
1

Approximate explicit constrained linear model

predictive control via orthogonal search tree

Tor A. Johansen and Alexandra Grancharova

Department of Engineering Cybernetics, Norwegian University

of Science and Technology, 7491 Trondheim, Norway.

Abstract

Solutions to constrained linear model predictive control problems can be pre-computed off-line in an explicit form as a

piecewise linear state feedback on a polyhedral partition of the state space, avoiding real-time optimization. We suggest

an algorithm that will determine an approximate explicit piecewise linear state feedback by imposing an orthogonal

search tree structure on the partition. This leads to a real-time computational complexity that is logarithmic in the

number of regions in the partition, and the algorithm yields guarantees on the sub-optimality, asymptotic stability and

constraint fulfillment.

I. Introduction

The main motivation behind explicit model predictive control (MPC) is that an explicit state feedback

solution avoids the need for real-time optimization, and is therefore potentially useful for applications with fast

sampling where MPC has traditionally not been used. In [1], [2] it was recognized that the constrained linear

MPC problem is a multi-parametric quadratic program (mp-QP), when the state is viewed as a parameter to

the problem. They show that the solution (the control input) has an explicit representation as a piecewise

linear (PWL) function and develop an mp-QP algorithm to compute this function, see also the algorithms

[3], [4]. The approaches of [5], [6], [7], allows sub-optimality to be introduced by pre-determining a small

number of sampling instants when the active set or input is allowed to change on the horizon, leading to less

regions in the polyhedral partition. An alternative sub-optimal approach was introduced in [8] where small

slacks are introduced on the optimality conditions and the mp-QP algorithm in [2] is modified for the relaxed

problem. This leads to reduced computational complexity and reduced complexity of the solution, in terms

This work was sponsored by the European Commission through the Research Training Network MAC (Multi Agent Control)

Corresponding author: Tor.Arne.Johansen@itk.ntnu.no



2

of less regions in the state space partition.

Here we suggest an entirely different approach to compute sub-optimal explicit MPC solutions. The idea

is to require that the state space partition is represented by a search tree. Hence, the partition consists of

orthogonal hypercubes organized in a hierarchical data-structure that allows extremely fast real-time search.

The optimal solution is computed explicitly using quadratic programming (QP) only at the vertices of these

hypercubes, and an approximate solution valid in the whole hypercube is computed based on this data. A

hypercube is partitioned into smaller hypercubes only if this is necessary to achieve the desired accuracy. The

real-time computational complexity with the suggested approach is logarithmic with respect to the number of

regions, while a general polyhedral partitioning leads to a computational complexity that is linear with respect

to the number of regions, if no additional data structures are built [7]. It must be stressed that the advantage

of this approach is the efficient real-time computations rather than the off-line computations. Unlike any

other method mentioned above, that all rely on the linearity of the problem to build polyhedral regions and

a PWL solution, the suggested method is straightforward to extended to convex nonlinear constrained MPC

problems by replacing the QPs with convex nonlinear programs. Other function approximation methods for

optimal control are described in [9], [10], [11].

II. Explicit MPC and exact mp-QP

Consider the discrete-time linear system

x(t + 1) = Ax(t) + Bu(t) (1)

where x(t) ∈ R
n is the state variable, u(t) ∈ R

m is the input variable, A ∈ R
n×n, and B ∈ R

n×m. For the

current x(t), a typical MPC algorithm, see [12] for an overview, solves the optimization problem

V ∗(x(t)) = min
U�{ut,...,ut+N−1}

J(U, x(t)) (2)

subject to xt|t = x(t) and

ymin ≤ yt+k|t ≤ ymax, k = 1, ..., N

umin ≤ ut+k ≤ umax, k = 0, 1, ..., N − 1,

xt+N |t ∈ Ω (3)

xt+k+1|t = Axt+k|t + But+k, k = 0, 1, ..., N − 1

yt+k|t = Cxt+k|t, k = 1, 2, ..., N



3

with the cost function given by

J(U, x(t)) =
N−1∑
k=0

(
xT

t+k|tQxt+k|t + uT
t+kRut+k

)
+ xT

t+N |tPxt+N |t (4)

and symmetric R � 0 (positive definite), Q � 0 (positive semi-definite). We assume (A, B) is controllable,

