

National and Kapodistrian University of Athens,







Technological Educational Institute of Athens

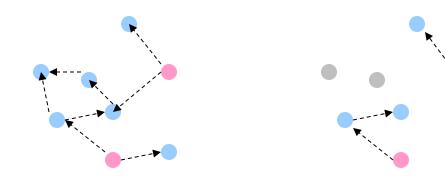
### An Adaptive Epidemic Information Dissemination Scheme with Cross-layer Enhancements

<u>T. Kontos</u>,<br/>E. Zaimidis,University of Athens, Dept. Informatics & Telecommunications<br/>B. Zaimidis,<br/>Hellenic Open UniversityC. Anagnostopoulos,<br/>S. Hadjiefthymiades,<br/>E. ZervasIonian University, Dept. Informatics<br/>Letters of Athens, Dept. Informatics & Telecommunications<br/>Technological Educational Institute of Athens, Dept. Electronics

ISCC 2011

Corfu, Greece

# Outline


- Rationale
- System & Channel Model
- Adaptive Dissemination Scheme
- Performance Metrics & Results
- Future Work

# Rationale

- Epidemics in data dissemination: a probabilistic scheme for information spreading in Ad-Hoc Networks
  - Transmit data to interested (susceptible) neighbors in a probabilistic rather than flooding manner
  - Reduces redundant communication due to its probabilistic nature
- Adaptive Dissemination:
  - offers additional reduction thanks to *adaptive* modulation & coding (AMC) and rationalised resource utilisation

## Rationale

#### An Effectiveness – Efficiency trade-off



High coverage High energy cost Low coverage Low energy cost

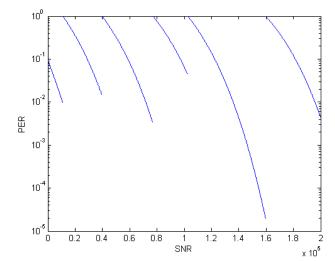
# System Model

#### Channel Model

- Noisy wireless channel (AWGN)
- Error correction (convolutional)
- Multi-hop, multipath propagation
- Network Model & Adaptive Epidemic Scheme
  - Finite RF range –> each node's neighborhood
  - **Forward** infecting data with probability  $\beta$
  - **Adjust**  $\beta$  based on local information
  - Switch code rate and modulation scheme (AMC) based on local SNR perception

# **Channel Model**

# Adoption of the model [1] offering channel noise awareness


- Use AMC
- Different Modulation & Convolutional Encoding acc. to SNR
- PER calculated accordingly:

$$PER = \begin{cases} a_n \exp(-g_n \gamma) \text{ if } \gamma \ge \gamma_{pn} \\ 1, \text{ otherwise} \end{cases}$$

[1] Qingwen Liu, Shengli Zhou, & Georgios B. Giannakis, "Cross-Layer Combining of Adaptive Modulation and Coding with Truncated ARQ over Wireless links" IEEE Trans. Wireless Comm. 3(5): 1746-1755, Sept. 2004

# **Channel Model**

|                       | MODE 1   | MODE 2  | MODE 3  | MODE 4  | MODE 5  | MODE 6  |
|-----------------------|----------|---------|---------|---------|---------|---------|
| Modulation            | BPSK     | QPSK    | QPSK    | 16-QAM  | 16-QAM  | 64-QAM  |
| Coding Rate           | 1/2      | 1/2     | 3/4     | 9/16    | 3/4     | 3/4     |
| Rate (bps)            | 0.50     | 1.00    | 1.50    | 2.25    | 3.00    | 4.50    |
| α <sub>n</sub>        | 274.7229 | 90.2514 | 67.6181 | 50.1222 | 53.3987 | 35.3508 |
| <i>g</i> <sub>n</sub> | 7.9932   | 3.4998  | 1.6883  | 0.6644  | 0.3756  | 0.0900  |
| γ <sub>pn</sub> (dB)  | -1.5331  | 1.0942  | 3.9722  | 7.7021  | 10.2488 | 15.9784 |



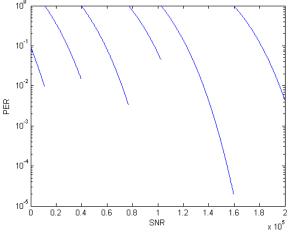
from: Qingwen Liu, Shengli Zhou, & Georgios B. Giannakis, "Cross-Layer Combining of Adaptive Modulation and Coding With Truncated ARQ Over Wireless links"

### **Adaptive Dissemination Scheme**

- Start with a few infected nodes
- Infected nodes:
  - May be cured (probability  $\delta$ )
  - May try to infect others (forwarding probability  $\beta$ )
  - May receive *infecting* messages (i.e. duplicate message rate)
  - May receive *corrupt* infecting messages (check first!)
    Always possible that you try to infect an already infected node!
- Susceptible nodes:
  - May receive infecting messages
  - May receive *corrupt* infecting messages (i.e. error rate)

The wireless channel is not always friendly!

### Adaptive Dissemination Scheme


- Measure error rate and duplicates rate locally
  - High error rate *e<sub>i</sub>(t)* means we need to shout louder to be heard!
  - High duplicates rate di(t) means the opposite!
- Two alternative adaptation equations:

$$\beta(t+1) = \beta_0 (1 - \kappa_1 d_i(t) + \kappa_2 e_i(t)) \qquad \qquad \beta(t+1) = \frac{\beta_0}{1 + \kappa_3 e^{1 - \kappa_1 d_i(t) + \kappa_2 e_i(t)}}$$

 Use local information from receptions to adapt your transmissions!

