Introduction to Recommender

Systems

Course: Database Theory & Applications University of Glasgow

Dr. Sham Puthiya Parambath

April 1, 2021

Guest Lecture

What is a Recommender System ?

• Recommender systems are software agents to find the best matching between users and items.

What is a Recommender System ?

- Recommender systems are software agents to find the best matching between users and items.
- Recommender systems are at the heart of the internet world

• Ecommerce - Amazon, Ebay etc

- Ecommerce Amazon, Ebay etc
- Video Streaming Youtube, Netflix etc

- Ecommerce Amazon, Ebay etc
- Video Streaming Youtube, Netflix etc
- Social Networks Facebook, Twitter etc

- Ecommerce Amazon, Ebay etc
- Video Streaming Youtube, Netflix etc
- Social Networks Facebook, Twitter etc
- Public Decision Making, Elections

Introduction

Introduction

5

Why is it important?

• If users can't be matched against proper content, they will lose interest in the service and drop out gradually.

Why is it important?

- If users can't be matched against proper content, they will lose interest in the service and drop out gradually.
- Over 75% of netflix viewing, over 70% of Youtube viewing, over 38% of Google News clicks and over 35% of Amazon sales are solely from recommendations

• Recommendation comes in different flavours: (i) personalized (ii) consensus and (iii) group recommendations

- Recommendation comes in different flavours: (i) personalized (ii) consensus and (iii) group recommendations
 - Personalized: given a large collection of items, we have to choose a fixed number of items that match user's intrinsic preference

- Recommendation comes in different flavours: (i) personalized (ii) consensus and (iii) group recommendations
 - Personalized: given a large collection of items, we have to choose a fixed number of items that match user's intrinsic preference
 - Consensus: select a single consensus item from the item set which appeals to the entire population

- Recommendation comes in different flavours: (i) personalized (ii) consensus and (iii) group recommendations
 - Personalized: given a large collection of items, we have to choose a fixed number of items that match user's intrinsic preference
 - Consensus: select a single consensus item from the item set which appeals to the entire population
 - Group: middle ground between fully personalized and consensus recommendation

Science of Recommendations

• In typical recommendation settings, what data is available? Typical data includes content data and collaborative data

- In typical recommendation settings, what data is available? Typical data includes content data and collaborative data
 - Content data refers to the metadata associated with the users and items
 - Collaborative data refers to the interaction data between the entities that are collaborating

- In typical recommendation settings, what data is available? Typical data includes content data and collaborative data
 - Content data refers to the metadata associated with the users and items
 - Collaborative data refers to the interaction data between the entities that are collaborating
- We represent the set of m users as $\mathcal U$ and n items as $\mathcal I$

- In typical recommendation settings, what data is available? Typical data includes content data and collaborative data
 - Content data refers to the metadata associated with the users and items
 - Collaborative data refers to the interaction data between the entities that are collaborating
- We represent the set of m users as $\mathcal U$ and n items as $\mathcal I$
- We represent user content as *C* and content data associated with items as *D*

 \boldsymbol{C} and \boldsymbol{D} are matrices with rows representing content features.

C and D are matrices with rows representing content features.

$$\boldsymbol{C}[1,:] = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ Female & 30 & Glasgow & Thriller \end{bmatrix}$$

$$\boldsymbol{C}[1,:] = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ Female & 30 & Glasgow & Thriller \end{bmatrix}$$

$$\boldsymbol{D}[1,:] = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 & y_5 \\ Thriller & C.Nolan & J.Washington & UK & 2020 \end{bmatrix}$$

$$\boldsymbol{C}[1,:] = \begin{bmatrix} Female & 30 & Glasgow & Thriller \end{bmatrix}$$

 $\boldsymbol{D}[1,:] = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 & y_5 \\ Thriller & C.Nolan & J.Washington & UK & 2020 \end{bmatrix}$

In practice these matrices will have 1000s of columns and instead of raw values we use encoding methods to represent the values. In real world applications, these are stored in in-memory databases.

• We represent the collaborative data using the matrix R

- We represent the collaborative data using the matrix R
- Rows correspond to users and columns for movies. What is the dimension of this matrix ?