(A,
√

Q) is observable, Ω is a polyhedral terminal set, and the final cost matrix P � 0 is the solution of the

associated algebraic Riccati equation. With the assumption that no constraints are active for k ≥ N , (4)

corresponds to an infinite horizon LQ criterion [13]. It is also assumed umax > 0, umin < 0, ymax > 0, and

ymin < 0 such that the origin is an interior point in the feasible set Xf ⊆ R
n. The optimal solution is denoted

U∗ = (u∗
t
T , u∗

t+1
T , ..., u∗

t+N−1
T )T , and the control input is chosen according to the receding horizon policy

u(t) = u∗
t . Problem (2)-(3) and similar problems can by algebraic manipulations be reformulated as

V ∗
z (x) = min

z

1
2
zT Hz, subject to Gz ≤ W + Sx (5)

where z = U + H−1F T x, and the matrices are defined in [1]. Notice that H � 0 since R � 0, [1]. The vector

x is the current state, which can be treated as a vector of parameters. For ease of notation we write x instead

of x(t). The number of inequalities is denoted q and the number of free variables is nz = mN . The problem

(5) defines an mp-QP, since it is a QP in z parameterized by x. In parametric programming problems one

seek the solution z∗ as an explicit function of the parameters x. For the mp-QP (5), the solution z∗(x) has

the following properties, [14], [1]:

Theorem 1. Consider the mp-QP (5) with H � 0. The solution z∗(x) (and U∗(x) = z∗(x) − H−1F T x) is

a continuous PWL function of x, and Vz(x) is a convex and continuous piecewise quadratic function. �

The concept of active constraints is instrumental to characterize the PWL solution. An inequality constraint

is said to be active for some x if it holds with equality at the optimum. An explicit representation of the

optimal PWL state feedback is given in the following theorem [1]:

Theorem 2. Consider the mp-QP (5) with H � 0, and an arbitrary fixed set of active constraints, where

the sub-matrices G̃, W̃ and S̃ contain the corresponding rows of G, W and S. If the rows of G̃ are linearly

independent, the optimal solution and associated Lagrange multipliers are given by the affine functions

z∗0(x) = H−1G̃T (G̃H−1G̃T )−1(W̃ + S̃x) (6)

λ̃0(x) = −(G̃H−1G̃T )−1(W̃ + S̃x) (7)



4

Moreover, the critical region CR0 ⊆ R
n where this solution is optimal is given by the polyhedron

GH−1G̃T (G̃H−1G̃T )−1(W̃ + S̃x) ≤ W + Sx (8)

−(G̃H−1G̃T )−1(W̃ + S̃x) ≥ 0 (9)

�

General mp-QP algorithms based on Theorem 2 are given in [4] and [1], where it is also discussed how to

handle situations when the linear independence condition is violated.

Example. Consider a discrete-time double integrator

A =




1 Ts

0 1


 , B =




T 2
s

Ts




where the sampling interval is Ts = 0.3, and consider the MPC problem with cost matrices Q = diag(1, 0)

and R = 1. The constraints in the system are −0.5 ≤ x2 ≤ 0.5, and −1 ≤ u ≤ 1, and we restrict our attention

to the set X = [−2.8, 2.8] × [−0.8, 0.8]. Figure 1 shows polyhedral partition of the optimal state feedback for

horizon N = 20 corresponding to the exact solution provided by the algorithm [4]. We observe that the exact

solution is fairly complex, containing 205 polyhedral critical regions.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

Fig. 1. Polyhedral partition of the state space for the optimal PWL state feedback controller of the double integrator

with horizon N = 20.

III. Error bounds

When constructing approximate solutions it is useful to compute bounds on the approximation error. We

consider any approximate affine solution ẑ0(x) defined on an arbitrary bounded polyhedron X0 ⊂ R
n. The



5

corresponding sub-optimal cost is given by V̂z(x) = 1
2 ẑT

0 (x)Hẑ0(x) for x ∈ X0. Assume it is needed to compute

a bound on the error V̂z(x) − V ∗
z (x), uniformly for all x ∈ X0. We develop a method based on similar ideas

as in [14]. Let the polyhedron X0 be represented by its vertices V = {v1, v2, ..., vM}, and define the affine

function L(x) = L0x + l0 as the solution to the following LP:

min
L0,l0

(
L0v + l0

)
subject to L0vi + l0 ≥ V ∗

z (vi), for all i ∈ {1, 2, ..., M} (10)

