

ESSENCE PERVASIVE & DISTRIBUTED INTELLIGENCE

Statistical Model Updates in Distributed Computing: An Optimal Stopping Theory Perspective

Ekaterina (Katie) Aleksandrova

2133352A@student.gla.ac.uk

FRI 12th APRIL @ SoCS/SAWB 303

Supervision by: Dr Chris Anagnostopoulos

Problem statement

□Internet of Things system:

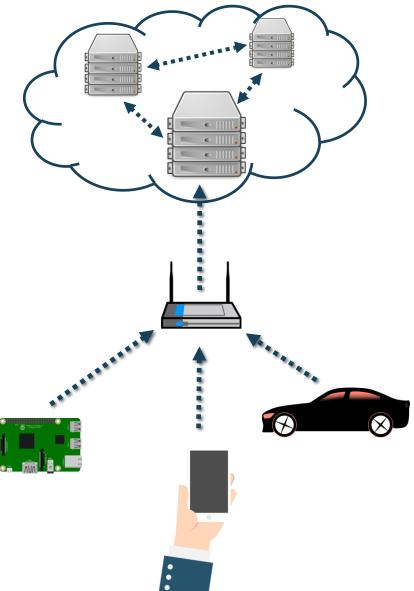
- Edge sensors
- Neighbourhood edge gateways
- □ Data centres (the Cloud)

□What we Are doing:

- Sense multivariate contextual data at the edge
- Transfer the data to the Cloud for analysis
- Have accurate and up-to-date knowledge in the Cloud

What we Don't want:

- Computational overhead at the Data centres and sensors
- □ Communication overhead
- High network bandwidth



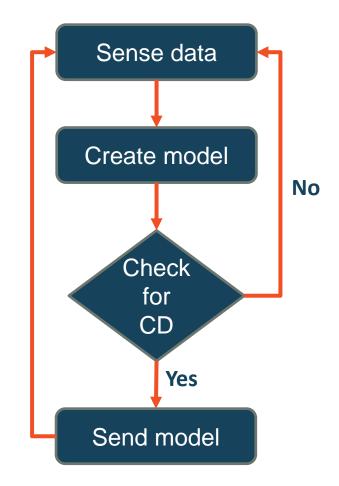
Problem statement (Cont'd)

□What we Can do:

- Gather some of the sensed data in the sensor
- □ Create a model from that data
- □ Communicate the model
- Wait until a Model Concept Drift (CD) has occurred
- □ Communicate an updated model

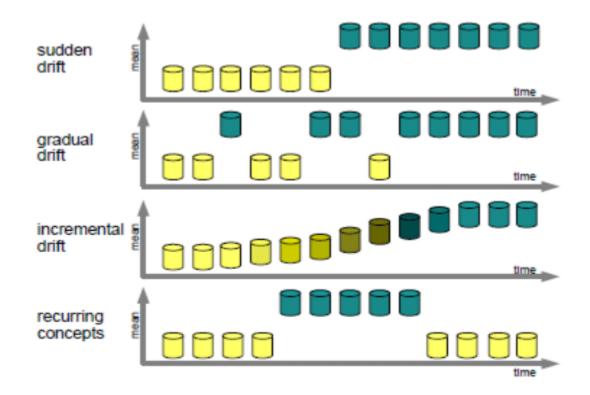
□What we Will achieve:

- Less communication in the network
- Lower bandwidth requirement
- Data is delivered to the datacentre partially analysed
- Data is **anonymised** by preserving the raw context at the sensor level



What is a Concept Drift?

□ Def. A changing context which induces a change in the target concepts (Widmer & Kubat, 1996)

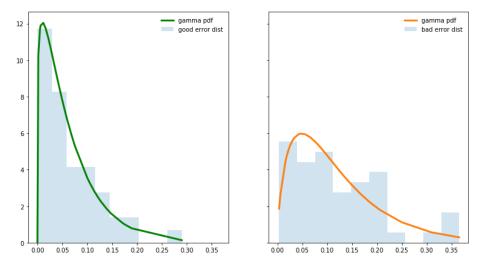


Handling concept drift Using Cumulative Sum (CuSum)[*]

□ Using the Absolute Error Difference between current model and previously sent model on the most up-to-date subset of the data: □ $\Delta e = |e - e'|$

□ Make assumption on the Good Distribution and the Bad distribution

```
    Calculate the probability density functions of both:
    P<sub>good</sub> and P<sub>bad</sub>
```



[*] Invented by E. Page, Uni of Cambridge, 1954

Fig. Good Distribution vs. Bad Distribution

Handling concept drift Using Cumulative Sum (CuSum) (Cont'd)

 \Box For each new Δe calculate the log-likelihood ratio:

 $\Box l_t = L_{\Delta e} = ln \frac{P_{\Delta e \mid bad}}{P_{\Delta e \mid good}}$

□Keep a record of all log-likelihood ratios sums:

 $\Box S[t] = \sum_{k=0}^{t} l_k$

Decision value:

 $\Box g = S[t] - min_{0 \le k \le t-1}(S[k])$

Update criteria: g > h, where $h \leftarrow threshold$

From CuSum

to Optimal Stopping Theory

What does Optimal Stopping Theory deal with?

