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Multi-parametric

Abstract

Explicit piecewise linear state feedback solutions to the
constrained linear model predictive control problem have
been characterized and computed using multi-parametric
guadratic programming. The piecewise linear state feedback
is defined on a polyhedral partition of the state space, which
may be quite complex. Recently, approximate multi-
parametric quadratic programming approaches have been
developed, which have the advantage that the state space
partition is structured as an orthogonal search tree. This leads
to more efficient real-time computations and admits
implementation at high sampling frequencies in embedded
systems with inexpensive processors and low software
complexity. This paper presents an approximate multi-
parametric quadratic programming algorithm that alows the
explicit solution of robust model predictive control problems,
by imposing an orthogonal search tree structure on the
partition. Here, the robustness is defined in terms of
satisfaction of the input and output constraints under all
possible disturbance realizations.

1 Introduction

Model predictive control (MPC) is an efficient methodology
to solve complex constrained multivariable control problems.
The requirement to perform on-line optimization however
limits the applicability of MPC mostly to slowly varying
processes. Recently, several methods for explicit solution of
MPC problems have been developed. The main motivation
behind explicit MPC is that an explicit state feedback law
avoids the need for real-time optimization, and is therefore
potentially useful for applications with fast sampling where
MPC has not traditionally been used. In [1] it was recognized
that the constrained linear MPC problem is a multi-parametric
guadratic program (mp-QP), when the state is viewed as a
parameter to the problem. It was shown that the solution (the
control input) has an explicit representation as a piecewise
linear (PWL) state feedback on a polyhedral partition of the
state space, see aso [2,8,14,15], and they develop an mp-QP

agorithm to compute a representation of this function. Some
of these approaches have been further extended to ensure
robustness of the explicit MPC controllers against
disturbances [3,11,13]. In [11] it is assumed that the
disturbance input belongs to a compact polyhedral set, and the
approach in [7] is applied to ensure feasible operation of the
MPC controller that minimizes the nominal value of the
performance index. This work has been further extended to
proportional integral controllers [13]. In [3], an approach to
explicit solution of robust MPC problems based on a min-
max formulation with a performance index expressed in co-
norm has been proposed. In [12], a min-max strategy for
design of robust optimal controllers for piecewise affine
systems with bounded disturbances is formulated and
implemented by applying the dynamic programming
technique. It has to be mentioned however, that solution
obtained by optimizing the worst value of the performance
criterion can be quite conservative.

Recently, in [6,9,10], agorithms that determine an
approximate explicit PWL state feedback solution by
imposing an orthogonal search tree structure on the partition,
have been developed. They may lead to more efficient real-
time computations and admit implementation at high
sampling frequencies in embedded systems with inexpensive
processors and low software complexity. This paper suggests
an approach to explicit solution of constrained linear MPC
problems in the presence of bounded disturbances and
represents an extension of the approximate mp-QP approach
[10]. Likein [11], the explicit MPC controller minimizes the
nomina value of the performance index and it is robust in the
sense that al constraints are satisfied for al possible
disturbance realizations within the specified range. However,
here we consider a speciad case where the set of the
disturbance inputs represents a hyper-rectangle that includes
the origin in its interior and the constraints are in the form of
upper and lower bounds on the input and output variables.
Based on these assumptions, the conditions which guarantee
feasible operation of the MPC controller are derived and the
original mp-QP problem with disturbance input is converted
into an mp-QP problem without disturbances.



2 Problem formulation

Consider the linea discrete-time system:
X(t +1) = Ax(t) + Bu(t) + TO(t) 1)
y(t) = Cx(t)
where x(t)OR", u(t)OR™, and y(t)ORP are the state,
input and output variable, 8(t) isthe disturbanceinput that is

asamed to belong to a bounded pdyhedral set
6(t)00" OR®. Also, AOR™", BOR™™, CORP",
TOR™ and (AB) is a ontrollable pair. Let

o=lpr. .. .67, .] DO° is a disturbance redization, with
006° ={0* x0* . x0*}0R™ . It is asuimed that a full
measurement of the state x(t) is available & the aurrent time
t. Then, for the arrent x(t), MPC solves the optimization
problem:

V'’ (x(t),0) :UE{umin

U

y JU.x(1).0) (9

subjed to:
Yiin < Yerkt S Ymaxr K=1 .., N )
Upin SUy SUps k=01 ... ,N -1 (4)
Xy = X(1) )

Xercosr = A + Bl +TO 5 8., 0O, k20 (6)

Yokt = e K20 (7)
with the st function gven by:
N -1
J(U, x(1),0)= z [XtT+k|tQXr+k|r +Uf,, Rut+k]
& )

+XtT+N|r PXiinie
and symmetric R>0, Q=0, P>0. The final cost matrix
P may be taken as the solution of the dgebraic Riccai
equation. It isalso asumed U, >0>U i, Yoax > 0> Viin s
such that the origin is an interior paoint in the feasible set
X, ={x(t)0R" | satisfying(3) = (7)} . Here, we cnsider
the nominal optimization criterion:
Viom (X(1)) = oo min I, x(),8™)

oo Ui

9

corresponding to @(t)=0" =0, where 8" is the nominal
value of the disturbanceinput.

