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Summary

In this report the ray-gridding approach, a new numerical technique for the stability analysis of linear
switched systems is presented. It is based on uniform partitions of the state-space in terms of ray
directions which allow refinable families of polytopes of adjustable complexity to be examined for
invariance. In this framework the existence of a polyhedral Lyapunov function that is common to a
family of asymptotically stable subsystems can be checked efficiently via simple iterative algorithms.
The technique can be used to prove the stability of switched linear systems, classes of linear time-
varying systems and Linear Differential Inclusions.

We also present preliminary results on two other related problems; namely, the existence of stabilis-
ing switching sequences for a switched system constructed from a family of unstable linear subsystems
and the construction of multiple polyhedral Lyapunov functions.

Keywords : Stability; Switched systems; Polyhedral Lyapunov functions; Absolute stability;
Multiple Lyapunov functions; Stabilising switching sequences.

1 Introduction

Recent years has seen enormous interest in switching systems. While many important issues have
been resolved, many issues related to the stability of such systems remain open. In this context
two very important questions remain unresolved; namely, if a given switching system remains stable
under arbitrary switching sequences, or if this is impossible to identify the switching domains in the
state-space and/or switching frequencies which result in stable behavior.

Lyapunov theory provides a convenient starting point for the study of continuous-time and discrete-
time linear and nonlinear systems. While most of the available results pertain to the existence of
quadratic Lyapunov functions, recently derived converse theorems, suggest that while such a function
always exists for stable switching systems, the associated Lyapunov function may not be quadratic. In
this context interest has grown in the study of non-quadratic, and in particular, piecewise linear (PL)
Lyapunov functions (LF). PL LFs have been considered in a number of papers for establishing the sta-
bility of nonlinear time-varying systems and numerical techniques for the calculation of such functions
have been developed. Although the class of PL LFs appears powerful in theory, the computational
requirements necessary to establish their existence represents a serious bottleneck in practice. The
main reason is that a complex representation (with a large number of parameters) is usually required
for a solution to be found rendering the techniques applicable to low-dimensional problems only.

In this work we develop a new numerical technique for the calculation of polyhedral Lyapunov
functions (PLFs) for switched linear systems. The existence of a polyhedral LF is equivalent to the
existence of a polytope which is invariant under the dynamical flow of a set of LTI systems.

A ray-gridding technique has been developed for the problem of calculating controllable and re-
coverable regions in [50] and is a useful framework for systematic generation of refinable families of
polytopes with adjustable complexity, having their vertices on certain ray directions.

In this work the same framework is applied for the stability analysis problem of linear switched
systems. It is shown that the calculation of invariant polytopes is significantly simplified resulting in
a noteworthy reduction in the computational burden. Although the technique is conceived for linear



switched systems, it can be also applied to nonlinear systems represented in the form of LDIs or in an
absolute stability framework. The suitability of the technique to other related problems in stability
of switched systems is also investigated. In summary, the technique has been applied to the following
problems:

• The calculation of polyhedral Lyapunov functions proving asymptotic or absolute stability of
arbitrary switching sequences for stable linear subsystems,

• Checking the existence of stabilising switching sequences on certain switching domains for un-
stable subsystems,

• Calculation of multiple polyhedral Lyapunov functions specifying families of stabilising switching
sequences for stable subsystems.

This report is organised as follows: After introducing the necessary mathematical results and
preliminaries in section 2, the ray-gridding technique is introduced in section 3 for the first problem
mentioned above and applied to some illustrative examples. In sections 4 and 5 the technique is
extended to the second and third aforementioned problems.

Notation : In this report, R denotes the real numbers and Rn is the vector space of n-dimensional
real vectors. All vectors are assumed to be column vectors. xT denotes the transpose and xi the i-th
component of vector x respectively. If P is a set in Rn, ri{P}, and ∂P denote the relative interior
and the boundary of P respectively. For a set S, |S| denotes the cardinality of S. For a polytope
P , vert{P} denotes the set of vertices of P . conv{V } and cconv{V } denote the convex hull and
conic convex hull of a set of vectors V . The inequality symbols >,≥, <,≤ for vectors are understood
componentwise.

