

IEEE ICDE 2020

April 20th -24th, 2020 - Dallas, Texas, USA

School of Essence Computing Science

SuRF: Identification of Interesting Data Regions with Surrogate Models

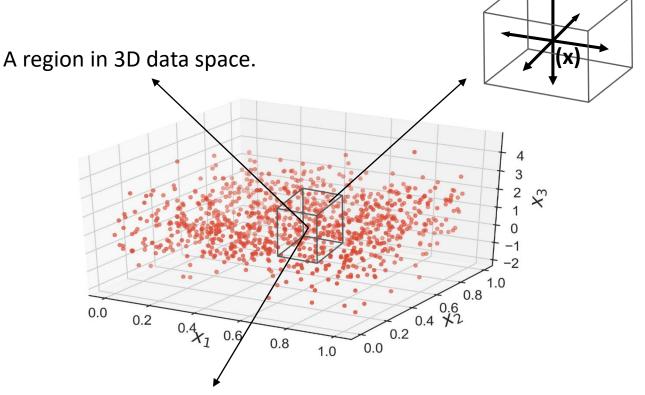
Fotis Savva, Christos Anagnostopoulos, Peter Triantafillou

School of Computing Science, University of Glasgow Essence: Pervasive & Distributed Intelligence

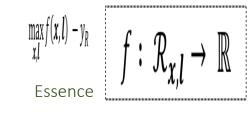
E-mail: f.savva.1@research.gla.ac.uk

Essence

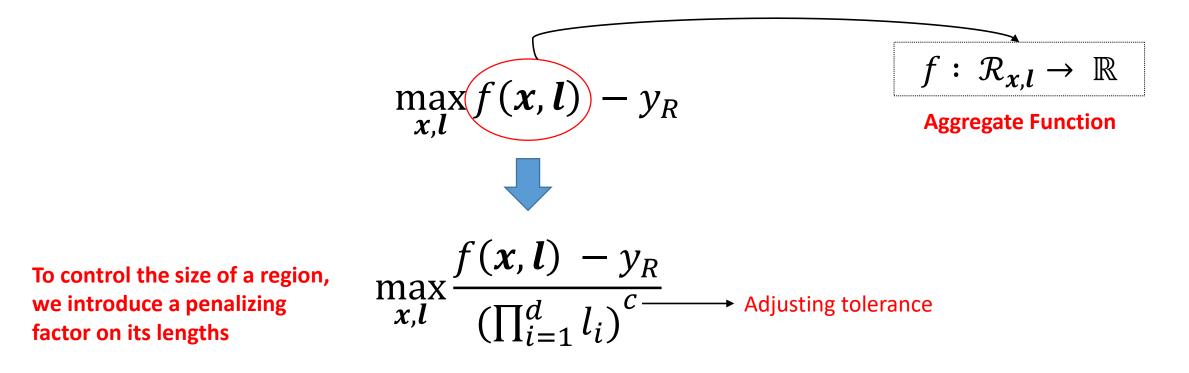
Computing Science


Outline

- Introduce problem of identifying sub-regions (examples and then formulation – aggregate function as a function mapping parameters to aggregate values)
- Baseline solution (visually) and complexity of baseline
- Introduce optimization problem why multi-modal
 - Glow-worm optimization
 - Back-end data analytics system as the bottleneck
- Surrogate functions to learn back-end analytics system
- Experimental Evaluation Accuracy, Efficiency, Example with Crimes


Regions in Multi-dimensional Data Space

- **Region:** hyper-rectangle in multi-dimensional space
- Formally: A region has a center point $x \in \mathbb{R}^d$ with side lengths $l \in \mathbb{R}^d$
- Region's interestingness is inferred by an aggregate statistic over the retrieved data points.


Using only the included data points, compute a statistic such as **COUNT/AVG/SUM/VAR**

Example : x_1 , x_2 , x_3 are the values (X, Y, Z) obtained from an accelerometer and the aggregate statistic the ratio of a specific activity (ie '*sitting'*).

