
ESSENCE

PERVASIVE & DISTRIBUTED INTELLIGENCE

Ekaterina (Katie) Aleksandrova
2133352A@student.gla.ac.uk

FRI 12th APRIL @ SoCS/SAWB 303 Supervision by: Dr Chris Anagnostopoulos

Statistical Model Updates in Distributed Computing:

An Optimal Stopping Theory Perspective

1



Problem statement

❑Internet of Things system:

❑Edge sensors

❑Neighbourhood edge gateways

❑Data centres (the Cloud)

❑What we Are doing:

❑Sense multivariate contextual data at 

the edge

❑Transfer the data to the Cloud for 

analysis

❑Have accurate and up-to-date 

knowledge in the Cloud 

❑What we Don’t want:

❑Computational overhead at the Data 

centres and sensors

❑Communication overhead 

❑High network bandwidth
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Problem statement (Cont’d)

❑What we Can do:

❑Gather some of the sensed data in the 

sensor

❑Create a model from that data

❑Communicate the model

❑Wait until a Model Concept Drift (CD) 

has occurred

❑Communicate an updated model

❑What we Will achieve:

❑Less communication in the network

❑Lower bandwidth requirement

❑Data is delivered to the datacentre 

partially analysed

❑Data is anonymised by preserving the 

raw context at the sensor level

Sense data

Create model

Send model

Check 

for 

CD

Yes

No
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What is a Concept Drift?

❑Def. A changing context which induces a change in 

the target concepts (Widmer & Kubat, 1996)

(Lemaire et. al., 2015)
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Handling concept drift
Using Cumulative Sum (CuSum)[*]

❑Using the Absolute Error Difference between current model and 
previously sent model on the most up-to-date subset of the data:
❑ ∆𝒆 = |𝒆 − 𝒆′|

❑Make assumption on the Good Distribution and the Bad distribution

❑Calculate the probability 

density functions of both:
❑𝑷𝒈𝒐𝒐𝒅 and 𝑷𝒃𝒂𝒅

[*] Invented by E. Page, Uni of Cambridge, 1954 Fig. Good Distribution vs. Bad Distribution
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Handling concept drift
Using Cumulative Sum (CuSum) (Cont’d)

❑For each new ∆𝒆 calculate the log-likelihood ratio:

❑𝒍𝒕 = 𝑳∆𝒆 = 𝒍𝒏
𝑷∆𝒆 | 𝒃𝒂𝒅

𝑷∆𝒆 | 𝒈𝒐𝒐𝒅

❑Keep a record of all log-likelihood ratios sums:

❑𝑺 𝒕 = σ𝒌=𝟎
𝒕 𝒍𝒌

❑Decision value:

❑𝒈 = 𝑺 𝒕 −𝒎𝒊𝒏𝟎≤𝒌≤𝒕−𝟏(𝑺 𝒌 )

❑Update criteria: 𝒈 > 𝒉 , where 𝒉 ← 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅
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From CuSum
to Optimal Stopping Theory

❑What does Optimal Stopping Theory deal with?

❑How to estimate the best time to stop and gain the highest reward 

or suffer the least penalty?

❑Popular examples:

❑The Secretary problem

❑The Blackjack Card game

❑The House Selling problem

❑Our problem:

❑Delay sending an update as much as possible until a change in 

the distribution has occurred
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From CuSum to OST (Cont’d)

❑We use the cumulative sum principle on the absolute error rate, 

which is not allowed to exceed 𝜣
❑ 𝒁𝒕 = ∆𝒆𝒕 = |𝒆𝒕 − 𝒆𝒕

′|

❑ 𝑺𝒕 = σ𝒌=𝟎
𝒕 𝒁𝒌

❑Optimise 𝒕∗ while maximising the reward function 

𝑽𝒕 = ቊ
𝒕, 𝑺𝒕 ≤ 𝚯; 𝑖𝑓 𝑤𝑒 𝑑𝑖𝑑𝑛′𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 ∆𝑒 𝑤𝑎𝑠 𝑙𝑜𝑤

−𝑩, 𝑺𝒕 > 𝚯; 𝑖𝑓 𝑤𝑒 𝑑𝑖𝑑𝑛′𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 ∆𝑒 𝑤𝑎𝑠 ℎ𝑖𝑔ℎ

❑From here we can obtain the expected reward at time 𝒕

⇒ 𝔼 𝑽𝒕 = 𝒕 ∙ 𝑷 𝑺𝒕 ≤ 𝜣 + −𝑩 ∙ 𝑷 𝑺𝒕 > 𝜣

= 𝒕 + 𝑩 ∙ 𝑷 𝑺𝒕 ≤ 𝚯 − 𝑩

❑Given the realisation of all random variables up to time 𝒕 , let us have the filtration 

