

Learning Set Cardinality in Distance Nearest Neighbours

(%

<u>Christos Anagnostopoulos</u> & Peter Triantafillou

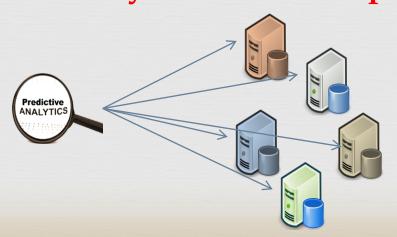
School of Computing Science University of Glasgow, UK

IEEE ICDM 2015; Atlantic City, NJ, USA

Observation

Consider a **federation** of data nodes storing large datasets.

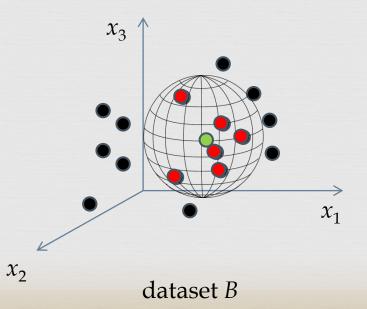
Data nodes *locally* execute cardinality-based nearest neighbours queries, *e.g.*, *k*-NN, *distance-based*-NN.
 Exploit knowledge derived only from the queries for predictive analytics and data exploration.



Distance Nearest Neighbours Query

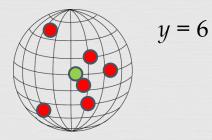
Consider a point **x** in R^{*d*}, a radius θ, and a dataset *B*. ⊲ A *d*NN query **q** = [**x**, θ] finds all points **x'** in dataset:

$$\mathbf{x}' \in B : \left\| \mathbf{x} - \mathbf{x}' \right\|_p \le \theta$$



dNN Query Cardinality

← Cardinality *y* is the *number* of points **x'** in the answer set of the query **q**, with $0 \le y \le |B|$

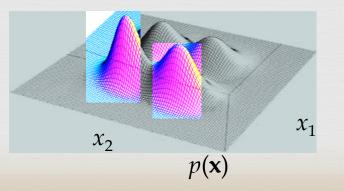


Set Cardinality Prediction (SCP)

Set Cardinality Prediction in Predictive Analytics

Data analysts *define* data subspaces of **interest** through *d*NN queries,
 *c*³ *e.g.*, *local* statistics, data exploration tasks.

Not all dataspaces are of the *same* interest to analysts
 Specific regions of datasets are worth exploring.



Data-driven SCP

A *data-driven* SCP, *e.g.*, histogram, sketching, sampling, relies on the data,
 i.e., requires *full access* to the data x.

 \bigcirc For instance, an histogram estimates the *underlying* data probability distribution $p(\mathbf{x})$ for SCP.

Motivation

However, access to nodes' data may be restricted:
 Confidentiality/security reasons, e.g., medical

databases,

- Costly data accesses, e.g., in Cloud deployments, for maintaining accurate statistical structures,
- In modern Big Data Systems the query processing engines do not own the data:

 - It is **impossible** to **maintain** the statistical structures up-to-date (required by data-driven SCP, *e.g.*, histograms)

Idea: Query-driven SCP

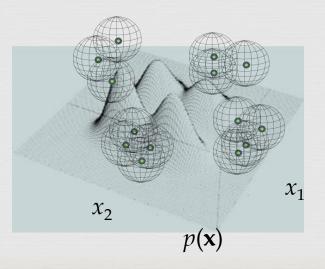
A query-driven SCP extracts knowledge about the data without accessing the data, but only from the queries and their answers.