In this problem formulation, the robustness is defined in
terms of satisfadion of the output and input constraints (3)

and (4) under al possble disturbance redizaions @0O°
that influencethe state of the system (Equation (6)).

By substituting:

(10

J

k-1 k1
skt = Ax(t) + z A'BU oy + z AT
= =

in the onstraints (3) — (7), they can be represented in the
form:

GU W +Ex(t)+E,©0 ,0006°%, (11

where U E[u[T, ,u;N_l]T OR™ isthe optimizaion vedor

and ©®0O° is the disturbance redizaion. Then the nomina
optimization criterion (9) is rewritten as:

Ve (x(t)=min FEUTHU +xT (t)FUH
v (12
+ % X7 ()YX(t)

By defining:
z=U +HTFTx(1), (13
where zOR™ |, the optimizaion problem (12) subjedt to

congtraint (11), is transformed into the following mp-QP
problem:

V, hom(X) = min %ZTHZ (14)
subjed to:

GzsW +Sx(t)+S,0 ,0006° (15
3 Approximate mp-QP algorithm for design of

robust explicit MPC

3.1 Feasibility in the presence of disturbance
Assumption 1:
The disturbanceinput set:

0" ={goRr|e- <0 <6} (16)
represents a hyper-redangle that includes the origin in its
interior.

Definition 1:
Consider the i-th congtraint defined by G', W', S/, S}
rows of the matrices G, W, S;, S,. The worst disturbance

realization for the i-th constraint, denoted by ©' 06" isone
which solves the linear program:

S,0' =min{s,8) (17
Lemma 1:
If there exists a z that satisfies the following constraint:

Gz<W +S,x(t), (18)
where the i-th row of the matrix W is determined by:

W =w'+si@', (19)

and where @' 0O°® is the worst disturbance realization for
the i-th congtraint, then this implies that z will satisfy
congtraint (15) for all possible disturbance realizations
©06°. Suchazisreferred to asrobustly feasible.

The proof of Lemma 1 is graightforward.

In this way, a @mnstraint (18) which ensures robust feasibility
can be eaily constructed. Then, the original mp-QP problem
(14) — (15) becomes:

V, hom(X) = min %ZTHZ (20)

subjed to:



Gz<W +Sx(t), (1)

where W is determined by (19). Thus the original mp-QP
problem with disturbance input (problem (14) — (15) is
reformulated as an mp-QP problem without disturbance
(problem (20) — (21)) and therefore the existing approximate
approach [10] for explicit solution of mp-QP problems can
easly be gplied to this problem. The optimal PWL solution
to the problem (20) — (21) will be denoted z () . It hasto be
stresed that the gproximate gproach [10] guarantees that
the optimal solution is feasible in sense that it will satisfy
constraint (21). This diredly implies by Lemma 1 above that
constraint (15) of the originad mp-QP problem will be
satisfied for al possble disturbance redizaions. This is
summarized in the foll owing Lemma:

Lemma 2 (feasible mntrol in the presenceof disturbance):
Consider the boundd poyhedron X, with vertices

{vl,vz, ...,vM}. If K, and g, solvethe QP:
oM s .
m‘g{‘) _1(2 (Vi) — KoV, _go) H (Z (Vi) =Ky _go) (22
subjed to:

G(Kov, +85)<sW +Sy, ,i0{L2 ...,M}, (23
then the least squares approximation Z,(x) = K x+g, is
robustly feasible for the mp-QP (14) — (15) for all xO X,

and dl disturbarcerealizations © 0©° .
Proof: It follows from Lemma 1 from [4] and from Lemma 1
given above.

3.2 Approximate mp-QP algorithm

Here an approximate mp-QP agorithm is described to solve
explicitty the mp-QP problem with disturbance input
(problem (14) — (15)). We restrict our attention to a hyper-
redange X O R" where we seek to approximate the optimal
PWL solution z (x) to the mp-QP (14) — (15). In order to

minimize the red-time mmputational complexity we require
that the state space partition is orthogonal and can be
represented as a k — d treg such that the seach complexity is
logarithmic with resped to the number of regions. The k — d
tree [5] is a hierarchicd data structure where a hyper-
redange can be sub-divided into smaller hyper-redangles
allowing the locd resolution to be alapted (cf. Figure 1).
When seaching the treg only one scdar comparison is
required at ead level, leading to extremely fast red-time
MPC computations.

