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Abstract 
 

Explicit piecewise linear state feedback solutions to the 
constrained linear model predictive control problem have 
been characterized and computed using multi-parametric 
quadratic programming. The piecewise linear state feedback 
is defined on a polyhedral partition of the state space, which 
may be quite complex. Recently, approximate multi-
parametric quadratic programming approaches have been 
developed, which have the advantage that the state space 
partition is structured as an orthogonal search tree. This leads 
to more efficient real-time computations and admits 
implementation at high sampling frequencies in embedded 
systems with inexpensive processors and low software 
complexity. This paper presents an approximate multi-
parametric quadratic programming algorithm that allows the 
explicit solution of robust model predictive control problems, 
by imposing an orthogonal search tree structure on the 
partition. Here, the robustness is defined in terms of 
satisfaction of the input and output constraints under all 
possible disturbance realizations. 
 
1 Introduction 
 
Model predictive control (MPC) is an efficient methodology 
to solve complex constrained multivariable control problems. 
The requirement to perform on-line optimization however 
limits the applicability of MPC mostly to slowly varying 
processes. Recently, several methods for explicit solution of 
MPC problems have been developed. The main motivation 
behind explicit MPC is that an explicit state feedback law 
avoids the need for real-time optimization, and is therefore 
potentially useful for applications with fast sampling where 
MPC has not traditionally been used. In [1] it was recognized 
that the constrained linear MPC problem is a multi-parametric 
quadratic program (mp-QP), when the state is viewed as a 
parameter to the problem. It was shown that the solution (the 
control input) has an explicit representation as a piecewise 
linear (PWL) state feedback on a polyhedral partition of the 
state space, see also [2,8,14,15], and they develop an mp-QP 

algorithm to compute a representation of this function. Some 
of these approaches have been further extended to ensure 
robustness of the explicit MPC controllers against 
disturbances [3,11,13]. In [11] it is assumed that the 
disturbance input belongs to a compact polyhedral set, and the 
approach in [7] is applied to ensure feasible operation of the 
MPC controller that minimizes the nominal value of the 
performance index. This work has been further extended to 
proportional integral controllers [13]. In [3], an approach to 
explicit solution of robust MPC problems based on a min-
max formulation with a performance index expressed in ∞-
norm has been proposed. In [12], a min-max strategy for 
design of robust optimal controllers for piecewise affine 
systems with bounded disturbances is formulated and 
implemented by applying the dynamic programming 
technique. It has to be mentioned however, that solution 
obtained by optimizing the worst value of the performance 
criterion can be quite conservative. 
 

Recently, in [6,9,10], algorithms that determine an 
approximate explicit PWL state feedback solution by 
imposing an orthogonal search tree structure on the partition, 
have been developed. They may lead to more efficient real-
time computations and admit implementation at high 
sampling frequencies in embedded systems with inexpensive 
processors and low software complexity. This paper suggests 
an approach to explicit solution of constrained linear MPC 
problems in the presence of bounded disturbances and 
represents an extension of the approximate mp-QP approach 
[10]. Like in  [11], the explicit MPC controller minimizes the 
nominal value of the performance index and it is robust in the 
sense that all constraints are satisfied for all possible 
disturbance realizations within the specified range. However, 
here we consider a special case where the set of the 
disturbance inputs represents a hyper-rectangle that includes 
the origin in its interior and the constraints are in the form of 
upper and lower bounds on the input and output variables. 
Based on these assumptions, the conditions which guarantee 
feasible operation of the MPC controller are derived and the 
original mp-QP problem with disturbance input is converted 
into an mp-QP problem without disturbances. 
 
 



2 Problem formulation 
 

Consider the linear discrete-time system: 
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where nRtx ∈)( , mRtu ∈)( , and pRty ∈)(  are the state, 

input and output variable, )(tθθ  is the disturbance input that is 

assumed to belong to a bounded polyhedral set 
sA Rt ⊂∈ΘΘθθ )( . Also, nnRA ×∈ , mnRB ×∈ , npRC ×∈ , 

snRT ×∈  and (A,B) is a controllable pair. Let 
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{ } sNAAAB R⊂××=∈ ΘΘΘΘΘΘΘΘΘΘ ... . It is assumed that a full 

measurement of the state )(tx  is available at the current time 

t. Then, for the current )(tx , MPC solves the optimization 

problem: 
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with the cost function given by: 
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and symmetric 0>R , 0≥Q , 0>P . The final cost matrix 

P may be taken as the solution of the algebraic Riccati 
equation. It is also assumed minmax uu >> 0 , minmax yy >> 0 , 

such that the origin is an interior point in the feasible set 

)}()(|)({ 73satisfying −∃∈= URtxX n
f . Here, we consider 

the nominal optimization criterion: 

{ }
)),(,(min))((

,...,

* N

uuU
nom txUJtxV

Ntt

θθ
1−+≡

=         (9) 

corresponding to 0== Nt θθθθ )( , where Nθθ  is the nominal 

value of the disturbance input. 
 