The only available knowledge is:
pairs of (query, answer) *In our case*: (*d*NN query **q**, answer set cardinality *y*)

SCP as a Machine Learning Problem

 \bigcirc Given a series of *past* pairs (**q**_{*i*}, *y*_{*i*}) learn:

- the query patterns space instead of the data space to identify the areas of interest to the users and



Problems

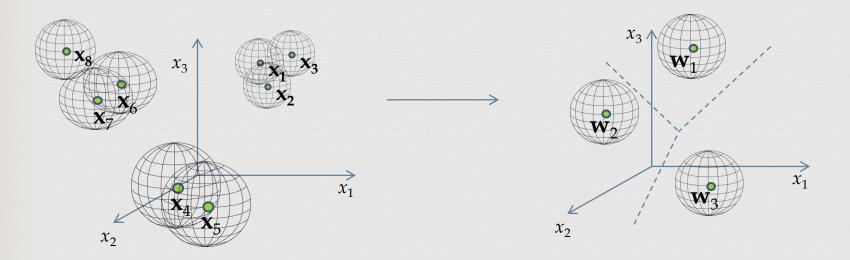
Problem 1. Given an unseen *d*NN query **q**, predict its cardinality *y* based **only** on the pairs (\mathbf{q}_i , y_i) and **not** on the data **x**.

Problem 2. Enhance the query-driven SCP to *adapt* and *learn* on-the-fly the **new** query patterns.

Problem 3. Enhance the query-driven SCP to incrementally *adapt* to **updates** of the data.

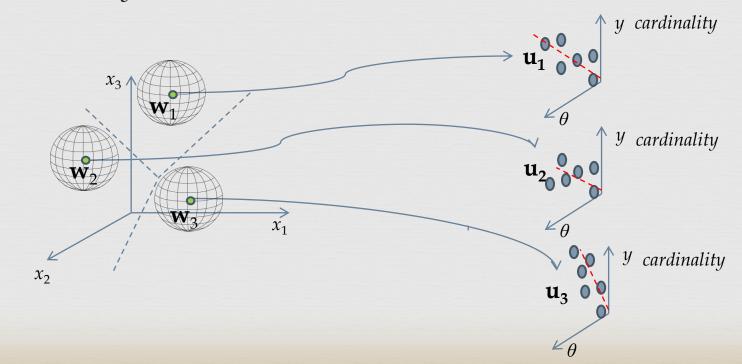
Unsupervised Regression

C A Learning Task 1 (Unsupervised): partition the query space to identify query representatives *w.r.t. query similarity*.



Unsupervised Regression

CR Learning Task 2 (Supervised): associate with each query prototype, a *localized regression coefficient* over *cardinality* and *radius* domain.



Competitive Learning Model

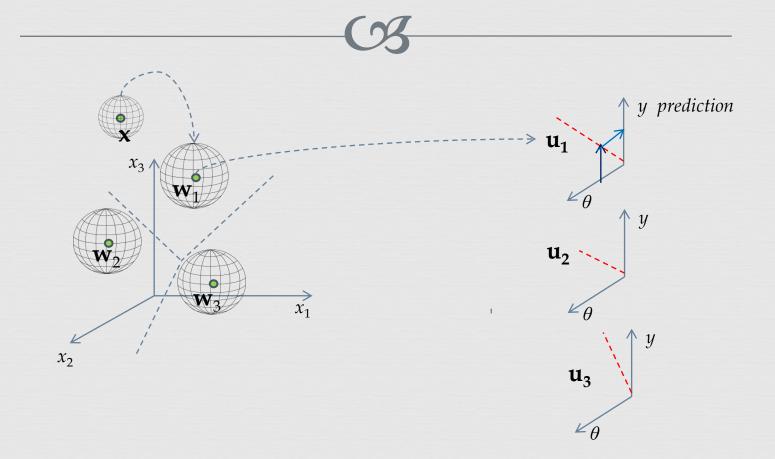
$$J(\{\mathbf{w}_i\}, \{\mathbf{u}_i\}) = E\left[\min_i \|\mathbf{q} - \mathbf{w}_i\|_{(p,1)}\right] + E\left[\left(y - \mathbf{u}_j^T \theta\right)^2 | j\right]$$

