Optimal Load-Aware Task Offloading in Mobile Edge Computing

Odysseas Polycarpou, Christos Anagnostopoulos, Kostas Kolomvatsos
School of Computing Science, University of Glasgow
Table of Contents

• Introduction
• Related Work & Motivation
• Preliminaries & Foundations
• Server Load-based and Time Optimized Task Offloading Models
• Implementation and Experiments
• Performance Assessment
• Conclusions
Introduction – Mobile Edge Computing and Task Offloading

- Mobile Edge Computing (MEC) is a recently emerged computing paradigm
- Brings the user **closer** to the Edge of the network
- **Offloading tasks** from Mobile Nodes to MEC Servers to be executed for efficiency
- **Challenge**: Seek the **best** candidate server at the **best** time to offload tasks
We tackle the problem of Task Offloading in a MEC environment
Many MEC servers are geo-distributed and their CUP load is observed (fixed intervals)

A Mobile Node (e.g., mobile device, vehicle) passes through MEC Server sequences
We seek the best candidate server at the best possible time to offload our tasks (e.g., application specific tasks like image classification, data cleaning, outliers detection...)

We introduce and implement three Time-optimized Sequential Decision Making Models
Real data sets of ~4000 load observations for experimentation
Related Work & Motivation

- Several studies tackle the problem using different assumptions and parameters
- We rely on the principles of the **Optimal Stopping Theory (OST)**
- Differences are:
 - We apply our OST Models in sequential decision making
 - We focus on the MEC Server CPU Load at each time instance to make our decision
 - We take in account time as well
- We aim to make task execution **faster** by selecting the best possible server to offload the tasks
OST in Computing Science

• OST refers to the task of finding the best time to **stop** and **take** a particular decision/action in order to optimize an objective function.

• We adopt OST: **when** to offload the tasks

• Let a sequence of N observable servers \{N_1, N_2, N_3, \ldots\} and a sequence of the corresponding reward functions.

• A **Reward** function determines how efficient our Task Offloading decision is; (the higher the reward the better our decision)
Task-Offloading Sequential Decision Models

Random Model
- Let a fixed, pre-defined probability $p > 0$.
- The mobile node decides on offloading its tasks with probability p.

OST Secretary Model
- Observes the first 37% of the sequence (sample) N.
- Finds the best server in this sample (benchmark) which refers to the minimum load.
- Offloads the tasks at the next available server better than the benchmark.

OST House Selling Model
- Let a discount factor r in $(0,1)$.
- Compute optimal decision values based on the r factor using Dynamic Programming.
- If the current load exceeds the current optimal decision value, then offload the tasks to the associated server.
Implementation

- Development using Python (Jupyter Notebook)
- Reads .csv files in a streaming mode.
- Made dynamic to allow the application to specify:
 - Size of server sequence N
 - Probability p (Random Model)
 - r factor (House Selling Model)
- We compare against the Optimal Solution, where the optimal server in known a-priori.
Performance Assessment – Optimizing House Selling

- Discount factor r where House Selling Model *beats* Secretary Model ($r=0.015$)
- Gets better and better by minimizing the r factor
- But: $r > 0$ (cannot be 0)
- The r factor depends on the different N size sequences
- For demonstration, N=200

<table>
<thead>
<tr>
<th>Model</th>
<th>Optimal Means</th>
<th>Offloading Means</th>
<th>Mean Load Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Random(P = 0.05)</td>
<td>37.8482</td>
<td>42.5971</td>
<td>4.7489</td>
</tr>
<tr>
<td>2 Random(P = 0.1)</td>
<td>37.8482</td>
<td>42.2957</td>
<td>4.4475</td>
</tr>
<tr>
<td>3 Random(P = 0.2)</td>
<td>37.8482</td>
<td>42.709</td>
<td>4.8608</td>
</tr>
<tr>
<td>4 Random(P = 0.3)</td>
<td>37.8482</td>
<td>43.6277</td>
<td>5.7795</td>
</tr>
<tr>
<td>5 Random(P = 0.5)</td>
<td>37.8482</td>
<td>42.1202</td>
<td>4.272</td>
</tr>
<tr>
<td>6 Secretary</td>
<td>37.8482</td>
<td>39.0581</td>
<td>1.2099</td>
</tr>
<tr>
<td>7 House Selling</td>
<td>37.8482</td>
<td>39.024</td>
<td>1.1758</td>
</tr>
</tbody>
</table>
Conclusions

- We apply Optimal Stopping Theory (OST) models to address the problem of Load-aware Task Offloading in Mobile Edge Computing.

- Our OST models achieve reward *very close* to the Optimal solution
- Optimized the House Selling Model
- Can outperform other baseline solutions in terms of CPU load

- **Future Agenda**: Investigate network conditions (e.g., link availability, connectivity, latency) when taking sequential decisions
- Turn the model to be *context-aware* (e.g., CPU load, requests, uplink bandwidth, data freshness, application-specific deadline, etc.)
Thank You!

Odysseas.Polycarpou@gmail.com
Christos.Anagnostopoulos@glasgow.ac.uk

Essence Lab: http://www.dcs.gla.ac.uk/essence/