In this problem formulation, the robustness is defined in 
terms of satisfaction of the output and input constraints (3) 

and (4) under all possible disturbance realizations BΘΘΘΘ ∈  

that influence the state of the system (Equation (6)). 
 

By substituting: 
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in the constraints (3) – (7), they can be represented in the 
form: 

BEtxEWGU ΘΘΘΘΘΘ ∈∀++≤ ,)( 21 , (11) 

where [ ] mNTT
Nt

T
t RuuU ∈≡ −+ 1,...,  is the optimization vector 

and BΘΘΘΘ ∈  is the disturbance realization. Then the nominal 

optimization criterion (9) is rewritten as: 
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By defining: 
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where mNRz ∈ , the optimization problem (12) subject to 
constraint (11), is transformed into the following mp-QP 
problem: 
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3 Approximate mp-QP algorithm for design of 
robust explicit MPC 
 
3.1 Feasibility in the presence of disturbance 
 

Assumption 1: 
The disturbance input set: 

{ }ULsA R θθθθθθθθΘΘ ≤≤∈= |   (16) 

represents a hyper-rectangle that includes the origin in its 
interior. 
 

Definition 1: 
Consider the i-th constraint defined by iG , iW , iS1 , iS2  

rows of the matrices G , W , 1S , 2S . The worst disturbance 

realization for the i-th constraint, denoted by Bi ΘΘΘΘ ∈~
 is one 

which solves the linear program: 
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Lemma 1: 
If there exists a z that satisfies the following constraint: 
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where the i-th row of the matrix W
~

 is determined by: 
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and where Bi ΘΘΘΘ ∈~
 is the worst disturbance realization for 

the i-th constraint, then this implies that z will satisfy 
constraint (15) for all possible disturbance realizations 

BΘΘΘΘ ∈ . Such a z is referred to as robustly feasible. 
The proof of Lemma 1 is straightforward. 
 

In this way, a constraint (18) which ensures robust feasibilit y 
can be easily constructed. Then, the original mp-QP problem 
(14) – (15) becomes: 
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where W
~

 is determined by (19). Thus the original mp-QP 
problem with disturbance input (problem (14) – (15)) is 
reformulated as an mp-QP problem without disturbance 
(problem (20) – (21)) and therefore the existing approximate 
approach [10] for explicit solution of mp-QP problems can 
easily be applied to this problem. The optimal PWL solution 

to the problem (20) – (21) will be denoted )(* xz . It has to be 

stressed that the approximate approach [10] guarantees that 
the optimal solution is feasible in sense that it will satisfy 
constraint (21). This directly implies by Lemma 1 above that 
constraint (15) of the original mp-QP problem will be 
satisfied for all possible disturbance realizations. This is 
summarized in the following Lemma: 
 

Lemma 2 (feasible control in the presence of disturbance): 
Consider the bounded polyhedron 0X  with vertices 

{ }Mvvv ,...,, 21 . If 0K  and 0g  solve the QP: 
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subject to: 
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then the least squares approximation 000 )(ˆ gxKxz +=  is 

robustly feasible for the mp-QP (14) – (15) for all 0Xx ∈  

and all disturbance realizations BΘΘΘΘ ∈ . 
Proof: It follows from Lemma 1 from [4] and from Lemma 1 
given above. �  
 
3.2 Approximate mp-QP algor ithm 
 

Here an approximate mp-QP algorithm is described to solve 
explicitly the mp-QP problem with disturbance input  
(problem (14) – (15)). We restrict our attention to a hyper-

rectangle nRX ⊂  where we seek to approximate the optimal 

PWL solution )(* xz  to the mp-QP (14) – (15). In order to 

minimize the real-time computational complexity we require 
that the state space partition is orthogonal and can be 
represented as a k – d tree, such that the search complexity is 
logarithmic with respect to the number of regions. The k – d 
tree [5] is a hierarchical data structure where a hyper-
rectangle can be sub-divided into smaller hyper-rectangles 
allowing the local resolution to be adapted (cf. Figure 1). 
When searching the tree, only one scalar comparison is 
required at each level, leading to extremely fast real-time 
MPC computations. 
 

The main idea of the approximate mp-QP algorithm is to 
compute the solution of the mp-QP problem (14) – (15) at the 

n2  vertices of a considered hyper-rectangle 0X  by solving 

up to n2  QPs. Based on these solutions, a feasible local 

approximation )(ˆ xz0  to the PWL optimal solution )(* xz , 

valid in the whole hyper-rectangle 0X , is computed by using 

Lemma 2 given in the previous section. If such an 
approximation exists, and the maximal cost function 

approximation error 0εε  in 0X  is smaller than some 

prescribed tolerance 0>εε , no further refinement of the 
hyper-rectangle 0X  is needed. Otherwise, 0X  is partitioned 

into two hyper-rectangles, and the procedure described above 
is repeated for each of these. In order to reduce the 
complexity of the partition, the heuristic rule described in [6] 
is applied when splitti ng the hyper-rectangle 0X  ( 0X  is 

divided at the axis along which the change of error is 
maximal before splitti ng). The way to compute the error 
bound 0εε  is given in [10]. 
 