- We represent the collaborative data using the matrix *R*
- Rows correspond to users and columns for movies. What is the dimension of this matrix ?

$$\boldsymbol{R}[1,:] = \begin{bmatrix} i^{1} & i^{2} & i^{3} & \dots & i^{n-1} & i^{n} \\ \star & 2 & 5 & \cdots & \star & 4 \end{bmatrix}$$

$$\boldsymbol{R}[1,:] = \begin{bmatrix} i^{1} & i^{2} & i^{3} & \dots & i^{n-1} & i^{n} \\ \star & 2 & 5 & \cdots & \star & 4 \end{bmatrix}$$

The ratings are assumed to be in ordinal scale like 1 star, 2 star, 5 star etc (like in Amazon), like (+1) or dislike (-1) as in Youtube etc.

• We redefine personalized recommendation task as a data driven approach.

- We redefine personalized recommendation task as a data driven approach.
- What items to be recommended ? How many items to be recommended ?

- We redefine personalized recommendation task as a data driven approach.
- What items to be recommended ? How many items to be recommended ?
- Can we cast the recommendation problem as a subset selection problem ?

- We redefine personalized recommendation task as a data driven approach.
- What items to be recommended ? How many items to be recommended ?
- Can we cast the recommendation problem as a subset selection problem ?
- How do we quantify usefulness ? Let f measure the usefulness of item i to user u i.e. f : U × I → ℜ

- We redefine personalized recommendation task as a data driven approach.
- What items to be recommended ? How many items to be recommended ?
- Can we cast the recommendation problem as a subset selection problem ?
- How do we quantify usefulness ? Let f measure the usefulness of item i to user u i.e. f : U × I → ℜ
- The problem can be cast as a subset selection problem that maximizes a utility function

Recommendation As An Optimization Problem

Input:Content or/and Collaborative Data & fOutput:k items with highest values for f from \mathcal{A} Problem Statement: $\arg \max_{\mathcal{S} \subseteq \mathcal{I} \setminus \mathcal{O}} f(u, \mathcal{S})$ $|\mathcal{S}| \leq K$

Content Based Recommendations

Users	Items	Utility $(f(u, i))$
u^1	i ¹	1
u^1	i ²	2
u^1	i ³	1
u^2	i ¹	1
<i>u</i> ²	i ²	2
u^2	i ³	1
u ³	i ¹	1
u ³	i ²	2
и ³	i ³	1

Advantages & Disadvantages

• Data is easy to obtain

Advantages & Disadvantages

- Data is easy to obtain
- But we might not have enough user metadata to make a good prediction

Advantages & Disadvantages

- Data is easy to obtain
- But we might not have enough user metadata to make a good prediction
- Performs very poorly in real world applications

Collaborative Recommendations

• State-Of-The-Art algorithms used in industrial level recommender systems

Collaborative Recommendations

- State-Of-The-Art algorithms used in industrial level recommender systems
- Can be subdivided into two

Neighbourhood models Latent Factor Models

Neighbourhood models

• Based on the similarity relationship between the collaborating entities.

Neighbourhood models

- Based on the similarity relationship between the collaborating entities.
- User based neighbourhood models

Neighbourhood models

- Based on the similarity relationship between the collaborating entities.
- User based neighbourhood models
- Item based neighbourhood models

• Based on the principle that a user can be identified using her neighbors i.e. 'similar users have similar tastes'

- Based on the principle that a user can be identified using her neighbors i.e. 'similar users have similar tastes'
- Given a target user, how can we identify her neighbors ? Similarity function ?

- Based on the principle that a user can be identified using her neighbors i.e. 'similar users have similar tastes'
- Given a target user, how can we identify her neighbors ? Similarity function ?

$$R = \begin{array}{ccccc} i^{1} & i^{2} & i_{3} & i_{4} & i_{5} & i_{6} \\ u^{1} \begin{pmatrix} 1 & \star & 5 & 4 & 5 & \star \\ 2 & 2 & \star & \star & 4 & 5 \\ \star & 4 & 3 & \star & 4 & 2 \\ 3 & 5 & \star & 2 & \star & 1 \end{pmatrix}$$

$$\cos(a,b) = \begin{array}{c} u^{1} & u^{2} & u^{3} & u^{4} \\ u^{1} & 1 & 0.38 & 0.64 & 0.22 \\ 0.38 & 1 & 0.72 & 0.48 \\ 0.64 & 0.72 & 1 & 0.53 \\ 0.22 & 0.48 & 0.53 & 1 \\ u^{1} = \begin{pmatrix} 1 & \star & 5 & 4 & 5 & \star \end{pmatrix} \\ u^{2} = \begin{pmatrix} 2 & 2 & \star & 4 & 5 \end{pmatrix} \end{array}$$