2 Mathematical results and preliminaries

We are interested in switched linear systems of the form

ẋ = A(t)x , A(t) ∈ {A1,A2, . . . ,Ap},Ai ∈ Rn×n , i = 1, 2, . . . , p (1)

where all the individual subsystems Ai are linear continuous-time invariant systems and switching
between them occurs according to a rule. The subsystems ẋ = Aix , i = 1, . . . , p in (1) may be stable
or unstable. It might be the case that system (1) remains stable for any switching strategy, hence
appropriate methods for investigating whether this is true are important. If Lyapunov theory is to be
used, proving asymptotic stability is equivalent to the existence of a common Lyapunov function for
all subsystems. We consider the following problem [30]:

Problem 1. Check the existence of a common Lyapunov function for each individual subsystem of
(1), that guarantees that system (1) is stable or asymptotically stable for any switching signal.

A closely related problem in the literature ivolved developing conditions for the asymptotic stability
of an LDI (linear differential inclusion)

ẋ ∈ F (x) , F (x) ∈ conv{Ax : A ∈ A} , A =

{
p∑

i=1

µi Ai , 0 ≤ µi ≤ 1 ,

p∑

i=1

µi = 1

}
(2)

where the matrices Ai are the vertices of the matrix polytope A. Again, the problem of finding a
Lyapunov function proving stability is equivalent to finding a simultaneous Lyapunov function for all
subsystems ẋ = Aix , i = 1, . . . , p [36],[37]. A necessary condition for the asymptotic stability of
(1) or (2) is that all individual subsystems are asymptotically stable. From now on, when focusing to
Problem 1 we will assume that all linear systems ẋ = Aix , i = 1, . . . , p are asymptotically stable,
i.e. that all matrices Ai are Hurwitz.

A related problem is concerned with stability analysis for systems which do not have a common
Lyapunov function; namely, systems for which a destabilising switching sequence exists. In this case,
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Figure 1: A centrally symmetric polytope.

a stability analysis requires finding the family of switching sequences that result in a stable switching
systems. Such sequences can be specified using the multiple Lyapunov function idea [15],[16], [6],[29]
and is discussed in Section 5.

2.1 Polyhedral Lyapunov functions and invariance

For a solution to Problem 1, we restrict our attention to the class of polyhedral Lyapunov functions
(PLFs), a special class of piecewise linear (PL) Lyapunov functions. PLFs are set-induced PL functions

VP (x) = max
1≤i≤s

{fT
i · x} (3)

induced by a polyhedral set of the form

P = {x ∈ Rn : fT
i · x ≤ 1 , i = 1, . . . , s} (4)

which is compact and contains the origin in its interior. Such functions can be shown to be proper and
locally Lipschitz (see [39]) and decompose the state-space into a number of convex cones Ci = {x ∈
Rn : V (x) = fT

i · x} with disjoint relative interiors ri{Ci} ∩ ri{Cj} = ∅ , i 6= j. Note that now P can
be expressed as P = {x ∈ Rn : VP (x) ≤ 1}. The linear functions fT

i · x are called the generators of
the PL function VP (x).

If the polyhedron P is bounded and centrally symmetric, then it is a polytope and VP can be
expressed as

VP (x) = ‖F · x‖∞ = max
1≤i≤m

{|fT
i · x|} , F ∈ Rm×n, m ≥ n (5)

where ‖·‖∞ the infinity vector norm in Rn. Figure 1 shows a centrally symmetric polytope and the
cones corresponding to its faces.

The positive invariance principle and the use of positively invariant sets is vital in the construction
of set-induced PLFs. A complete survey of their properties and usage for a series of problems in control
theory can be found in [8]. We have the following definitions: We have the following definitions:

Definition 1. A polyhedral set P is called positively invariant (P.I.) with respect to the trajectories
of a dynamical system if for all x(0) ∈ P the solution x(t) ∈ P for t > 0.