 $j = \arg\min_{i} \|\mathbf{q} - \mathbf{w}_{i}\|_{(p,1)}$ refers to the *closest* query prototype

$$\left\|\mathbf{q}-\mathbf{w}_{i}\right\|_{(p,1)}=\frac{1}{2}\left(d^{-\frac{1}{p}}\left\|\mathbf{x}-\mathbf{x}_{i}\right\|_{p}+\left|\boldsymbol{\theta}-\boldsymbol{\theta}_{i}\right|\right)$$

refers to distance between queries

Cardinality Prediction



Performance Evaluation

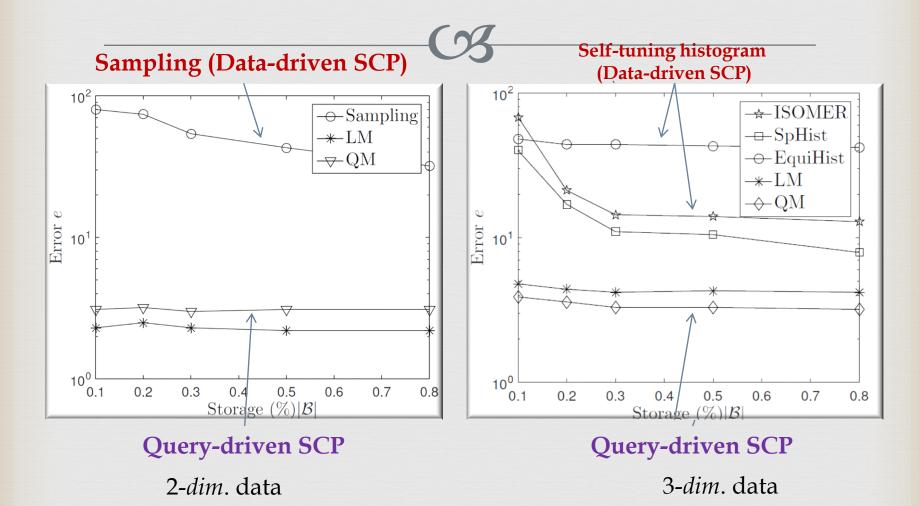
Metrics:

SCP accuracy (absolute relative error) *vs.* storage requirements (prototypes)

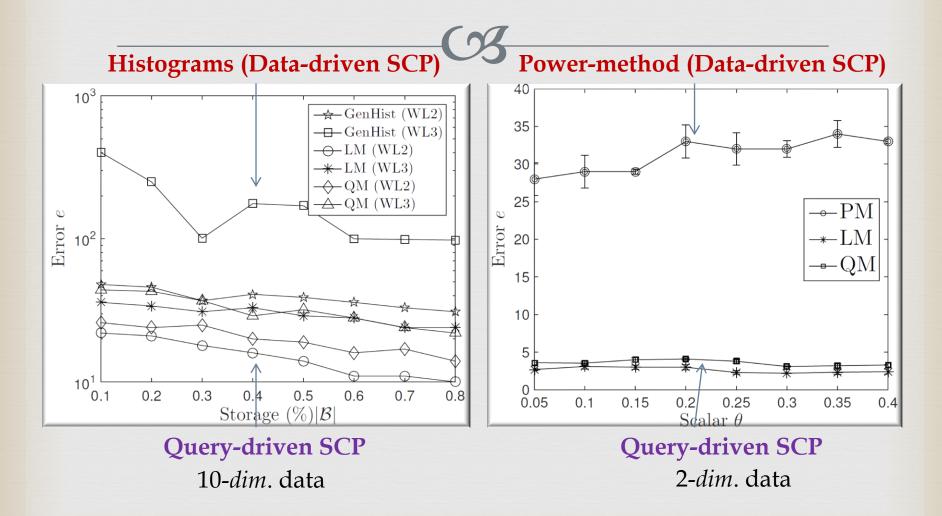
Comparative assessment:

G Data-centric SCP: sampling, histograms, self-tuning histograms, Power-method

Performance Evaluation



Performance Evaluation



Thank you