 
Figure 1: k – d tree partition in a 2-dimensional state space. 

 
Algor ithm 1 (approximate mp-QP) 
Step 1. Transform the original mp-QP problem with 
disturbance input (14) – (15) into the mp-QP problem (20) – 
(21), by applying Lemma 1. 
Step 2. Initialize the partition to the whole hyper-rectangle, 
i.e. { }XP = . Mark the hyper-rectangle X as unexplored. 

Step 3. Select any unexplored hyper-rectangle PX ∈0 . If no 

such hyper-rectangle exists, go to step 9. 
Step 4. Compute the solution to the QP (20) – (21) for x fixed 

to each of the n2  vertices of the hyper-rectangle 0X . If all 

QPs have a feasible solution, go to step 6. Otherwise, go to 
step 5. 
Step 5. Compute the size of 0X  using some metric. If it is 

smaller than some given tolerance, mark 0X  infeasible and 

explored. Go to step 3. Otherwise, go to step 8. 
Step 6. Compute an aff ine state feedback 0ẑ  using Lemma 2, 

as an approximation to be used in 0X . 

Step 7. Compute the error bound 0εε  in 0X . If εεεε ≤0 , mark 

0X  as explored and feasible and go to step 3. 

Step 8. Split the hyper-rectangle 0X  into two hyper-

rectangles 1X  and 2X  by applying the heuristic rule from 

[6]. Mark them unexplored, remove 0X  from P, add 1X  and 

2X  to P, and go to step 3. 

Step 9. If necessary, split the hyper-rectangles containing the 

origin such that 0)(* =xz  is optimal everywhere in these 

hyper-rectangles. Terminate. 
 



This algorithm will terminate with a PWL function that is an 
approximation to the PWL exact solution and is defined on an 
inner approximation fX  of the set fXX

�
. The set fX  is 

represented as a union of hyper-rectangles. 
 
4 Illustrative example 
 

Consider the double integrator: 
)()()()1( tTtButAxtx θθ++=+   (24) 

with: 
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where the sampling interval is 05.0=sT , and consider the 

MPC problem with horizon 5=N , cost matrices 
)0,1(diag=Q , 1=R , and the matrix 0>P  given as the 

solution of the algebraic Riccati equation. The constraints are: 
11 ≤≤− u    (26) 

5.05.0 2 ≤≤− x    (27) 

The disturbance vector T][ 21 θθθθθθ =  has the following 

bounds: 
01.0)(01.0 1 ≤≤− tθθ   (28) 

015.0)(015.0 2 ≤≤− tθθ   (29) 

The approximation tolerance 0>εε  is chosen according to the 
approach in [10] and it depends on 0X  such that 

2

1750 00 ���xT+
=

.
εε , where xxx T

Xx
ΣΣ

0

minarg0 ∈
= . 

 

The state space partition of the robust MPC controller is 
shown in Figure 2 and it has 126 regions and 12 levels of 
search. With one scalar comparison required at each level of 
the k-d tree, 12 arithmetic operations are required in the worst 
case to determine which region the state belongs to. Totally, 
16 arithmetic operations are needed in real-time to compute 
the control input with this MPC controller (12 comparisons, 2 
multiplications and 2 additions). 
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Figure 2: State space partition of the robust MPC with 5=N . 
 

In Figures 3 and 4, possible realizations for the disturbance 
variables 1θθ  and 2θθ  are given. In Figures 5 to 7 the control 

and state trajectories obtained with the robust MPC in the 
presence of disturbance are shown (the solid and dotted 
curves show the approximate and exact MPC trajectories). 
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Figure 3: Disturbance )(1 tθθ . 
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Figure 4: Disturbance )(2 tθθ . 
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Figure 5: Control input for the robust MPC. 
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Figure 6: State  trajectory 1x  for the robust MPC. 
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Figure 7: State trajectory 2x  for the robust MPC. 
 

It can be seen that the robust MPC keeps all constraints 
imposed on the system. 
 

In Figure 8, the state trajectory 2x  produced by the nominal 

MPC in the presence of the same disturbance is shown. The 
nominal MPC has been designed by assuming that 0)( =tθθ . 
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Figure 8: State trajectory 2x  for the nominal MPC. 

It can be seen from Figure 8 that the nominal MPC violates 
the constraint imposed on state variable 2x . 

 
5 Conclusions 
 

An algorithm for off -line computation of approximate explicit 
solutions to robust linear constrained MPC problems is 
described. The resulting explicit piecewise linear state 
feedback is defined on an orthogonal partition of the state 
space that allows very eff icient real-time computations. It is 
guaranteed to keep the input and output constraints under all 
possible disturbance realizations within the specified range. 
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