Algorithm

• Identify set of users most similar to the target user according to a similarity function

Algorithm

- Identify set of users most similar to the target user according to a similarity function
- Identify the products these similar users liked

Algorithm

- Identify set of users most similar to the target user according to a similarity function
- Identify the products these similar users liked
- Generate predictions from the liked items and recommend the items with highest utility value

Illustration

$$f(u_1, i_2) = 0.38 \times 2 + 0.64 \times 4 + 0.22 \times 5 = 4.42$$

$$f(u_1, i_6) = 0.38 \times 5 + 0.64 \times 2 + 0.22 \times 1 = 3.4$$

$$f(u_2, i_3) = 0.38 \times 5 + 0.72 \times 3 = 4.06$$

$$f(u_2, i_4) = 0.38 \times 4 + 0.48 \times 2 = 2.48$$

$$f(u_3, i_1) = 0.64 \times 1 + 0.72 \times 2 + 0.53 \times 3 = 3.67$$

$$f(u_3, i_4) = 0.64 \times 4 + 0.53 \times 2 = 3.62$$

$$f(u_4, i_3) = 0.22 \times 5 + 0.53 \times 3 = 2.69$$

$$f(u_4, i_5) = 0.22 \times 5 + 0.48 \times 4 + 0.53 \times 4 = 5.14$$

$$R = \frac{u^{1}}{u^{2}} \begin{pmatrix} i^{1} & i^{2} & i_{3} & i_{4} & i_{5} & i_{6} \\ 1 & 4.42 & 5 & 4 & 5 & 3.4 \\ 2 & 2 & 4.06 & 2.48 & 4 & 5 \\ 3.67 & 4 & 3 & 3.62 & 4 & 2 \\ 3 & 5 & 2.69 & 2 & 5.14 & 1 \end{pmatrix}$$

User CF will recommend i^2 , i^3 , i^1 , i^5 for u^1 , u^2 , u^3 and u^4 respectively.

• Based on the principle that an item can be identified using its neighbors i.e 'similar items have similar preferences'

• Based on the principle that an item can be identified using its neighbors i.e 'similar items have similar preferences'

$$R = \frac{u^{1}}{u^{2}} \begin{pmatrix} i^{2} & i_{3} & i_{4} & i_{5} & i_{6} \\ 1 & \star & 5 & 4 & 5 & \star \\ 2 & 2 & \star & \star & 4 & 5 \\ \star & 4 & 3 & \star & 4 & 2 \\ u^{4} \begin{pmatrix} 3 & 5 & \star & 2 & \star & 4 \end{pmatrix}$$

$$\cos(a,b) = \begin{array}{c} i^{1} & i^{2} & i_{3} & i_{4} & i_{5} & i_{6} \\ i^{1} & 1 & 0.76 & 0.23 & 0.60 & 0.46 & 0.63 \\ 0.76 & 1 & 0.31 & 0.33 & 0.47 & 0.63 \\ 0.23 & 0.31 & 1 & 0.77 & 0.84 & 0.19 \\ 0.60 & 0.33 & 0.77 & 1 & 0.59 & 0.08 \\ 0.46 & 0.47 & 0.84 & 0.59 & 1 & 0.68 \\ 0.63 & 0.63 & 0.19 & 0.08 & 0.68 & 1 \end{array} \right)$$