The main idea of the gproximate mp-QP algorithm is to
compute the solution of the mp-QP problem (14) — (15) at the
2" vertices of a mnsidered hyper-redange X, by solving

up to 2" QPs. Based on these solutions, a feasible locd
approximation Z,(x) to the PWL optimal solution z (x),
valid in the whole hyper-redangle X, , is computed by using

Lemma 2 given in the previous <dion. If such an
approximation exists, and the maxima cost function

approximation error g, in X, is sndler than some
prescribed tolerance &€ >0, no further refinement of the
hyper-redange X, is needed. Otherwise, X, is partitioned
into two hyper-redangles, and the procedure described above
is repeded for each of these. In order to reduce the
complexity of the partition, the heuristic rule described in [6]
is applied when splitting the hyper-redangle X, (X, is
divided at the ais aong which the dange of error is
maximal before splitting). The way to compute the eror
bound g, isgivenin[10].
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Figure 1: k—d treepartition in a 2-dimensional state space

Algorithm 1 (approximate mp-QP)

Step 1. Transform the origina mp-QP problem with
disturbance input (14) — (15) into the mp-QP problem (20) —
(21), by applying Lemma 1.

Step 2. Initiaize the partition to the whole hyper-redangle,
ie P :{X} . Mark the hyper-redange X as unexplored.

Step 3. Seled any unexplored hyper-redange X, OP . If no

such hyper-redangle exists, go to step 9.
Step 4. Compute the solution to the QP (20) — (21) for x fixed

to ead of the 2" vertices of the hyper-redande X, . If all
QPs have a feasible solution, go to step 6. Otherwise, go to
step 5.

Step 5. Compute the size of X, using some metric. If it is
smaller than some given tolerance, mark X, infeasible and

explored. Go to step 3. Otherwise, go to step 8.
Step 6. Compute an affine state feedbadk z, using Lemma 2,

as an approximation to beused in X, .

Step 7. Compute the e@ror bound €, in X, . If &, <&, mark
X, asexplored and feasible and go to step 3.

Step 8. Split the hyper-redangle X, into two hyper-
redangles X; and X, by applying the heuristic rule from
[6]. Mark them unexplored, remove X, from P, add X, and
X, toP,and goto step 3.

Step 9. If necessary, split the hyper-redangles containing the
origin such that z' (x) =0 is optimal everywhere in these
hyper-redanges. Terminate.



This agorithm will terminate with a PWL function that is an
approximation to the PWL exact solution and is defined on an
inner approximation X, of theset XN X, .Theset X, is

represented as a union of hyper-rectangles.

4 [llustrative example

Consider the double integrator:
X(t+2) = Ax(t) + Bu(t) +TO(t) (24)
with:
o T.0 _Ozo [ oCc
AR Al PTHE TR aF
where the sampling interval is T, =0.05, and consider the
MPC problem with horizon N =5, cost matrices
Q=diag(,0), R=1, and the matrix P >0 given as the
solution of the algebraic Riccati equation. The constraints are:

(25)

-l<ux<l (26)

-0.5<x,<05 27)
The disturbance vector 6 =[6, 8,]" has the following
bounds:

-0.01<6,(t)<0.01 (28)

-0.015<8,(t) <0.015 (29

The approximation tolerance € >0 is chosen according to the
approach in [10] and it depends on X, such that

N
E:m—xozxo,where Xo =argmin X' 3X .

The state space partition of the robust MPC controller is
shown in Figure 2 and it has 126 regions and 12 levels of
search. With one scalar comparison required at each level of
the k-d tree, 12 arithmetic operations are required in the worst
case to determine which region the state belongs to. Totally,
16 arithmetic operations are needed in real-time to compute
the control input with this MPC controller (12 comparisons, 2
multiplications and 2 additions).
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Figure 2: State space partition of the robust MPC with N =5.

In Figures 3 and 4, possible redlizations for the disturbance
variables 8, and 8, are given. In Figures 5 to 7 the control

and state trgjectories obtained with the robust MPC in the
presence of disturbance are shown (the solid and dotted
curves show the approximate and exact MPC trgjectories).
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Figure 3: Disturbanced, (t) .
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Figure 4: Disturbance 8,(t) .
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Figure 5: Control input for the robust MPC.



State X, 1)
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Figure 6: State trajedory x, for the robust MPC.

State x2(t)

. . . . . )
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Figure 7: State trgjedtory x, for the robust MPC.