Likewise, define the PWL function

L(x) = max
i=1,2,...,M

V ∗
z (vi) + ∇T V ∗

z (vi)(x − vi) (11)

where ∇V ∗
z (v) is taken as any sub-gradient if V ∗

z is not differentiable at v. Furthermore, define V (x) =

L(x)+xT Px and V (x) = L(x)+xT Px. We observe that both V and V can be defined using only information

computed from the solutions of the QP at the vertices V.

Theorem 3. Let X0 ⊂ R
n be a bounded polyhedron. Then V (x) ≤ V ∗(x) ≤ V (x) for all x ∈ X0.

Proof. Notice that V ∗(x) = V ∗
z (x) + xT Px, since V ∗

z (x) = 0 is the optimal cost for x in the critical region

where the unconstrained LQR feedback is optimal. The upper bound is a consequence of the convexity of V ∗
z ,

cf. Theorem 1. To see this, let x ∈ X0 be arbitrary, and consider the convex combination x =
∑

i αivi where

αi ≥ 0 satisfies
∑

i αi = 1:

V ∗
z (x) ≤

M∑
i=1

αiV
∗
z (vi) ≤

M∑
i=1

αi

(
L0vi + l0

)
= L0x + l0

The lower bound is also derived as a direct consequence of the convexity of V ∗
z , since for any v ∈ X0 the

following sub-gradient inequality holds, [15]: V ∗
z (x) ≥ V ∗

z (v) + ∇T V ∗
z (v)(x − v). �

It follows that −ε1 ≤ V ∗(x) − V̂ (x) ≤ ε2, where ε1 and ε2 can be computed by

ε1 = max
x∈X0

(
V̂ (x) − V (x)

)
(12)

ε2 = max
x∈X0

(
V (x) − V̂ (x)

)
(13)

The PWL lower bound can be replaced by a simpler affine lower bound L(x) = V ∗
z (v) + ∇T V ∗

z (v)(x − v),

where v ∈ X0 is arbitrary. Since X0 is a hypercube, the solution of the optimization problems (12) and (13)

then becomes particularly simple.

IV. Approximate mp-QP algorithm

Consider a hypercube X ⊂ R
n where we seek to approximate the optimal PWL solution z∗(x) to the mp-QP

(5). In order to keep the real-time computational complexity at a minimum, we require that the state space



6

Fig. 2. Quadtree partition of a rectangular region in a 2-dimensional space.

partition is orthogonal and can be represented by a search tree (generalized quad-tree or oct-tree, [16]), such

that the real-time search complexity is logarithmic with respect to the number of regions. The orthogonal

search tree is a hierarchical data structure where a hypercube can be sub-divided into smaller hybercubes

allowing the local resolution to be adapted, cf. Figure 2. When searching the tree, only n scalar comparisons

are required at each level. Initially the algorithm will consider the whole region X0 = X. The main idea of

the approximate mp-QP algorithm is to compute the solution of the problem (5) at the 2n vertices of the

hypercube X0, by solving up to 2n QPs. Based on these solutions, we compute a feasible local approximation

to the PWL optimal solution z∗(x), restricted to the hypercube X0, using the following result [8]:

Lemma 1. Consider the bounded polyhedron X0 with vertices {v1, v2, ...., vM}. If K0 and g0 solve the QP

min
K0,g0

M∑
i=1

(z∗(vi) − K0vi − g0)T H(z∗(vi) − K0vi − g0) (14)

subject to G(K0vi + g0) ≤ Svi + W, i ∈ {1, 2, ..., M}

then the least squares approximation ẑ0(x) = K0x + g0 is feasible for the mp-QP (5) for all x ∈ X0. �

Since ẑ0 is feasible, V̂ (x) = V̂z(x) + xT Px is itself an upper bound on V ∗(x) such that for all x ∈ X0

0 ≤ V̂ (x) − V ∗(x) ≤ ε1 (15)

If the cost function error ε1 is smaller than some prescribed tolerance ε > 0, no further refinement of the

region X0 is needed. Otherwise, we partition X0 into 2n equal-sized hypercubes, and repeat the procedure

described above for each of these. This procedure can be summarized as follows.