𝔽𝒕 = 𝑺𝟏, … , 𝑺𝒕 ∪ 𝒁𝟏, … , 𝒁𝒕

❑From that we can express the conditional expectation of the future reward 𝑽𝒕+𝟏
𝔼 𝑽𝒕+𝟏|𝔽𝑡 = 𝒕 + 𝟏 + 𝑩 ∙ 𝑷 𝑺𝒕+𝟏 ≤ 𝚯|𝔽𝑡 − 𝑩
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❑ The equation 𝑺𝒕 = σ𝒌=𝟎
𝒕 𝒁𝒌 can be used to express the sum at time 𝒕 + 𝟏:

𝑺𝒕+𝟏 = 

𝒌=𝟎

𝒕+𝟏

𝒁𝒌 = 

𝒌=𝟎

𝒕

𝒁𝒌 + 𝒁𝒕+𝟏 = 𝑺𝒕 + 𝒁𝒕+𝟏

❑ This leads to finding that the probability of the future sum being less than 𝜣 given our 

filtration equals the cumulative distribution function of 𝒁 being less than or equal to 

𝜣− 𝑺𝒕:
𝑷 𝑺𝒕+𝟏 ≤ 𝜣|𝔽𝒕 = 𝑷 𝑺𝒕 + 𝒁𝒕+𝟏 ≤ 𝜣 𝔽𝒕

= 𝑷 𝒁𝒕+𝟏 ≤ 𝜣− 𝑺𝒕 𝔽𝒕
= 𝑭𝒛 𝜣− 𝑺𝒕

❑Now we can substitute for the conditional expectation of the future value and obtain:

𝔼 𝑽𝒕+𝟏|𝔽𝑡 = 𝒕 + 𝟏 + 𝑩 ∙ 𝑭𝒛(𝜣 − 𝑺𝒕) − 𝑩

❑When the currently obtained reward is more than the conditional expected future 

reward, we want to send an updated model. That is when the following is satisfied:

𝑽𝒕 ≥ 𝔼 𝑽𝒕+𝟏 𝔽𝒕] ֞𝑭𝒛 𝜣− 𝑺𝒕 ≤
𝒕 + 𝑩

𝒕 + 𝟏 + 𝑩

From CuSum to OST (Cont’d)
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Other update policies 
and their rationale

❑Median-based policy

❑Update criteria: ∆𝑒𝑡 > 𝛼 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(∆𝑒1, … , ∆𝑒𝑡−1)

❑Accuracy-based policy

❑Update criteria: et > 𝑒𝑡
′

❑Random-based policy

❑Update criteria: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 {1 0}, prob = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑜𝑙𝑖𝑐𝑦
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Experimenting 
using real life sensor data

❑GNFUV Unmanned Surface Vehicles Sensor Dataset 
(Harth & Anagnostopoulos, 2018)

❑collected data: (humidity, temperature)

❑used with Linear Regression models

❑Gas Sensors for Home Activity Monitoring Dataset
(Huerta et. al., 2016)

❑collected data: (humidity, temperature, values from 8 metal-oxide 

sensors)

❑used with Support Vector Regression (with an RBF kernel) 

models 

❑included artificial incremental concept drift in the data 
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❑The absolute error for the 

optimal policy does not 

drastically deviate from the other 

policies

❑The optimal policy saves on 

average 5 times more 

communication 

Our results 
for Linear Regression Models
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❑Looking for a statistical significant difference b/w policies:

❑waiting time

❑absolute error

ANOVA test
for Linear Regression

ANOVA p-value for waiting time

sensor pi3 1.248e-30 <= 0.05

sensor pi4 7.893e-14 <= 0.05

ANOVA p-value for abs error

sensor pi3 1.244e-13 <= 0.05

sensor pi4 2.723e-17 <= 0.05
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Tukey’s HSD test
for Linear Regression

The waiting time for the optimal 

policy has a higher mean 

and 

the difference is statistically 

significant.

The difference in the absolute 

error between the optimal 

policy and when always having 

the most up-to-date model is 

not statistically significant.
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Our results 
for Support Vector Regression Models

• The absolute error for the optimal 

policy and the cusum policy

deviate the most from the 

accurate policy

• The optimal policy waits on 

average 30 times longer than 

the other policies
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ANOVA test
for Support Vector Regression Models

❑Looking for a statistical significant difference b/w policies:

❑waiting time

❑absolute error

ANOVA p-value for waiting time

sensor R3 9.198e-18 <= 0.05

sensor R5 1.477e-32 <= 0.05

ANOVA p-value for abs error

sensor R3 6.003e-23 <= 0.05

sensor R5 1.062e-11 <= 0.05
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Tukey’s HSD test
for Support Vector Regression Models

The waiting time for the optimal 

policy has a higher mean 

and 

the difference is statistically 

significant.

The optimal policy has a higher 

absolute error rate and the 

difference is statistically 

significant from the rest of the 

policies.
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Conclusion

Policy type High quality 

prediction models

Lower quality 

prediction model

CuSum high error and high communication ☺

Accuracy-based ☺ high communication

Optimal high error ☺

Median-base ☺ high communication
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Thank you!

Ekaterina (Katie) Aleksandrova