It can be seen that the robust MPC keeps al constraints
imposed on the system.
In Figure 8, the state trgjedory x, produced by the nominal

MPC in the presence of the same disturbance is s1own. The
nominal MPC has been designed by asaimingthat 8(t) =0.

State x2(t)

o1l - - - [ T T [T

0 100 200 300 400 500 600
time instants

Figure 8: State trajedory x, for the nominal MPC.

It can be seen from Figure 8 that the nominal MPC violates
the monstraint imposed on state variable X, .

5 Conclusions

An agorithm for off-line computation of approximate explicit
solutions to robust linea constrained MPC problems is
described. The resulting explicit piecevise linea dstate
feedbad is defined on an orthogonal partition of the state
spacethat alows very efficient red-time computations. It is
guaranteal to keep the input and output constraints under all
possble disturbance redizations within the spedfied range.

Acknowledgements

This work was gonsored by the European Commisson
through the Research Training Network M AC (“Multi-Agent
Control:  Probabilistic reasoning, optimal co-ordination,
stability analysis and controller design for intelli gent hybrid
systems’, HPRN-CT-199900107%

References

[1]. A. Bemporad, M. Morari, V. Dua, E. N. Pistikopaulos.
“The eplicit solution of model predictive control via
multiparametric quadratic programming’, Proc. of
American Control Conference, Chicago, pp. 872876,
(2000.

[2]. A. Bemporad, M. Morari, V. Dua, E. N. Pistikopaulos.
“The eplicit linear quadratic regulator for constrained
systems’, Automatica, vol. 38, pp. 3-20, (2002).

[3]. A. Bemporad, F. Borrelli, M. Morari. “Robust model
predictive acntrol: Piecewise linea explicit solution”,
Proc. of European Control Conference, Porto, Portugdl,
pp. 939-944, (2001).

[4]. A.Bemporad, C. Filippi. “Suboptimal explicit MPC via
approximate quadratic programming’, Proc. of IEEE
Conf. Decision and Control, Orlando, pp. 48514856
(2002.

[5]. J. L. Bentley. “Multidimensional binary seach trees
used for asciative seaching’, Communications of the
ACM, val. 18, pp. 509-517, (1975.

[6]. A. Grancharova, T. A. Johansen. “Approximate explicit
model predictive @ntrol incorporating heuristics’,
Proc. of IEEE International Symposium on Computer
Aided Control System Design, Glasgow, Scotland, U.K.,
pp. 92-97, (2002.

[7]. I. E. Grosgnmann, K. P. Haemane, R. E. Swaney.
“Optimization  strategies for flexible  chemicd
processes’, Computers & Chemical Engineering, vol. 7,
pp. 439462 (1983.

[8]. T. A. Johansen, |I. Petersen, O. Slupphaug. “Explicit
sub-optimal linea quadratic regulation with state and
input constraints’, Automatica, vol. 38, pp. 10991111,
(2002.

[9]. T.A. Johansen, A. Grancharova. “Approximate eplicit
model predictive @ntrol implemented via orthogonal
seach tree partitioning’, Proc. of 15-th IFAC World



[10].

[11].

[12].

[13.

[14].

[15].

Congress, Barcdona, Spain, sesson T-We-M17,
(2002.

T. A. Johansen, A. Grancharova. “Approximate explicit
constrained linea model predictive ntrol  via
orthogonal seach tree’ I|EEE Trans. Automatic
Control, vol. 48, pp. 810-815, (2003.

N. M. P. Kakalis, V. Dua, V. Sakizlis, J. D. Perkins, E.
N. Pistikopaulos. “A parametric optimisation approach
for robust MPC”, Proc. of 15-th IFAC World Congress,
Barcdona, Spain, (2002.

E. C. Kerrigan, D. Q. Mayne. “Optimal control of
constrained, piecewise dfine systems with bounded
disturbances’, Proc. of IEEE Conf. Decision and
Control, Las Vegas, Nevada USA, pp. WeAl12-2,
(2002.

V. Sakizlis, N. M. P. Kakalis, V. Dua, J. D. Perkins, E.
N. Pistikopaulos. “Design of robust model -based
tracking controll ers via parametric programming’, Proc.
of IEEE International Symposium on Computer Aided
Control System Design, Glasgow, Scotland, U.K., pp.
151-156, (2002.

M. Seron, J. A. De Dona, G. C. Goodwin. “Global
analyticd model predictive control with input
constraints’, Proc. of IEEE Conf. Decision and Control,
Sydney, pp. TUA05-2, (2000.

P. Tendel, T. A. Johansen, A. Bemporad. “An agorithm
for multi-parametric quadratic programming and
explicit MPC solutions”, Proc. of IEEE Conf. Decision
and Control, Orlando, pp. TuP11-4, (2001).



