

Vehicle Riding Sharing System

- Smart Cities
- Smart Mobility
- Vehicle Ride Sharing
- Future Location Prediction Service
- Personalized Recommendation Service

Smart Cities

- Cities 2.0
- Industry 4.0
- Internet of Things
- Artificial Intelligence
- Robotics

Smart Mobility

- Unmanned Aerial Vehicles
- Autonomous Vehicles
- Connected and Autonomous Vehicles
- Intelligent Transport Systems
- Smart Parking

Vehicle Ride Sharing

- Vehicle Pooling
- Ride Sharing
- Ride Hailing
- Commute System
- Uber
- Taxi Beat

Future Location Prediction Service

- Where am I?
- What time is it?
- Where the system infers I will go to in the near and/or far future?
- Does the system support detours?
- Am I satisfied from the system's location prediction service?

Personalized Recommendation Service

- Do I want to go alone?
- Do I need company?
- How many persons will accompany me?
- Does the companion have the same spatiotemporal mobility behavior with me?

Systems Architecture

Prediction & Recommendation Model

#	Prediction and Recommendation Algorithm	
1	Input: KB // knowledge base, i // examined instance, d //day of the week, m //historic window size, l // prediction window size,	
2	μ //spatial historic similarity threshold, ϑ //spatial prediction similarity threshold, k //recommendation list size	
3	Output: N //returned recommendation list	
4	Begin	
5	$N \leftarrow Null$ //returned recommendation list is empty, $k \leftarrow read()$ //initialize recommendation list size	
6	$i \leftarrow read()$ //read the examined instance from user mobile app, $j \leftarrow read(KB)$ //read the first instance of the KB	
7	While $(j \neq KB(EoF))$ Do //traverse KB	
8	If $((d(i) = d(j)) \ AND \ (i(m) - j(m) \le \vartheta) \ AND \ (i(l) - (j(l) \le \vartheta))$ Then $//if$ current and predicted locations of i,j are similar w.r.t. ϑ similarity for certain day	
9	For $(n \in [0, m-1])$ Do //traverse from first to last historic location of the trajectory	
10	If $(i(n)-j(n) \leq \mu$) Then //step by step historic comparison	
11	$arphi \leftarrow arphi + 1$ //historic similarity flag increases	
12	End if	
13	End For	
14	If $(\varphi=n)$ Then //if historic similarity condition w.r.t. μ holds proceed to recommendation list step	
15	If $(size(N) \le k)$ Then //if size of N is less than or equal to k	
16	$N \leftarrow N + j$ //recommendation list is expanded	
17	Else	
18	sort(N) //sort recommendations in ascending order of similarity	
19	return(N) //return recommendation list and exit	
20	End If	
21	End If	
20 21 22	End If	
23	End While	
24	End	

Evaluation Method & Metrics

- 10-Fold Cross Validation Evaluation Method
- Prediction Accuracy Evaluation Metric
- Recommendation MAP@N Evaluation Metric

Experiments – Data Visualization

Experiments – Data Structure


```
<?xml version="1.0" encoding="UTF-8"?>
<qpx version="1.1" creator="OSMTrack"</pre>
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.topografix.com/GPX/1/1"
xsi:schemaLocation="http://www.topografix.com/GPX/1/1
http://www.topografix.com/GPX/1/1/gpx.xsd">
     <trk>
          <trkseg>
                <trkpt lat="38.048604716667"
lon="23.739073266667">
                      <ele>200.0</ele>
                      <time>2009-01-09T19:44:34Z</time>
                </trkpt>
                <trkpt lat="38.048368683333"
lon="23.739266383333">
                      <ele>160.0</ele>
                      <time>2009-01-09T19:44:48Z</time>
                </trkpt>
                <trkpt lat="38.048368683333"
lon="23.739395133333">
                      <ele>158.0</ele>
                      <time>2009-01-09T19:44:59Z</time>
                </trkpt>
                <trkpt lat="38.048357950000"
lon="23.739416583333">
                      <ele>158.0</ele>
                      <time>2009-01-09T19:44:59Z</time>
                </trkpt>
                <trkpt lat="38.048347233333"
lon="23.739480966667">
                      <ele>157.0</ele>
                      <time>2009-01-09T19:45:00Z</time>
                </trkpt>
                <trkpt lat="38.048336500000"
lon="23.739502416667">
                      <ele>157.0</ele>
                      <time>2009-01-09T19:45:01Z</time>
                </trkpt>
```


Dataset Experimental Parameters

Parameter	Value
GPS traces length	8 decimal digits
Sensitivity	10 meters
Minimum latitude	38.04582595
Minimum longitude	23.73619793
Maximum latitude	38.05432318
Maximum longitude	23.74390125
Coverage area	0.64 square kilometers

Model Experimental Parameters

Parameter	Value
l	1 GPS predicted location
artheta	0.00000001 (10 meters)
μ	0.000001 (100 meters)
U	100 users totally
<i>KB</i>	2958 instances

Results – Historic Window Size

Results – Optimal System Convergence

Results – Recommended Users

Future Directions

- Time of Arrival Estimation to Destination Service
- Citizen Centric Qualitative Data Sources
- Social Networks Mobility Context

Business Alliance

Movebis: Germany

Cloudcrew.io: Greece

