Optimal Stopping of the Context Collection Process in Mobile Sensor Networks

Christos Anagnostopoulos1, Stathes Hadjieftymiades2, Evangelos Zervas3

1University of Glasgow, School of Computing Science, UK
2National and Kapodistrian University of Athens, Dept. of Informatics & Telecommunications, Greece
3TEI Athens, Dept. Electronics, Greece
The considered setting

Consider a **Mobile Sensors Network** (MSN) with

- **sources**, *i.e.*, sensors that produce **context** (*e.g.*, humidity)
- **collectors**, *i.e.*, mobile nodes that receive, store and forward context to their neighbors.

Context is **quality-stamped**, *e.g.*, freshness.

The context **quality indicator decreases** with time.

The **aim** of a collector is to **gather** as many high-quality pieces of context as possible from sources and/or collectors.
The considered setting

communication range

source

collector
The problem

The collectors in a MSN:

- *forage* for high quality context and, then, *deliver* it to mobile context-aware applications;

- *undergo* a context collection process by exchanging data with neighboring collectors and/or sources *in light of* receiving context of *better* quality and/or *new* context;

- *cannot prolong* this process forever, since context quality decreases with time, thus, delivered context might be unusable for the application.
Some definitions

Context c is represented as:

$$c = \langle p, u, x_u \rangle$$

where:

p is contextual parameter/ type (e.g., temperature),
u is contextual value (e.g., 30 °C),
x_u is quality indicator of value u
Context quality indicator

Indicator $x_u \in [0, 1]$ indicates freshness of u.

- $x_u = 1$ indicates that u is of maximum quality.
- $x_u = 0$ indicates that u is unusable.

Context at time t is called fresh if $x_u(t) > 0$; otherwise it is called obsolete.
Context quality indicator

Indicator $x_u(t)$ at time $t > 0$ is updated as follows:

$$x_u(t) = x_u(t-1) - 1/z , \quad x_u(0) = 1, \quad z \neq 0$$

- z is the validity horizon for parameter p in which value u is considered usable.

- z is application specific, e.g., $z = 10$min if p is temperature, $z = 1$min if p is wind-speed.

Notice: Alternative quality indicator functions can be, for instance, the inverse exponential function
Consider a **collector** which has collected a set of N **fresh** pieces of context, $C = \{c_1, c_2, \ldots, c_N\}$, referred to as **local context**.

Let collector receive context q from a neighbor collector. Collector increases its **local context** in **type** and/or **quality** as follows:

- If q is **obsolete** then collector **discards** q;
- If q is **fresh** and there is some local context c with the same type of q but less fresh than q then collector **replaces** c with q;
- If q is **fresh** and there is no other local context of the same type, collector **inserts** q into C;
Degree of completeness

Local context C is quantified through degree of completeness (DoC), Y, defined as the random variable [1]:

$$Y = N \cdot \sum_{k=1}^{N} X_k$$

- N is the current number (quantity) of collected pieces of context; $N \in \{0, 1, 2, \ldots, m\}$, $m > 0$.
- X_k is the current quality indicator of the kth contextual parameter in C.

Degree of completeness

When the collector decides to stop the collection process at some time, it wants to achieve the highest expected value of \(Y \).

Hence, the collector has to find an optimal stopping time \(t \) of the collection process which maximizes:

\[
E[Y_t] = E[N_t \cdot \sum_{k=1}^{N_t} X_k^t]
\]
Optimal Stopping Theory (OST)

• Choose the **best** time to **take** a decision of performing a certain action.

• **Observe** the current state of a system and decide whether to:
 - **continue** the process or
 - **stop** the process, and incur a certain cost.

...the **discounted sum** problem, the **odds** algorithm, the **secretary** problem, the **parking** problem, the **asset-selling** problem, etc.
Application to context collection problem

➤ Decision

☐ *When* to **stop** collecting pieces of context from neighboring collectors/sources and deliver them to the application.