7

Algorithm 1 (approximate mp-QP)

1. Initialize the partition to the whole hypercube, i.e. P = {X}. Mark the hypercube X as unexplored.

2. Select any unexplored hypercube X0 ∈ P. If no such hypercube exists, go to step 7.

3. Solve the QP (5) for x fixed to each of the 2n vertices of the hypercube X0 (some of these QPs may have

been solved in earlier steps).

4. Compute an affine state feedback ẑ0 using Lemma 1, as an approximation to be used in X0.

5. Compute the error bound ε1, using Theorem 3 and (12). If ε1 ≤ ε, mark X0 as explored, and go to step

2.

6. Split the hypercube X0 into hypercubes X1, X2, ..., X2n . Mark them all unexplored, remove X0 from

P, add X1, X2, ..., X2n to P and go to step 2.

7. If necessary, split the hypercubes containing the origin such that u∗(x) = Kx is optimal everywhere in

these hypercubes, where K is the unconstrained LQR gain matrix.

�

This algorithm will terminate with a piecewise continuous and PWL function that is an approximation to

the continuous PWL exact solution.

Theorem 4. Algorithm 1 terminates after a finite number of steps with a feasible approximate solution

ẑ(x) and associated cost V̂ (x) that satisfies 0 ≤ V̂ (x) − V ∗(x) ≤ ε for all x ∈ X.

Proof. The error bound follows from (15) due to step 5 of the algorithm that ensures that the algorithm

will not terminate before the cost error is smaller than the tolerance ε in all hypercubes of the partition. The

algorithm terminates after a finite number of steps because the optimal cost V ∗ is continuous and can be

uniformly approximated to arbitrary accuracy by some V̂ with a sufficiently large finite number of regions,

such that the bound on the error is reduced by some minimum fraction at each step due to the quad-tree

splitting into equal-sized hypercubes. �

An advantage of the present method, compared to [8], is that a posteriori analysis of the approximation

error is not needed. Step 7 is mainly required to ensure that the solution is exact in a neighborhood of the

origin, which proves useful when studying stability properties. It is worthwhile remarking that recognition

of the same solution in neighboring hypercubes that can be combined into a larger hypercube is easily done,

as such hypercubes would be all the leaf-nodes with the same parent node in the tree. We recommend this

is implemented as a post-processing step in order to take into account that only the first m elements of the

mN -dimensional solution z∗(x) are required for the MPC implementation, as in the exact case [1].



8

V. Stability

Under some assumptions on the MPC tuning, the MPC solving (5) will make the origin asymptotically

stable [12]. Based on a similar analysis as [17] we show below that these properties are inherited by the

approximate MPC under some assumptions on the terminal set Ω and tolerance ε. Suppose Xf ⊆ X, which

is a polyhedral set [1]. Let Γ ⊆ Xf be a hypercube where the solution computed by the approximate explicit

MPC is u∗(x) = Kx, i.e. exactly the unconstrained LQR feedback. It is straightforward to show that

Algorithm 1 leads to a non-empty Γ containing the origin in its interior, due to step 7. Let the terminal set

Ω be the maximal output admissible set [18] for the linear system x(t + 1) = (A + BK)x(t) contained in the

polyhedral set

F = {x ∈ Γ | umin ≤ Kx ≤ umax, ymin ≤ Cx ≤ ymax} (16)

Ω is a polyhedron with a finite number of facets and can be easily computed, since A + BK is Hurwitz and

Γ is bounded because X is bounded [18].

Theorem 5. Consider the mp-QP problem (5) with H � 0 defined on a hybercube X such that Xf ⊆ X.

Define Σ = Q + KT RK, assume Σ � 0, and let γ be the largest positive number for which the ellipsoid

E = {x ∈ Xf | xT Σx ≤ γ} is contained in Ω. Moreover, assume the tolerance ε satisfies

0 < ε ≤ γ + xT
0 Σx0

2
(17)

where x0 = arg minx∈X0 xT Σx. Then the approximate explicit MPC computed by Algorithm 1 in closed

loop with the system (1) makes the origin asymptotically stable for all x(0) ∈ Xf , and the state and input

trajectories are feasible.