Definition 2. A polyhedral set P is called ε-contractive (with a level of contractivity ε) with respect
to the trajectories of a dynamical system if for all x(0) ∈ P the solution x(t) ∈ P for t > 0 and,
additionally ∃ ε > 0 s.t.

D+ VP (x) ≤ − ε VP (x) , ∀x ∈ ∂P , D+VP (x) = lim
∆→0+

V (x(t + ∆))− V (x(t))
∆

(6)

where VP (x) the set-induced function (3) of P and D+ VP (x) the upper right Dini derivative of
function V (x) which replaces the classical derivative, since VP (x) is continuous but not continuously
differentiable [36].
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A positively invariant set guarantees stability and not asymptotic stability, i.e. periodic motions
are also allowed, whereas ε-contractivity implies not only asymptotic stability but also exponential
stability with decay rate ε.

Invariance (contractivity) for a polytope P implies stability (asymptotic stability) which can be
shown with its set-induced PLF (3). The invariance conditions for P become existence conditions for
(3).

For a single linear system
ẋ = Ax , x ∈ Rn,A ∈ Rn×n (7)

and a polytope P which is compact, closed and containing the origin in its interior, the invariance
conditions can be formulated via its set-induced PLF (3) as follows [12],[13]:

Lemma 1. For the function (3) to be a Lyapunov function for system (7) (and the polytope P to be
invariant under the dynamics of A) it is necessary and sufficient that

fT
i · ẋ ≤ 0 , ∀x ∈ ∂P , i ∈ J(x) , J(x) = {i ∈ {1, . . . , m} : fT

i · x = VP (x)} (8)

where J(x) is a set of indexes corresponding to active constraints.

It is easy to prove (see also Figure 1) that, for linear systems, the above invariance conditions can
be also formulated in terms of the vertices of P , and then the active set of constraints is determined
by the faces which intersect on the vertex in question. Thus, we have the following corollary (without
proof):

Corollary 1. For the function (3) to be a Lyapunov function for system (7) (and the polytope P to
be invariant under the dynamics of A) it is necessary and sufficient that

fT
i · v̇ ≤ 0 , ∀v ∈ vert{P} , i ∈ J(v) , J(v) = {i ∈ {1, . . . ,m} : fT

i · v = 1} (9)

A nice property of PL LFs is that invariance conditions on vertices are also necessary and sufficient
for systems (1),(2).

Corollary 2. For the function (3) to be a Lyapunov function for system (1) (and the polytope P to be
invariant under the dynamics of (1)) it is necessary and sufficient that (8) is satisfied on the vertices
of P for all linear subsystems involved.

Molchanov and Pyatnitskii [36],[37] have proposed another equivalent compact formulation [44]:

Lemma 2. The function (3) induced by P is a Lyapunov function for system (2) (absolute stability)
iff there exist p matrices M1,M2, . . . , Mp , Mi ∈ RN×N , each being strictly diagonal column dominant
(mii +

∑p
j=1,j 6=i|mji| < 0) and satisfying

Ai · S = S ·Mi (10)

where S = [v1, . . . ,vN ] ∈ Rn×N is a matrix containing the vertices vi ∈ vert{P} , i = 1, . . . , N of P .

It is straightforward to see that invariance conditions (9),(10) can be stated as a linear programming
problem. This is the route taken in [23], [27] for PL uncertain systems and in [42],[44] for LDIs. As
remarked later, the efficiency of direct implementation of (8),(9) using linear programs is severely
limited by high computational complexity.