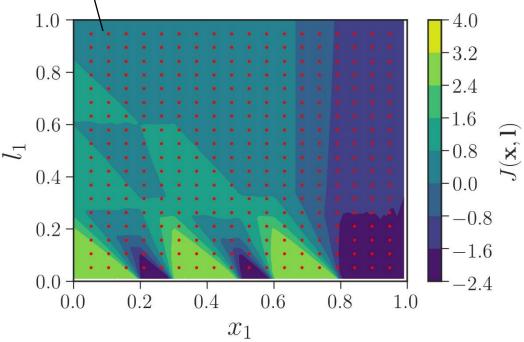
Identifying Interesting Regions

- Identify regions $\mathcal{R}_{x,l}$ which are greater/lower than threshold $y_R \in \mathbb{R}$
- e.g., the ratio for activity '*sitting*' is over 0.3 meaning >30% of data points were generated while performing activity '*sitting'*.)

Baseline Method

- Let us find a region $R_{x,l}$ for a single dimension.
- Discretise the space such that:
 - $x \in X$ and $l \in L$
 - Granularity : n = |X|, m = |L|
 - Evaluate the objective function $\max_{x \in X, l \in L} J(x, l)$

to identify interesting regions


The number of evaluations is exponential w.r.t the dimensions $(n \times m)^d$

Each point (x, l) has to

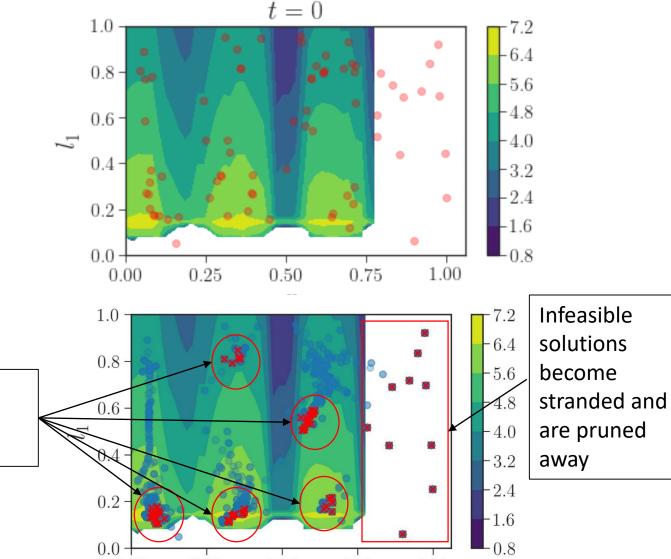
be evaluated. Resulting in

 $n \times m$ evaluations for 1D

Colorbar denotes the value of the objective function

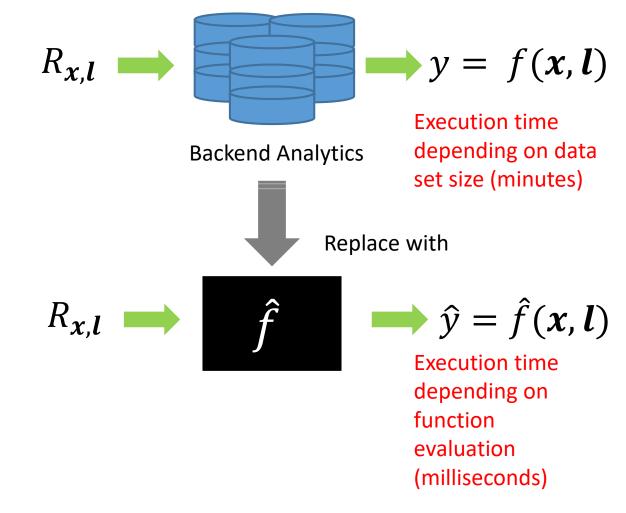
For 1D : $(20 \times 20)^1 = 400$

Function Evaluations!


For 3D : $(20 \times 20)^3 = 64,000,000 -$

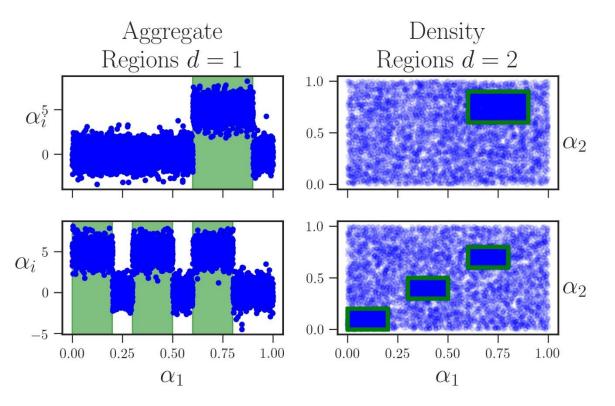
Introducing Multi-modal Optimization

- Objective function is multimodal as there could be many regions of interest.
- Function *f* is **unknown**
- Adopt GlowWorm Swarm Optimization (GSO) to locate regions of interest.

