the communication overhead 

◦ Hypothesis 1: not all data are needed for inferential tasks/regression, i.e., Learn More With Less! 

 

◦ Action 2: Perform real-time predictive analytics for instant action & autonomous decision making 

◦ Hypothesis 2: use the limited computational power to infer and take decisions in an On-Line Manner! 

 

◦ Action 3: Provide high quality predictive analytics tasks (e.g., prediction accuracy, model fitting) 

◦ Hypothesis 3: decide which is the best data to learn and when to learn, i.e., Be Intelligent On What You See!  
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Challenges & Problem Definition  
 

Decide which data to communicate without losing quality of data & analytics 

Problem 1: time-optimized data selection problem. 
 

Decide when to deliver/send data and what to send in light of maximizing the 
predictive analytics accuracy 

Problem 2: time-optimized delivery scheduling problem. 

 

Reduce unnecessary communication between/among devices and/or the Cloud 

Problem 3: conditionally data forwarding problem. 
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Contribution 
Introduce an optimal, quality-aware, and on-line decision making model 

determining when and which data to deliver within the Edge Network. 

 

Maximize the quality of analytics tasks s.t. being communication efficient. 

 

 

Domain: Aggregation & Linear Regression Analytics over Sliding-Window 
Contextual Data Streams. 
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SAN1 

SANi 

SAN2 

SAN3 

SAN4 

ENj 

 

Sliding Window per SAN  

𝑥𝑡 𝑥𝑡−1 𝑥𝑡−2 … 𝑥𝑡−𝑁 

𝑥𝑡 𝑥𝑡−1 𝑥𝑡−2 … 𝑥𝑡−𝑁 

SAN1 

SANi  

Methodology 

𝐱𝑡 = [𝑥1𝑡, … , 𝑥𝑑𝑡] 
Context Vector 

Sensor & Actuator Node Edge Node (IoT Gateway) 

... 



 Step 1: Local Prediction at SAN (Sensor & Actuator Node) 

  
𝑥 𝑡 = 𝑓 𝑥𝑡−1, … , 𝑥𝑡−𝑁 = 𝑓𝑖(𝒲) 

  

𝑒𝑡 = 𝑑−
1
2 𝑥𝑡 −𝑥 𝑡  

  

 Step 2: Local Re-Construction at EN (Edge Node) 

  
𝑥 𝑡 = 𝑔 𝑢𝑡−1, … , 𝑢𝑡−𝑀 = 𝑔𝑗(𝒲) 

  

Idea: Predict, Decide & Reconstruct 
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Instantaneous Decision Making (IDM) 
SAN employs locally selective forwarding: deliver data if current prediction error > threshold (θ) 

• Naïve Goal: Reduce communication overhead; but no focus on the Quality of Analytics 

• Major Issues:  

1. What if θ is relatively high (no control on the analytics quality) 

2. What if the prediction function in SAN is too good (never sends data!) 

3. What if Outliers occur (sends only outliers!) 

 → information loss at the EN. 
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SANi ENj 

𝑒 𝑡 ≥ 𝜃 
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Observation: Very good prediction at SAN  
Consequence: EN cannot reconstruct data stream  

Observation: Outliers/Novelty data at SAN! 
Consequence: EN receives only novelty/outliers  



Optimal Stopping Theory (Which & When) 
Problem: IDM is not capturing the variability of the data stream inside EN… 

Major Goal: Send high quality of information in the right moment, in other words: which data 
and when to send. 

 

Solution: Develop an Optimal Stopping Time stochastic model to find the optimal forwarding 
time at SAN such that maximises the expected analytics quality at the EN. 

 

Idea: Instead of sending every time θ exceeds prediction error, we find the best time and context 
vector to send: 

  we optimally delay data delivery thus being communication efficient; 

  we accumulate the prediction error history of IDM decisions thus controlling the analytics                
accuracy. 
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Optimal Vector Forwarding (OVF)  
 Induced delay is based on the history of prediction error (Quality Tolerance): 

  

 𝑍𝑡 =  
𝜆𝜃              if 𝑒𝑡 > 𝜃,
𝑒𝑡              if 𝑒𝑡 ≤ 𝜃.

 

  

 Quality Tolerance Reward: 

 𝑌𝑡 = 𝛽 𝑡𝑆 𝑡 = 𝛽 𝑡  𝑍𝜏
𝑡
𝜏=0  

  

 Optimal Stopping Time: We send data from SAN to EN when... 

 𝑡∗ = inf 𝑡 ≥ 1  𝑍𝑘 ≥
𝛽

1−𝛽
𝐸[𝑍]𝑡

𝑘=1  
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Monitor: Accumulation of Local Prediction Errors 

Tolerate: Do not send & accumulate prediction errors 

Minimize communication overhead  
s.t. maximizing quality tolerance  



 Combines IDM and OVF methodology 

  

  

Hybrid Optimal Vector Forwarding (HOVF) 
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SAN sends to EN 
(novelty) 

SAN sends to EN 
(best data and the best time) 

SAN does not send to EN 
(tolerance) 



Methodologies  

1. Baseline: Sending continuously data from Edge to Cloud! 

2. Instantaneous Decision Making (IDM): prediction-error based decision 

3. Optimal Vector Forwarding (OVF): quality-tolerance based decision 

4. Hybrid Optimal Vector Forwarding (HOVF): intelligence is now pushed at SANs 
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Experiments 
 Exponential Smoothing for prediction (SAN) and reconstruction (EN) 

𝑠𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑠𝑡−1 

  
 Analytics tasks at the EN: 

Aggregation Analytics (sliding window-based AVG, MEDIAN, MAX, ...) 

Multivariate Linear Regression (sliding window-based regression) 

 

Real datasets:  

Air Quality 4-dim contextual vectors; 

Environmental 4-dim contextual vectors in the School of Computing Science, Uni of Glasgow. 
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Evaluation: Three Directions 
1. Communication: number of messages sent from SANs to EN (communication overhead); 

2. Information: quality of data at the EN (information theoretic perspective); 

3. Analytics quality at the EN: 

a) Re-construction error w.r.t. ground truth; 

𝛼𝑡 = 𝑥𝑡 − 𝑥 𝑡  

b) Aggregation analytics discrepancy w.r.t. ground truth; 

𝛾 = ℎ 𝑊 − ℎ(𝑊∗)  

 

c) Regression performance discrepancy w.r.t. ground truth; 

𝛿 = 𝜖 − 𝜖∗  

 

d) Model Fitting discrepancy w.r.t ground truth; 

𝛿′ = 𝒘 − 𝒘∗  
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Metrics 
Discrepancy is evaluated w.r.t. baseline solution (sending all data) 

 

1. Communication 
◦ Percentage of remaining communication w.r.t the baseline solution 

 

2. Analytics quality 
◦ For α and 𝛾 → Symmetric Mean Average Percentage (SMAPE)  

◦ For δ →Root Mean Squared Error (RMSE) 

 

3. Information loss 
◦ Kullback-Leibler (KL) divergence 

  𝐾𝐿(𝑝(𝑥 ) ∥ 𝑝 𝑥 )  𝑝(𝑥 )
1

0
log

𝑝(𝑥 )

𝑝 𝑥
dx 
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Results 
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tolerance factor 

Efficiency (quality vs communication) 
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