In a number of theoretical works, several authors [34],[35],[36], [1],[2],[3],[4],[37],[45] have considered
the problem of absolute stability of an LDI and proved that the class of PLFs is universal, i.e. absolute
stability of an LDI and existence of a common PLF function are equivalent. The existence of a PLF
has also been found necessary and sufficient for the robust control of linear uncertain systems [7], and
such functions have also been used for estimating transient responses [9] and generating smooth classes
of universal LFs [10]. More recently the authors in [21] have studied the problem of the existence of
a Lyapunov function for exponentially stable switching systems, and proved that a non-quadratic
common Lyapunov function always exists. Finally, the problem of robust absolute stability of an LDI
is reduced in [31] to the existence of a polyhedral vector norm type Lyapunov function.
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Following the justification of the power of PLFs, a number of attempts have also been made
to develop numerical techniques for the construction of such Lyapunov functions. Brayton and Tong
[17], [18] designed an algorithm for difference inclusions which calculates a series of balanced polytopes
converging to the level set of a common PLF after a finite number of steps. Via discretization the
same technique can be applied to differential inclusions. Although there are convergence proofs,
the technique suffers from high computational complexity due to the use of computationally expensive
convex hull computations. Barabanov [5] proposed another technique for checking asymptotic stability
of a linear differential inclusion. An algorithm is constructed which calculates in a finite number of
steps the Lyapunov exponent and a common PLF. This idea has been developed initially for difference
inclusions and requires a sufficiently dense discretisation and progressive refinements. Again convex
hull computations increase the computational load significantly, rendering the techniques applicable
to planar systems, as evidenced by the examples in [17], [18], [33],[5].

Ohta et al. in [39],[40] propose a numerical procedure to construct non-balanced polytopes that
satisfy some invariance properties for a piecewise linear differential inclusion. The algorithm requires
again the use of convex hull computations and the solution of many linear programming problems.
Although the procedure is applicable to three-dimensional systems and can also cover the case of some
subsystems being unstable in local regions, there is unfortunately no guarantee of convergence and
the choice of the initial conditions is crucial.

Romanchuk [46] proposed an algorithm that approximates the region of attraction of a PL system
with a convex polytope, hence calculating a PLF. This algorithm is cumbersome and has been shown
to work in planar systems only. For higher-dimensional systems the initial choice is crucial and the
class of polytopes considered (simple polytopes) is restrictive in the search for solutions.

Blanchini [7] uses the Fourier-Motzkin elimination technique for calculating controlled invariant
polytopes, i.e. polytopes which can be made P.I. with admissible controls and applies them to the
problem of robust controller synthesis under state and control constraints for linear uncertain systems.
Yfoulis [50] developed another algorithm, the ray-gridding technique for the same problem for linear
and PL uncertain systems. Both techniques can be applied to three-dimensional systems.

Johansson [23], [25],[24] has developed a useful framework for a unifying treatment of piecewise
quadratic (PQ) and piecewise linear LFs for the more general class of piecewise linear systems on
uniform partitions of the state space. Solutions can be found using convex optimization (Linear
Matrix Inequalities for PQ LFs and linear programming for PL LFs). The computation of PL LFs
requires solving large linear programs and is expected to be computationally involved for systems with
state dimension n ≥ 3.

In a similar fashion Julian et. al. [27] proposes the use of a high level canonical piecewise linear
representation of nonlinear systems, interpolated on a systematic simplicial partition of the state-
space, which uses the minimum and exact number of parameters required. A parametrization of all
polyhedral Lyapunov candidates on the selected partition results in linear programming problems,
with a large number of constraints and variables, exponentially increasing with the state dimension
and the density of the grid. It is debatable whether the technique can be applied comfortably in
dimension n = 3.

Finally, Polanski in [42] uses the algebraic stability conditions stated for a PLF of the infinity
norm type in [34],[35],[36],[37] and a scaling idea to formulate the search for PLFs as a linear program.
Similar numerical difficulties with high complexity arise and the technique is applicable to planar
systems. In [44] an improved formulation using polytope vertices and scaling makes the technique
applicable to three-dimensional problems, although there are limitations in the number of vertices that
can be dealt with, as remarked later in this report. Thus there are cases, even in three dimensions,
in which instability cannot be inferred even when a solution cannot be found. A method to overcome
this shortcoming and detect instability is found in [43], although implementation to dimension n ≥ 3
faces the same numerical difficulties.