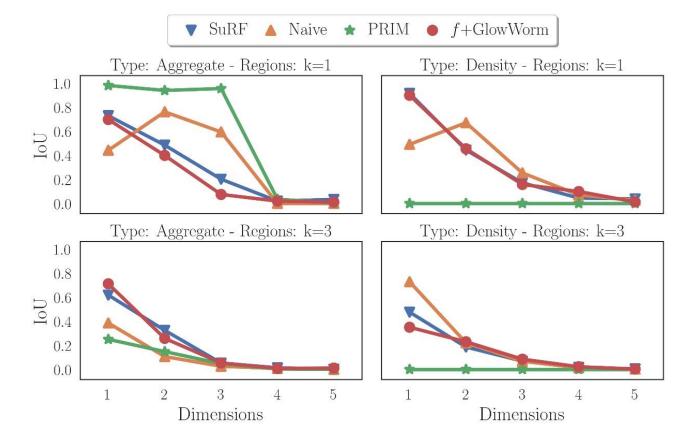


Particles in GSO only influence other particles within a neighbourhood

Backend Analytics System is a 'bottleneck' Essence Computing Science


- GSO effectively reduced the number of function evaluations to O(TL).
- *T* = *iterations*;
- *L* = number of particles
- Still have to compute f(x, l) over large data sets.
- Solution: Treat f as a black-box function -> approximate using \hat{f}
 - A surrogate function trained using past function evaluations

Experimental Evaluation - Task


- Artificial Continuous Region(s) :
 - a) where the aggregate statistic is larger
 - b) highly concentrated number of data points
- Task: identify $R_{x,l}$, i.e., boundaries of such sub-regions
- Accuracy: Jaccard Similarity Index
 - (Intersection Over Union)
 - How much the predicted region overlaps with the pre-defined region

Experimental Evaluation – Key Results (1) Essence Computing Science

- SuRF (proposed method)
- Naïve: discretisation process described in the beginning
- PRIM by Friedman & Fisher [1]
- *f* + GlowWorm: GSO with backend analytics

[1] Friedman, Jerome H., and Nicholas I. Fisher. "Bump hunting in high-dimensional data." *Statistics and Computing* 9.2 (1999): 123-143.

Experimental Evaluation – Results (2)

Increase in data set size N	Method	Data size N d dim.	10^{5}	10 ⁶ Time (sec	10 ⁷	
	SuRF	1 2 3 4 5	1.28 1.4 1.35 1.63 1.68	1.28 1.4 1.35 1.63 1.68	1.3 1.4 1.35 1.64 1.69	Relatively constant across all settings
	Naive	1 2 3 4 5	0.01 3.22 115.49 - (66%) - (1%)	0.16 33.72 1221.6 - (6%) - (0.1%)	1.94 341.7 - (22%) - (0.5%) - (0.01%)	As data set size and dimensionality increase method does not scale.
ncrease in data set dimensionality Cuttoff time set at 5 minutes (3000 seconds)	f+GlowWorm	1 2 3 4 5	4.71 26.7 26.46 27.1 30.21	51.9 280.14 289.5 293.62 320.03	601.32 2856.02 2808.42 2981.81	Similar to Naive
	PRIM	1 2 3 4 5	0.15 0.2 0.56 0.9 1.28	0.4 1.9 9.3 9.5 7.36	4.8 32.2 46.3 160.5 282.6	PRIM is highly scalable, starts to degrade as data set size increases

TABLE I COMPARATIVE ASSESSMENT OF DIFFERENT METHODS.

Essence School of Computing Science

Thank you!

Essence: Pervasive & Distributed Intelligence

http://www.dcs.gla.ac.uk/essence/

E-mail: f.savva.1@research.gla.ac.uk