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Introduction

What is a Recommender System ?

• Recommender systems are software agents to find the
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Where is it used?
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Introduction

Why is it important?

• If users can’t be matched against proper content, they

will lose interest in the service and drop out gradually.

• Over 75% of netflix viewing, over 70% of Youtube

viewing, over 38% of Google News clicks and over 35% of

Amazon sales are solely from recommendations
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Recommendation Problem

Science of Recommendations

• Recommendation comes in different flavours: (i)

personalized (ii) consensus and (iii) group

recommendations

• Personalized: given a large collection of items, we have

to choose a fixed number of items that match user’s

intrinsic preference

• Consensus: select a single consensus item from the item

set which appeals to the entire population

• Group: middle ground between fully personalized and

consensus recommendation

7



Recommendation Problem

Science of Recommendations

• Recommendation comes in different flavours: (i)

personalized (ii) consensus and (iii) group

recommendations

• Personalized: given a large collection of items, we have

to choose a fixed number of items that match user’s

intrinsic preference

• Consensus: select a single consensus item from the item

set which appeals to the entire population

• Group: middle ground between fully personalized and

consensus recommendation

7



Recommendation Problem

Science of Recommendations

• Recommendation comes in different flavours: (i)

personalized (ii) consensus and (iii) group

recommendations

• Personalized: given a large collection of items, we have

to choose a fixed number of items that match user’s

intrinsic preference

• Consensus: select a single consensus item from the item

set which appeals to the entire population

• Group: middle ground between fully personalized and

consensus recommendation

7



Recommendation Problem

Science of Recommendations

• Recommendation comes in different flavours: (i)

personalized (ii) consensus and (iii) group

recommendations

• Personalized: given a large collection of items, we have

to choose a fixed number of items that match user’s

intrinsic preference

• Consensus: select a single consensus item from the item

set which appeals to the entire population

• Group: middle ground between fully personalized and

consensus recommendation

7



Personalized Recommendations

Science of Recommendations

• In typical recommendation settings, what data is

available? Typical data includes content data and

collaborative data

• Content data refers to the metadata associated with the

users and items

• Collaborative data refers to the interaction data between

the entities that are collaborating

• We represent the set of m users as U and n items as I
• We represent user content as C and content data

associated with items as D
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Personalized Recommendations

C and D are matrices with rows representing content features.

Cm×p =



x1 x2 ··· xp

1 0 · · · 1

0 1 · · · 1

0 0 · · · 1

0 0 · · · 1

0 0 · · · 1

 Dn×q =



y1 y2 ··· yq

0 1 · · · 1

1 1 · · · 1

1 0 · · · 0

0 1 · · · 0

1 1 · · · 0


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Personalized Recommendations

C [1, :] =
[ x1 x2 x3 x4

Female 30 Glasgow Thriller
]

D[1, :] =
[ y1 y2 y3 y4 y5

Thriller C .Nolan J .Washington UK 2020
]

In practice these matrices will have 1000s of columns and

instead of raw values we use encoding methods to represent

the values. In real world applications, these are stored in

in-memory databases.
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Personalized Recommendations

• We represent the collaborative data using the matrix R

• Rows correspond to users and columns for movies. What

is the dimension of this matrix ?

R =



i1 i2 i3 ··· in−1 in

u1 ? 2 5 · · · ? 4

u2 2 ? ? · · · 4 4

u3 ? 5 2 · · · 3 ?

· · · · · · · · ·
· · · · · · · · ·

um 1 3 ? · · · ? 1
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Personalized Recommendations

.

R[1, :] =
[ i1 i2 i3 ··· in−1 in

? 2 5 · · · ? 4
]

• The ratings are assumed to be in ordinal scale like 1 star,

2 star, 5 star etc (like in Amazon), like (+1) or dislike

(-1) as in Youtube etc.
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Recommendation Problem

• We redefine personalized recommendation task as a data

driven approach.

• What items to be recommended ? How many items to be

recommended ?

• Can we cast the recommendation problem as a subset

selection problem ?

• How do we quantify usefulness ? Let f measure the

usefulness of item i to user u i.e. f : U × I → <
• The problem can be cast as a subset selection problem

that maximizes a utility function
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Recommendation As An Optimization Problem
Input : Content or/and Collaborative Data & f

Output : k items with highest values for f from A
Problem Statement: argmaxS⊆I\O

|S|≤K
f (u,S)
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Recommendation Algorithms

Content Based Recommendations
Users Items

U =


genre1 genre2 genre3 genre4

u1 1 1 0 0

u2 0 1 1 0

u3 1 0 1 1

M =


genre1 genre2 genre3 genre4

i1 0 1 1 0

i2 1 1 0 1

i3 1 0 1 1



f (u, i) =
∑

j uj ij

15



Content Based Recommendations

Users Items Utility (f (u, i))

u1 i1 1

u1 i2 2

u1 i3 1

u2 i1 1

u2 i2 2

u2 i3 1

u3 i1 1

u3 i2 2

u3 i3 1
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Content Based Recommendations

Advantages & Disadvantages

• Data is easy to obtain

• But we might not have enough user metadata to make a

good prediction

• Performs very poorly in real world applications
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Recommendation Algorithms

Collaborative Recommendations

• State-Of-The-Art algorithms used in industrial level

recommender systems

• Can be subdivided into two

Neighbourhood models

Latent Factor Models
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Neighbourhood models

• Based on the similarity relationship between the

collaborating entities.

• User based neighbourhood models

• Item based neighbourhood models
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User-User Collaborative Filtering

• Based on the principle that a user can be identified using

her neighbors i.e. ‘similar users have similar tastes‘

• Given a target user, how can we identify her neighbors ?

