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 
Consider a federation of data nodes storing large 

datasets. 

Data nodes locally execute cardinality-based nearest 
neighbours queries, e.g., k-NN, distance-based-NN. 

 Exploit knowledge derived only from the queries  
for predictive analytics and data exploration.     

 

 

 

Observation 



 
Consider a point x in Rd, a radius  θ, and a dataset B. 

 A dΝΝ query q = [x, θ] finds all points x’ in dataset: 
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 
Cardinality y is the number of points x’ in the answer 

set of the query q, with 0 ≤  y ≤ |B| 

dNN Query Cardinality 
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 
 Predict the cardinality y of a dNN query q issued 

over a dataset B without executing the query.  

Set Cardinality Prediction (SCP) 



 
Data analysts define data subspaces of interest 

through dNN queries,  

 e.g., local statistics, data exploration tasks. 

 

Not all dataspaces are of the same interest to analysts 

 Specific regions of datasets are worth exploring. 

Set Cardinality Prediction in  
Predictive Analytics 
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 
A data-driven SCP, e.g., histogram, sketching, 

sampling, relies on the data,  

 i.e., requires full access to the data x. 

 

 For instance, an histogram estimates the underlying 
data probability distribution p(x) for SCP. 

Data-driven SCP 



 
However, access to nodes’ data may be restricted: 

 Confidentiality/security reasons, e.g., medical 
databases, 

 Costly data accesses, e.g., in Cloud deployments, for 
maintaining accurate statistical structures, 

 In modern Big Data Systems the query processing 
engines do not own the data:  

 They are oblivious to updates/insertions/deletions;  

 It is impossible to maintain the statistical structures up-
to-date (required by data-driven SCP, e.g., histograms) 

Motivation 



 
A query-driven SCP extracts knowledge about the 

data without accessing the data, but only from the 
queries and their answers.  

 

 The only available knowledge is:  

 pairs of (query, answer) 

 In our case: (dNN query q, answer set cardinality y) 

Idea: Query-driven SCP 



 
 Given a series of past pairs (qi , yi) learn: 

 the query patterns space instead of the data space to identify 
the areas of interest to the users and  

 the association between query & cardinality   
 

 

SCP as a Machine Learning Problem 
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 

 Problem 1. Given an unseen dNN query q, predict 
its cardinality y based only on the pairs (qi, yi) and 
not on the data x. 

 

 Problem 2. Enhance the query-driven SCP to adapt 
and learn on-the-fly the new query patterns. 

 

 Problem 3. Enhance the query-driven SCP to 
incrementally adapt to updates of the data. 

 

 

 

Problems 



 
 Learning Task 1 (Unsupervised): partition the query 

space to identify query representatives w.r.t. query 
similarity. 

 

Unsupervised Regression 
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 
 Learning Task 2 (Supervised): associate with each 

query prototype, a localized regression coefficient over 
cardinality and radius domain.   

Unsupervised Regression 
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 
 The optimization function is:  

 

 

 

 

 

 

 

 

 

 

 

Competitive Learning Model 
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 

Cardinality Prediction 
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 
Metrics:  

 SCP accuracy (absolute relative error) vs. storage 
requirements (prototypes)  

 

Comparative assessment: 

 Data-centric SCP: sampling, histograms, self-tuning 
histograms, Power-method 

Performance Evaluation 



 

Performance Evaluation 
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 

Performance Evaluation 

10-dim. data 
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Query-driven SCP 
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