➤ Cost

☐ *Quality* of local pieces of context decreases with time.

☐ *Serving* obsolete context to the application.

➤ Approach

☐ *Adoption* of the OST **discounted sum** problem
Discounted sum problem in context collection

The decision of the collector at time t is:

- stop and deliver local context to the application, or
- continue the process and update local context

Let us define a tolerance threshold $\theta \in (0, m^2)$ such that:

If $Y > \theta$ Then local context is significantly adequate for the collector’s requirements in terms of quantity and quality.
Discounted sum problem in context collection

Consider the indicator function:

\[I_t = \begin{cases}
1, & \text{if } Y_t > \theta \\
0, & \text{otherwise}
\end{cases} \]

and the cumulative sum up to time \(t \):

\[S_t = \sum_{n=1}^{t} I_n \]

The problem is to decide how large \(S_t \) should get before the collector stops, i.e., we have to determine a time \(t \) such that the supremum

\[\sup_t E[\beta^t S_t] \]

is attained, \(0 < \beta < 1 \).
Discounted sum problem in context collection

Optimal Stopping Rule: Observe I_t value at time t and stop at the first time for which it holds true that:

$$S_t \geq \frac{\beta}{1 - \beta} (1 - F_Y(\theta))$$

- $F_Y(y)$ is the cumulative distribution function of Y.
- β is *discount factor* indicating the necessity of collector to take a decision;
 - collector requires a rather extended time horizon for deciding on deliver context when β is high.
Performance & Comparative Assessment

- **Simulation setup**
 - MSN of 100 nodes; number of sources \(\omega = \{5, 10, 20\} \)
 - Mobility model: Random Waypoint
 - Validity horizon \(\zeta \sim U(2,10)\)min.
 - Tolerance threshold \(\theta \in [0.2, 0.7] \)
 - Maximum quantity of contextual parameters \(m = \{10, 20\} \)

- **Comparison Schemes**
 - **Scheme C**: Randomized policy: collectors stop the process at a random time instance
 - **Scheme B**: Finite-Horizon policy [1]: collectors stop the process based on a pre-defined deadline \(T \); adoption of OST

- **Metric**
 - Normalized average value of DoC delivered to the application;
 - the higher DoC is, the higher context **quality** and **quantity** is delivered to the application
The Probability Density Function (PDF) of the decision delay Δt^*, i.e., interval between following collection processes, for diverse number of contextual parameters m.
Performance & Comparative Assessment

The DoC for schemes A, B, & C

<table>
<thead>
<tr>
<th>Scheme</th>
<th>B</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$m = 10$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\omega(%)$</td>
<td>$T = 10$</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>.33</td>
<td>.52</td>
<td>.44</td>
</tr>
<tr>
<td>10</td>
<td>.33</td>
<td>.55</td>
<td>.57</td>
</tr>
<tr>
<td>20</td>
<td>.35</td>
<td>.55</td>
<td>.56</td>
</tr>
<tr>
<td></td>
<td>$m = 20$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\omega(%)$</td>
<td>$T = 10$</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>.30</td>
<td>.42</td>
<td>.45</td>
</tr>
<tr>
<td>10</td>
<td>.31</td>
<td>.48</td>
<td>.48</td>
</tr>
<tr>
<td>20</td>
<td>.32</td>
<td>.50</td>
<td>.50</td>
</tr>
</tbody>
</table>
Performance & Comparative Assessment

The PDF of normalized DoC for all schemes.
Performance & Comparative Assessment

The normalized DoC for all schemes against tolerance threshold θ.
Conclusions

• A solution to the *context collection problem* based on Optimal Stopping Theory;

• Collectors *autonomously* take time-optimized context delivery decisions *without* a deadline;

• Collectors deliver context of high quality and quantity within *short* delays;

• Our scheme performs *well* when dealing with applications which require context of high quality and quantity (*i.e.*, high tolerance threshold)
Thank you!