Similarity function ?

R =


i1 i2 i3 i4 i5 i6

u1 1 ? 5 4 5 ?

u2 2 2 ? ? 4 5

u3 ? 4 3 ? 4 2

u4 3 5 ? 2 ? 1


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User-User Collaborative Filtering

cos(a, b) =


u1 u2 u3 u4

u1 1 0.38 0.64 0.22

u2 0.38 1 0.72 0.48

u3 0.64 0.72 1 0.53

u4 0.22 0.48 0.53 1


u1 =

(
1 ? 5 4 5 ?

)
u2 =

(
2 2 ? ? 4 5

)
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User-User Collaborative Filtering

Algorithm

• Identify set of users most similar to the target user

according to a similarity function

• Identify the products these similar users liked

• Generate predictions from the liked items and recommend

the items with highest utility value
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User-User Collaborative Filtering

Illustration

f (u1, i2) = 0.38× 2 + 0.64× 4 + 0.22× 5 = 4.42

f (u1, i6) = 0.38× 5 + 0.64× 2 + 0.22× 1 = 3.4

f (u2, i3) = 0.38× 5 + 0.72× 3 = 4.06

f (u2, i4) = 0.38× 4 + 0.48× 2 = 2.48

f (u3, i1) = 0.64× 1 + 0.72× 2 + 0.53× 3 = 3.67

f (u3, i4) = 0.64× 4 + 0.53× 2 = 3.62

f (u4, i3) = 0.22× 5 + 0.53× 3 = 2.69

f (u4, i5) = 0.22× 5 + 0.48× 4 + 0.53× 4 = 5.14
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User-User Collaborative Filtering

R =


i1 i2 i3 i4 i5 i6

u1 1 4.42 5 4 5 3.4

u2 2 2 4.06 2.48 4 5

u3 3.67 4 3 3.62 4 2

u4 3 5 2.69 2 5.14 1


User CF will recommend i2, i3, i1, i5 for u1, u2, u3 and u4

respectively.
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Item-Item Collaborative Filtering

• Based on the principle that an item can be identified using

its neighbors i.e ‘similar items have similar preferences‘

R =


i1 i2 i3 i4 i5 i6

u1 1 ? 5 4 5 ?

u2 2 2 ? ? 4 5

u3 ? 4 3 ? 4 2

u4 3 5 ? 2 ? 1


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Item-Item Collaborative Filtering

cos(a, b) =



i1 i2 i3 i4 i5 i6
i1 1 0.76 0.23 0.60 0.46 0.63

i2 0.76 1 0.31 0.33 0.47 0.63

i3 0.23 0.31 1 0.77 0.84 0.19

i4 0.60 0.33 0.77 1 0.59 0.08

i5 0.46 0.47 0.84 0.59 1 0.68

i6 0.63 0.63 0.19 0.08 0.68 1


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Item-Item Collaborative Filtering

Illustration

f (u1, i2) = 0.76× 1 + 0.31× 5 + 0.33× 4 + 0.47× 5 = 6

f (u1, i6) = 0.63× 1 + 0.19× 5 + 0.08× 4 + 0.68× 5 = 5.3

f (u2, i3) = 0.23× 2 + 0.31× 2 + 0.84× 4 + 0.19× 5 = 5.4

f (u2, i4) = 0.60× 2 + 0.33× 2 + 0.59× 4 + 0.08× 5 = 4.6

f (u3, i1) = 0.76× 4 + 0.23× 3 + 0.46× 4 + 0.63× 2 = 5.4

f (u3, i3) = 0.31× 4 + 0.77× 2 + 0.84× 4 + 0.19× 5 = 7.1

f (u4, i3) = 0.23× 3 + 0.31× 5 + 0.77× 2 + 0.19× 1 = 4.0

f (u4, i5) = 0.46× 3 + 0.47× 5 + 0.59× 2 + 0.68× 1 = 5.6
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Item-Item Collaborative Filtering

R =


i1 i2 i3 i4 i5 i6

u1 1 6 5 4 5 5.3

u2 2 2 5.4 4.6 4 5

u3 5.4 4 3 7.1 4 2

u4 3 5 4 2 5.6 1


Item CF will recommend recommend i2, i3, i4, i5 for

u1, u2, u3, u4 respectively.
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Latent Factor Models

• Based on the principle of ‘there exists fixed number of

latent factors for users and items‘

• What is a latent factor ?

R =


i1 i2 i3 i4 i5 i6

u1 1 ? 5 4 5 ?

u2 2 2 ? ? 4 5

u3 ? 4 3 ? 4 2

u4 3 5 ? 2 ? 1


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Latent Factor Models

R =


i1 i2 i3 i4 i5 i6

u1 1 ? 5 4 5 ?

u2 2 2 ? ? 4 5

u3 ? 4 3 ? 4 2

u4 3 5 ? 2 ? 1


We assume that the observed rating matrix is a linear function

of user latent factor and item latent factor

R = UV

where U is the n × k user latent matrix and V is the m × k

item latent factor matrix
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Latent Factor Models

• Given R, how can we estimate the latent matrices U and

V ?

• We can use optimization techniques to estimate U and V

argmin
U,V

‖UV − R‖2 (1)
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Latent Factor Models

R =


i1 i2 i3 i4 i5 i6

u1 1 2.55 5 4 5 4.45

u2 2 2 3.85 3.05 4 5

u3 2.07 4 3 2.29 4 2

u4 3 5 2.29 2 3.15 1


Latent factor model will recommend i6, i3, i4, i5 for

u1, u2, u3, u4 respectively.
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