How to estimate the best time to stop and gain the highest reward or suffer the least penalty?

Popular examples:

The Secretary problem
The Blackjack Card game
The House Selling problem

Our problem:

Delay sending an update as much as possible until a change in the distribution has occurred

From CuSum to OST (Cont'd)

 \Box We use the cumulative sum principle on the absolute error rate, which is not allowed to exceed Θ

 $\Box Z_t = \Delta e_t = |e_t - e'_t|$ $\Box S_t = \sum_{k=0}^t Z_k$

□ Optimise *t*^{*} while maximising the reward function

 $V_{t} = \begin{cases} t, S_{t} \leq \Theta; & \text{if we didn't update and the next } \Delta e \text{ was low} \\ -B, S_{t} > \Theta; & \text{if we didn't update and the next } \Delta e \text{ was high} \end{cases}$

□ From here we can obtain the expected reward at time t⇒ $\mathbb{E}[V_t] = t \cdot P(S_t \leq \Theta) + (-B \cdot P(S_t > \Theta))$ = $(t + B) \cdot P(S_t \leq \Theta) - B$

 \Box Given the realisation of all random variables up to time t, let us have the filtration $\mathbb{F}_t = \{S_1, \dots, S_t\} \cup \{Z_1, \dots, Z_t\}$

□ From that we can express the conditional expectation of the future reward V_{t+1} $\mathbb{E}[V_{t+1}|\mathbb{F}_t] = (t+1+B) \cdot P(S_{t+1} \leq \Theta|\mathbb{F}_t) - B$

From CuSum to OST (Cont'd)

The equation $S_t = \sum_{k=0}^t Z_k$ can be used to express the sum at time t + 1: $S_{t+1} = \sum_{k=0}^{t} Z_k = \sum_{k=0}^t Z_k + Z_{t+1} = S_t + Z_{t+1}$

□ This leads to finding that the **probability of the future sum** being less than Θ given our filtration equals the **cumulative distribution function** of *Z* being less than or equal to $\Theta - S_t$:

$$P(S_{t+1} \le \Theta | \mathbb{F}_t) = P(S_t + Z_{t+1} \le \Theta | \mathbb{F}_t)$$

= $P(Z_{t+1} \le \Theta - S_t | \mathbb{F}_t)$
= $F_z(\Theta - S_t)$

□ Now we can substitute for the conditional expectation of the future value and obtain: $\mathbb{E}[V_{t+1}|\mathbb{F}_t] = (t+1+B) \cdot F_z(\Theta - S_t) - B$

□ When the currently obtained reward is <u>more</u> than the conditional expected future reward, we want to send an updated model. That is when the following is satisfied: $V_{1} \ge \mathbb{E}[V_{1}, |\mathbb{E}_{1}] \iff E(\Theta - S_{1}) \le \frac{t+B}{E}$

$$V_t \ge \mathbb{E}[V_{t+1}|\mathbb{F}_t] \Leftrightarrow F_z(\Theta - S_t) \le \frac{t+B}{t+1+B}$$

Other update policies and their rationale

Median-based policy

Update criteria: $\Delta e_t > \alpha * median(\Delta e_1, ..., \Delta e_{t-1})$

Accuracy-based policy

Update criteria: $e_t > e'_t$

Random-based policy

□**Update criteria:** *generate*({1|0}, prob = *optimal policy*)

Experimenting using real life sensor data

GNFUV Unmanned Surface Vehicles Sensor Dataset

(Harth & Anagnostopoulos, 2018)

Collected data: (humidity, temperature)

used with Linear Regression models

□Gas Sensors for Home Activity Monitoring Dataset

(Huerta et. al., 2016)

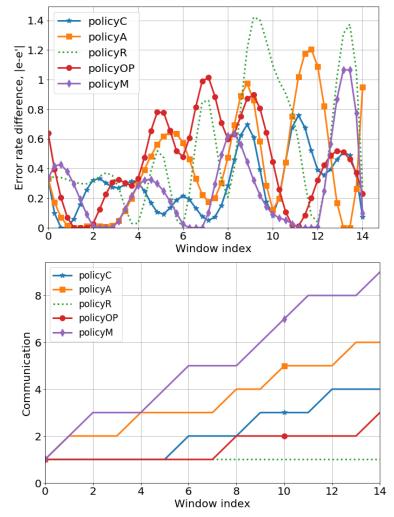
- collected data: (humidity, temperature, values from 8 metal-oxide sensors)
- used with Support Vector Regression (with an RBF kernel) models
- □included artificial incremental concept drift in the data