Proof. Let x(t) ∈ Xf be arbitrary. At time t + 1 consider Ũ = (u∗
t+1

T , u∗
t+2

T , ..., u∗
t+N−1

T , (Kx∗
t+N )T )T ,

where x∗
t+k|t is the state at time t + k associated with U∗. Since U∗ is feasible, x∗

t+N |t ∈ Ω and due to the

way Ω is constructed it follows that x∗
t+N+1|t = (A + BK)x∗

t+N |t ∈ Ω ⊆ Xf . Hence, Ũ is feasible and the

trajectories remain feasible since Ω is a positively invariant set [18]. It follows that Xf is a positively invariant

set. Since V̂ (x) is an upper bound on V ∗(x), standard arguments of dynamic programming, as in [17], show

that along the trajectories of the sub-optimal closed loop dynamics

V ∗(x(t + 1)) − V ∗(x(t)) ≤ V̂ (x(t + 1)) − V ∗(x(t)) (18)

= V̂ (x(t)) − xT (t)Qx(t) − u∗T (t)Ru∗(t) − V ∗(x(t)) (19)



9

For x(t) ∈ Ω it is clear that V̂ (x(t)) = V ∗(x(t)) and

V ∗(x(t + 1)) − V ∗(x(t)) ≤ −xT (t)Σx(t) (20)

For x(t) 
∈ Ω we have xT (t)Σx(t) > γ such that (15) gives

V ∗(x(t + 1)) − V ∗(x(t)) ≤ ε − xT (t)Σx(t) < 0 (21)

Since V ∗ is positive definite with V ∗(0) = 0, and radially unbounded, it is suited as a Lyapunov-function

candidate. From LaSalle’s invariance principle, x(t) → Ω as t → ∞, and the origin is asymptotically stable

with region of attraction equal to the positively invariant set Xf . �

Notice that the tolerance ε that is sufficient for stability can be computed a priori from (17) and the control

specification. It is clear that it makes sense to let ε depend on X0 through x0, since this bound is used in

Algorithm 1 only in the context of a fixed given X0.

VI. Example

TABLE I

Characteristics of approximate and exact explicit MPC solutions for the double integrator

example as a function of the horizon N .

Horizon Exact Approx. Error Error Exact offline Approx. offline

N regions regions ∆uave ∆umax CPU time (s) CPU time (s)

2 13 82 0.018 0.18 0.2 1.5

4 41 118 0.011 0.17 0.6 2.9

6 75 124 0.011 0.17 1.3 4.1

8 111 124 0.010 0.17 2.3 6.5

10 139 136 0.010 0.17 3.4 9.8

12 161 142 0.010 0.16 4.5 12.3

14 181 148 0.010 0.15 5.8 19.0

16 195 158 0.011 0.17 7.1 23.4

18 203 160 0.010 0.16 8.4 27.2

20 205 148 0.011 0.17 9.7 30.8



10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

suboptimal trajectory 

optimal trajectory 

Ω 
E 

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

time (samples)

x(
t)

suboptimal trajectory 

optimal trajectory 

x
1
 

x
2
 

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time (samples)

u(
t)

suboptimal control 

optimal control 

Fig. 3. Partition for double integrator with N = 20 (upper left) and the associated sets E and Ω (upper right). The

solid and dashed curves show an exact and approximate trajectories, respectively (lower left), and the input (lower

right).

Consider the double integrator example introduced above. The tolerance on the approximation error is

chosen according to (17). Algorithm 1 gives the quad-tree partition in Figure 3 with 148 regions for N = 20.

Γ = [−0.7, 0.7] × [−0.4, 0.4], and the sets Ω and E are also shown in Figure 3, as well as a typical trajectory

with the exact and approximate approaches, both starting from the same initial state x(0) = (2, 0)T . We

observe that the discrepancy is fairly small. Table I summarizes the properties of the approximate approach

compared to the exact approach, as a function of the horizon N . ∆uave and ∆umax are the average and

maximum values of the error ||u∗(x)− û(x)||2 in X. We observe that with the exact approach the number of

regions grows more rapidly with the horizon N than with the approximate approach. This is to be expected

since the difficulty of approximation of the exact controller mapping u∗(x) is fairly independent of N . For

most N there are 5 levels in the quad-tree. With two scalar comparisons required at each level, a total of 10



11

TABLE II

Characteristics of approximate explicit solutions for the double integrator example as a function

of the relative tolerance.

