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) soo Problem statement

Computing Science

dInternet of Things system:
0 Edge sensors
2 Neighbourhood edge gateways
1 Data centres (the Cloud)

JWhat we Are doing:

0 Sense multivariate contextual data at
the edge

2 Transfer the data to the Cloud for
analysis

1 Have accurate and up-to-date
knowledge in the Cloud

OWhat we Don’t want:

0 Computational overhead at the Data
centres and sensors

2 Communication overhead
2 High network bandwidth
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JWhat we Can do:

0 Gather some of the sensed data in the
sensor

0 Create a model from that data
O Communicate the model

0 Wait until a Model Concept Drift (CD)
has occurred

J Communicate an updated model

JWhat we Will achieve:
O Less communication in the network
J Lower bandwidth requirement

0 Data is delivered to the datacentre
partially analysed

d Data is anonymised by preserving the
raw context at the sensor level

School o Problem statement contq)

Sense data

Create model

Send model
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J.™" Whatis a Concept Drift?

Computing Science

dDef. A changing context which induces a change in
the target concepts (widmer & Kubat, 1996)
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(Lemaire et. al., 2015)
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Computing Science | Jsing Cumulative Sum (CuSum)[*]

QUsing the Absolute Error Difference between current model and
previously sent model on the most up-to-date subset of the data:
DAe=|e —é€|

O Make assumption on the Good Distribution and the Bad distribution

QCalculate the probability
density functions of both:
D Pgood and Ppaa

= gamma pdf m— gamma pdf
good error dist bad error dist
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[ Invented by E. Page, Uni of Cambridge, 1954 Fig. Good Distribution vs. Bad Distribution
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Computing Science | Jsing Cumulative Sum (CuSum) (Cont’d)

O For each new Ae calculate the log-likelihood ratio:

P
Dlt=LAe= ln Ae | bad

Ae | good

O Keep a record of all log-likelihood ratios sums:

as[t] = Yhoo b

1 Decision value;

g = S[t] — ming<g<,—1(S[k])

OUpdate criteria: g > h , where h < threshold
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dWhat does Optimal Stopping Theory deal with?

CJHow to estimate the best time to stop and gain the highest reward
or suffer the least penalty?

JPopular examples:
The Secretary problem
dThe Blackjack Card game
dThe House Selling problem

Our problem:

dDelay sending an update as much as possible until a change in
the distribution has occurred
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Computing Science

0 We use the cumulative sum principle on the absolute error rate,
which is not allowed to exceed @

AZ, = Ae; = |e; — ey

OS, =Xt 02k

0 Optimise t* while maximising the reward function
V. = t,S; < 0; if we didn't update and the next Ae was low
7 |-B,S; > 0; if wedidn't update and the next Ae was high

2 From here we can obtain the expected reward at time ¢
> E[V,] =t -P(5,<0)+ (-B-P(S;>0))
=({t+B)-P(S;<0)—-B

2 Given the realisation of all random variables up to time t, let us have the filtration
]Ft = {Sl, ""St} U {Zl, ""Zt}

0 From that we can express the conditional expectation of the future reward V,,4
E[Vis1|Fel =@ +1+ B) - P(S¢11 < O|F,) — B



Sehool o From CuSum to OST (contq)

Computing Science

0 The equation S, = Y%,_, Z, can be used to express the sum at time ¢ + 1:
t+1 t

Sit1 = z Zy =
k=

Zy+Zi1=S:+27Ziq
0 k=0
O This leads to finding that the probability of the future sum being less than @ given our
filtration equals the cumulative distribution function of Z being less than or equal to
P(S;41 < O|F,) = P(S; + Z;4q < O[F))
= P(Zt+1 <0- St”Ft)
= Fz(@ - St)

2 Now we can substitute for the conditional expectation of the future value and obtain:
E[Viq|F]=(+1+B)-F,(0—-S,)—B

2 When the currently obtained reward is more than the conditional expected future
reward, we want to send an updated model. That is when the following is satisfied:

V,>E[Voy|F,| ©F.(0—5) <10
t = t+1 t] VA t—t+1+B
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== and their rationale

Median-based policy
dUpdate criteria: Ae; > a * median(Aeq, ..., Aeq_q)

JAccuracy-based policy
OUpdate criteria: e, > e;

CJRandom-based policy
QUpdate criteria: generate({1|0}, prob = optimal policy)



i. Universit

¢teow  EXperimenting

School of

wrmoseeusing real life sensor data

OGNFUV Unmanned Surface Vehicles Sensor Dataset
(Harth & Anagnostopoulos, 2018)

dcollected data: (humidity, temperature)
dused with Linear Regression models

Gas Sensors for Home Activity Monitoring Dataset
(Huerta et. al., 2016)

dcollected data: (humidity, temperature, values from 8 metal-oxide
Sensors)

dused with Support Vector Regression (with an RBF kernel)
models

dincluded artificial incremental concept drift in the data
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OThe absolute error for the
optimal policy does not
drastically deviate from the other
policies

The optimal policy saves on
average 5 times more
communication

@ ey Our results
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- Computing Science for Linear RegrESSiOn

Looking for a statistical significant difference b/w policies:
dwaiting time

ANOVA p-value for

sensor pi3 | 1.248e-30 | <=0.05
sensor pi4 | 7.893e-14 | <=0.05

_absolute error

ANOVA p-value for

sensor pi3 | 1.244e-13 | <=0.05
sensor pi4 | 2.723e-17 | <=0.05
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policyR 1
The waiting time for the optimal .
. - policyOP
policy has a higher mean
and policyM 1 —
the difference is statistically policyC| —
significant. policyA|  —e—
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policyR -
The difference in the absolute policyOP |
error between the optimal policyM |
policy and when always having policyE
the most up-to-date model is policyC ]
not statistically significant. colicy ]
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- The absolute error for the optimal

Our results

policy and the cu
deviate the most
accurate policy

- The optimal policy waits on
average 30 times longer than

the other policies

Computing Science for Su pport VECtor RegrESSion MOdeIS
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cemunoseence— for Support Vector Regression Models

Looking for a statistical significant difference b/w policies:
dwaiting time

ANOVA p-value for

sensor R3 9.198e-18 <=0.05
sensor R5 1.477e-32 <=0.05

_absolute error

ANOVA p-value for

sensor R3 6.003e-23 <=0.05
sensor R5 1.062e-11 <=0.05
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Tukey’s HSD test
Computing Science for Support Vector RegrESSion MOdEIS

policyR |
The waiting time for the optimal .
. - policyOP
policy has a higher mean
policyM 4 —
and
the difference is statistically policyC —
significant. policyA{  ——
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policyR 1
The optimal policy has a higher policyoP
absolute error rate and the policyM |
difference is statistically policyE |
significant from the rest of the policyC]
policies. solicya ]
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Policy type High quality Lower quality
prediction models prediction model
CuSum high error and high communication ©
Accuracy-based © high communication
Optimal high error ©
Median-base © high communication
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Thank you!

Ekaterina (Katie) Aleksandrova