Illustration

 $f(u_1, i_2) = 0.76 \times 1 + 0.31 \times 5 + 0.33 \times 4 + 0.47 \times 5 = 6$ $f(u_1, i_6) = 0.63 \times 1 + 0.19 \times 5 + 0.08 \times 4 + 0.68 \times 5 = 5.3$ $f(u_2, i_3) = 0.23 \times 2 + 0.31 \times 2 + 0.84 \times 4 + 0.19 \times 5 = 5.4$ $f(u_2, i_4) = 0.60 \times 2 + 0.33 \times 2 + 0.59 \times 4 + 0.08 \times 5 = 4.6$ $f(u_3, i_1) = 0.76 \times 4 + 0.23 \times 3 + 0.46 \times 4 + 0.63 \times 2 = 5.4$ $f(u_3, i_3) = 0.31 \times 4 + 0.77 \times 2 + 0.84 \times 4 + 0.19 \times 5 = 7.1$ $f(u_4, i_3) = 0.23 \times 3 + 0.31 \times 5 + 0.77 \times 2 + 0.19 \times 1 = 4.0$ $f(u_4, i_5) = 0.46 \times 3 + 0.47 \times 5 + 0.59 \times 2 + 0.68 \times 1 = 5.6$

$$R = \frac{u^{1}}{u^{2}} \begin{pmatrix} i^{1} & i^{2} & i_{3} & i_{4} & i_{5} & i_{6} \\ 1 & \mathbf{6} & 5 & 4 & 5 & \mathbf{5.3} \\ 2 & 2 & \mathbf{5.4} & \mathbf{4.6} & 4 & 5 \\ \mathbf{5.4} & 4 & 3 & \mathbf{7.1} & 4 & 2 \\ 3 & 5 & \mathbf{4} & 2 & \mathbf{5.6} & 1 \end{pmatrix}$$

Item CF will recommend recommend i^2 , i^3 , i^4 , i^5 for u^1 , u^2 , u^3 , u^4 respectively.

• Based on the principle of 'there exists fixed number of latent factors for users and items'

- Based on the principle of 'there exists fixed number of latent factors for users and items'
- What is a latent factor ?

- Based on the principle of 'there exists fixed number of latent factors for users and items'
- What is a latent factor ?

- Based on the principle of 'there exists fixed number of latent factors for users and items'
- What is a latent factor ?

$$R = \frac{u^{1}}{u^{2}} \begin{pmatrix} i^{1} & i^{2} & i_{3} & i_{4} & i_{5} & i_{6} \\ 1 & \star & 5 & 4 & 5 & \star \\ 2 & 2 & \star & \star & 4 & 5 \\ 2 & 2 & \star & \star & 4 & 5 \\ \star & 4 & 3 & \star & 4 & 2 \\ 3 & 5 & \star & 2 & \star & 1 \end{pmatrix}$$

$$R = \begin{array}{ccccc} i^{1} & i^{2} & i_{3} & i_{4} & i_{5} & i_{6} \\ u^{1} & 1 & \star & 5 & 4 & 5 & \star \\ 2 & 2 & \star & \star & 4 & 5 \\ u^{3} & u^{4} & 1 & \star & 4 & 2 \\ 3 & 5 & \star & 2 & \star & 1 \end{array}$$

We assume that the observed rating matrix is a linear function of user latent factor and item latent factor

R = UV

where \boldsymbol{U} is the $n \times k$ user latent matrix and \boldsymbol{V} is the $m \times k$ item latent factor matrix

• Given *R*, how can we estimate the latent matrices *U* and *V* ?

- Given *R*, how can we estimate the latent matrices *U* and *V* ?
- We can use optimization techniques to estimate ${\it U}$ and ${\it V}$

- Given *R*, how can we estimate the latent matrices *U* and *V* ?
- We can use optimization techniques to estimate ${\it U}$ and ${\it V}$

$$\underset{\boldsymbol{U},\boldsymbol{V}}{\operatorname{argmin}} \|\boldsymbol{U}\boldsymbol{V} - \boldsymbol{R}\|^2 \tag{1}$$

Latent factor model will recommend i^6 , i^3 , i^4 , i^5 for u^1 , u^2 , u^3 , u^4 respectively.

- Paolo Cremonesi, Yehuda Koren, and Roberto Turrin.
 Performance of recommender algorithms on top-n recommendation tasks.
 In *RecSys*, 2010.
- Mohamed Sarwat, James Avery, and Mohamed F Mokbel. Recdb in action: recommendation made easy in relational databases. VLDB, 2013.

References ii

Mohamed Sarwat.

Database management system support for collaborative filtering recommender systems. 2014.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.

Item-based collaborative filtering recommendation algorithms.

In WWW, 2001.