Tolerance Regions ∆uave ∆umax

100 % 148 0.0108 0.124

30 % 364 0.0072 0.088

10 % 780 0.0045 0.051

3 % 1722 0.0029 0.039

scalar arithmetic operations are required in the worst case to determine which region the state belongs to,

which is impossible to achieve with the exact approach. The real-time computer memory requirements are

similar for the two cases, while the off-line computation time is typically larger in the approximate algorithm

depending on the required accuracy (the offline CPU times in Table I are with the algorithm in [4] which is

significantly more efficient than [1]). Thus, the main advantage of the approximate approach is that is admits

a highly efficient real-time implementation based on a search tree. Table II illustrates how the approximate

solution depends on the tolerance ε. The tolerance in the leftmost column is relative to the tolerance (17).

VII. Conclusions

An algorithm for off-line computation of approximate explicit solutions to linear constrained MPC problems

is described and analyzed. The algorithm allows a tolerance on the cost function approximation error to be

specified, and guarantees no loss of stability with this tolerance chosen properly. The resulting explicit PWL

state feedback is defined on an orthogonal partition of the state space that allows very efficient real-time

computations through a search tree. Notice, however, that the offline computational complexity and real-

time computer memory requirements typically increase exponentially with the number of states. The present

results allow model predictive control to be implemented without real-time optimization for systems with only

a few states at high sampling frequencies in embedded systems with inexpensive processors and low software

complexity.

References

[1] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic regulator for constrained systems,”

Automatica, vol. 38, pp. 3–20, 2002.



12

[2] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit solution of model predictive control via multipara-

metric quadratic programming,” in Proc. American Control Conference, Chicago, 2000, pp. 872–876.

[3] M. Seron, J. A. De Dona, and G. C. Goodwin, “Global analytical model predictive control with input constraints,” in Proc.

IEEE Conf. Decision and Control, Sydney, 2000, pp. TuA05–2.

[4] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for multi-parametric quadratic programming and explicit MPC

solutions,” in Proc. IEEE Conf. Decision and Control, Orlando, 2001, pp. TuP11–4.

[5] T. A. Johansen, I. Petersen, and O. Slupphaug, “On explicit suboptimal LQR with state and input constraints,” in Proc.

IEEE Conf. Decision and Control, Sydney, 2000, pp. TuM05–6.

[6] T. A. Johansen, I. Petersen, and O. Slupphaug, “Explicit suboptimal linear quadratic regulation with input and state

constraints,” Automatica, vol. 38, 2002.

[7] P. Tøndel and T. A. Johansen, “Complexity reduction in explicit model predictive control,” in Preprints, IFAC World

Congress, Barcelona, 2002.

[8] A. Bemporad and C. Filippi, “Suboptimal explicit MPC via approximate quadratic programming,” in Proc. IEEE Conf.

Decision and Control, Orlando, 2001, pp. FrP08–5.

[9] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear systems and a neural approximation,” Automatica,

vol. 31, pp. 1443–1451, 1995.

[10] T. Parisini and R. Zoppoli, “Neural approximations for multistage optimal control of nonlinear stochastic systems,” IEEE

Trans. on Automatic Control, vol. 41, pp. 889–895, 1996.

[11] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic Programming, Athena Scientific, Belmont, 1998.

[12] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and

optimality,” Automatica, vol. 36, 2000.

[13] D. Chmielewski and V. Manousiouthakis, “On constrained infinite-time linear quadratic optimal control,” Systems and

Control Letters, vol. 29, pp. 121–129, 1996.

[14] A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming, Orlando, Fl: Academic Press, 1983.

[15] R. T. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970.

[16] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry, 2nd edition, Springer-Verlag,

Berlin, 2000.

[17] A. Bemporad and C. Filippi, “Suboptimal explicit RHC via approximate quadratic programming,” Preprint, submitted for

publication, 2001.

[18] E. G. Gilbert and K. T. Tan, “Linear systems with state and control constraints: The theory and application of maximal

output admissible sets,” IEEE Trans. Automatic Control, vol. 36, pp. 1008–1020, 1991.