### **Adaptive Dissemination Scheme**

- Measure SNR (γ) and perform mode switch at SNR threshold crossings
- If  $\gamma_{pn} < \gamma < \gamma_{pn+1}$  then choose mode #*n* 
  - Remain at modest PER values
  - Reduce overhead in low noise environments



#### • Use local SNR information to adapt transmissions!

[1] Qingwen Liu, Shengli Zhou, & Georgios B. Giannakis, "Cross-Layer Combining of Adaptive Modulation and Coding with Truncated ARQ over Wireless links" IEEE Trans. Wireless Comm. 3(5): 1746-1755, Sept. 2004

### **Performance Metrics**

Independent Parameters

- •Signal-to-Noise Ratio
- •Initial forwarding rate
- •Network Density

•Mobility

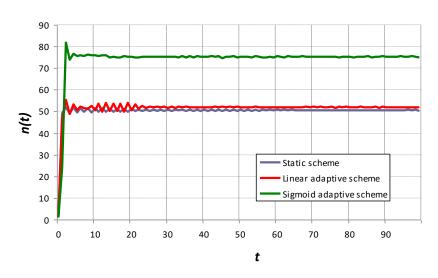
Context

•Error rate

•Duplicates rate

#### **Metrics**

•Coverage Rate


•Forwarding Prob.

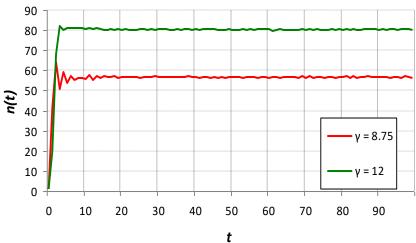
Transmission Cost

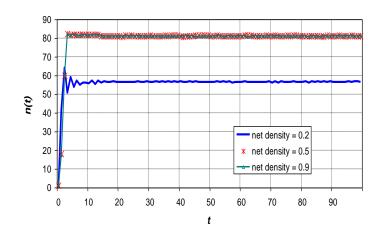
• Efficiency  $a(t) = \frac{n(t)}{M(t)}$ 

coverage rate over transmissions count

•Energy Cost Save




 $\beta_0=0.5$ , SNR=8.75 dB,  $\rho=0.2$ ,  $\sigma^2/N_0=0.7$ 

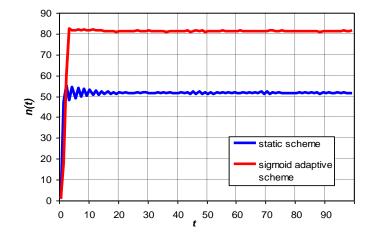

Low noise is favorable; coverage rate converges... •faster

•to higher values

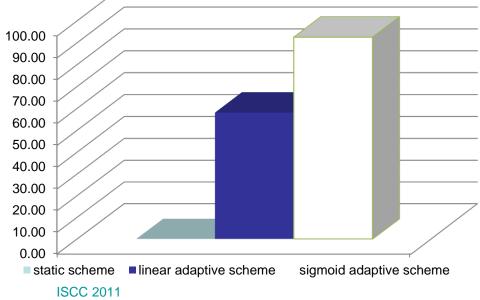
Forwarding probability suppressedCoverage rate converges quickly

•... resulting in energy cost saving

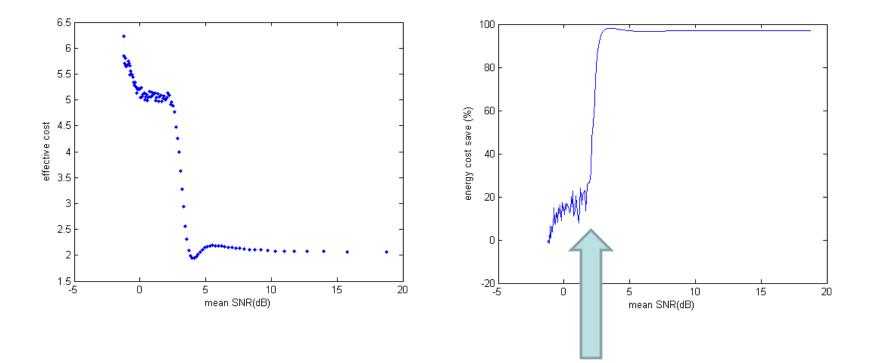





Dense networks favor dissemination...


 $\beta_0=0.5$ , SNR=8.75 dB,  $\sigma^2/N_0=0.7$ 

Mobile\* settings display similar behavior


\*Random waypoint model adopted



- Energy saved thanks to...
  - reduced overhead
  - regulated forwarding probability
- Good coverage thanks to avoidance of high-PER conditions



#### Cost save



Lower limit of lowest AMC mode

# Summary & Future Work

- Summary
  - Generic model (summarize adaptation methods)
  - Proof of concept for cross-layer context awareness (passive scheme avoiding polling)
- Future Work
  - **Optimum** adaptive dissemination schemes
  - Influence of the bandwidth competition on the scheme

# Thank you!

#### p-comp.di.uoa.gr

Pervasive Computing Research Group Department of Informatics and Telecommunications University of Athens, Greece