Our results

for Linear Regression Models

The <u>absolute error</u> for the optimal policy does not drastically deviate from the other policies

The optimal policy saves on average 5 times more <u>communication</u>



for Linear Regression

Looking for a statistical significant difference b/w policies:

waiting time

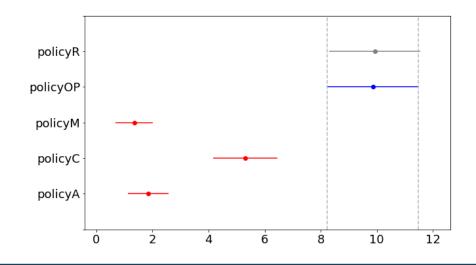
ANOVA p-value for waiting time		
sensor pi3	1.248e-30	<= 0.05
sensor pi4	7.893e-14	<= 0.05

□absolute error

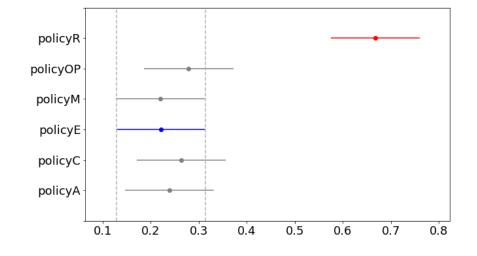
ANOVA p-value for abs error		
sensor pi3	1.244e-13	<= 0.05
sensor pi4	2.723e-17	<= 0.05

Tukey's HSD test for Linear Regression

The <u>waiting time</u> for the optimal policy has a higher mean and the difference is **statistically significant**.



The difference in the <u>absolute</u> <u>error</u> between the <u>optimal</u> policy and when always having the most up-to-date model is **not statistically significant**.

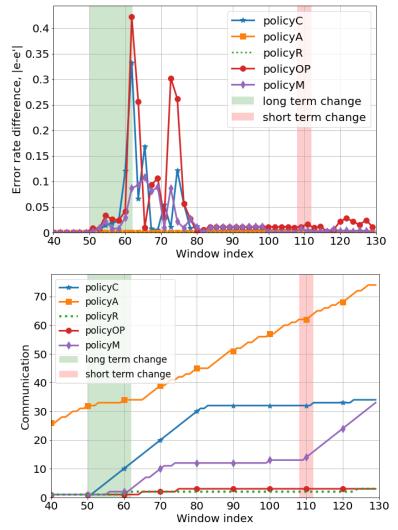


Our results

for Support Vector Regression Models

 The <u>absolute error</u> for the <u>optimal</u> policy and the cusum policy deviate the most from the accurate policy

 The optimal policy <u>waits</u> on average 30 times longer than the other policies



ANOVA test

for Support Vector Regression Models

Looking for a statistical significant difference b/w policies: waiting time

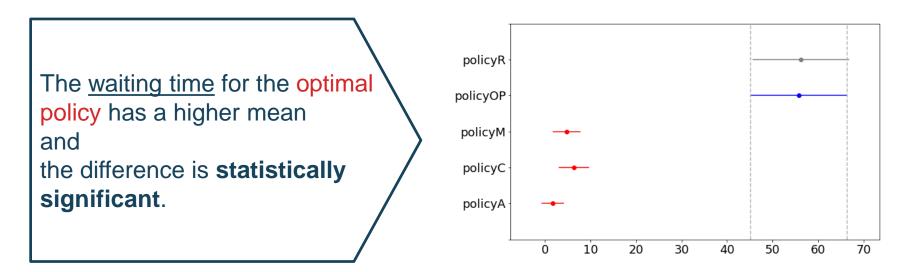
ANOVA p-value for waiting time		
sensor R3	9.198e-18	<= 0.05
sensor R5	1.477e-32	<= 0.05

□absolute error

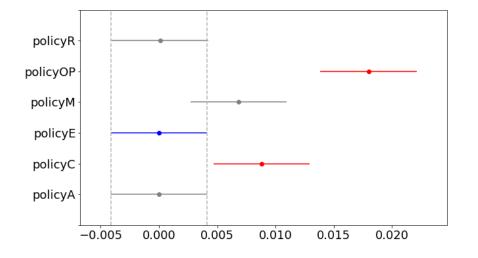
ANOVA p-value for abs error		
sensor R3	6.003e-23	<= 0.05
sensor R5	1.062e-11	<= 0.05

Tukey's HSD test

for Support Vector Regression Models



The optimal policy has a higher <u>absolute error rate</u> and the difference is **statistically significant** from the rest of the policies.



Policy type High quality prediction models		Lower quality prediction model
CuSum	high error and high communication	\odot
Accuracy-based	\odot	high communication
Optimal	high error	\odot
Median-base	\odot	high communication

ESSENCE PERVASIVE & DISTRIBUTED INTELLIGENCE

Thank you!

Ekaterina (Katie) Aleksandrova