In summary, from the previous discussion it is apparent that although powerful in theory, PLFs
suffer from high computational complexity in practice, when numerical techniques are applied for
their computation. Computationally demanding convex hull computations and/or large-scale linear
programs are highly responsible for exponential increase in computational time and computer memory
requirements, restricting their applicability to low-dimensional systems.
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In this report the ray-gridding technique introduced in [49],[50] is applied successfully to Problem
1. It is shown that a simple and very efficient iterative procedure, with guaranteed convergence,
can offer significant savings compared to all other techniques previously mentioned, which we believe
allows consideration of medium-sized problems in state dimensions n ≥ 4, reported for the first time
in the literature. Although this is a subject of future research, it is also shown that it sets up a
framework that can be extended to relevant problems in the analysis and design of linear switching
systems, such as finding stabilising switching sequences. The ray-gridding technique is introduced in
the next section.

3 Main results

Efficient construction of PLFs for solving Problem 1 is based on flexible search for invariant polytopes
for all linear subsystems involved. For this purpose, uniform partitions of the state space which can
be easily refined to an adjustable degree of complexity in the search for a solution are vital. For PL
systems [23] the partition is usually imposed by the PL system description. For nonlinear systems
approximated as PL or linear uncertain a typical choice is a uniform gridding of the state space and
use of more general PL functions than polyhedral [27].

As opposed to standard gridding, ray-gridding of the state-space has been proposed in [50] in an
attempt to build up a framework where families of polytopes of adjustable complexity and flexible
representation could be used as invariant polytope candidates. These families of polytopes generated
by ray-gridding and the corresponding set-induced polyhedral functions are suitable for linear switched
systems. The ray-gridding technique operates in terms of rays.

3.1 Definitions

We begin with the following definitions:

Definition 3. A ray partition in Rn is a set R = {ri , i = 1, 2, . . . , N} of rays, where ri = {x ∈
Rn : x = λi · ei , λi ≥ 0 , ei ∈ Rn, ei 6= 0}. The vectors ei which specify the rays are termed ray
vectors and then any point on the ray ri is uniquely determined by the non-negative scalar λi, referred
to herein as its scaling factor. The number N of the rays in {ri} is the order of the ray partition. The
scaling vector λ = [λ1, . . . , λN ]T is the collection of all scaling factors.

Definition 4. The following special subclasses of ray partitions in Rn are also defined. A ray-partition
is

• proper when all its rays ri are disjoint, or r1 ∩ r2 ∩ . . .∩ rN = {0}, i.e. they only intersect at the
origin. Otherwise it is called improper.

• unit if and only if all its ray vectors are unit vectors, i.e. their magnitude is equal to 1.

• constrained when all its scaling factors are bounded, i.e. there exist upper limits λi such that
0 ≤ λi ≤ λi.

• A constrained ray partition is called normalized if and only if all its scaling factors are bounded
by 1, i.e. λi = 1 ∀i.

• A ray partition is termed symmetric if and only if for every ray ri there exists another ray rj

such that ∀x ∈ ri , − x ∈ rj .

Definition 5. A ray-polytope is a polytope R with non-empty interior (i.e. λi > 0 ∀i ) that is
compatible with a proper ray partition R = {ri}, i.e. each vertex vj ∈ vert{R}, j = 1, . . . , Nv

belongs to one and only one of the rays in R, i.e. N = Nv and ∀i = 1, . . . N ∃j = 1, . . . , Nv s.t.
vj = λi ei.

Remark 1. It is easy to see that any constrained ray-partition can be made normalized by replacing
the ray vectors ei with new vectors êi = ei/λi.
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Remark 2. In the presence of state bounds x ∈ X , a ray partition becomes constrained, and it can
be normalised by using as new ray vectors êi the intersection of the rays and the boundary of X , i.e.
êi = ri ∩ ∂X .

Let us consider an n-dimensional convex polytope P ∈ Rn. Then there always exists a ray-
polytope R with a corresponding appropriately selected ray-partition and scaling factors λi , i =
1, . . . , N , such that P and R coincide. Moreover, the ray partition {ri} specifies a whole family of
polytopes R(λ) = conv{xi = λiei , i = 1, . . . , N} with vertices on the rays and variable scaling
factors λ = [λ1, . . . , λN ]T . For different selections for the scaling vector λ new scaled versions of
R(λ) , λ = [λ1, . . . , λN ]T are produced. For sufficiently large N and uniform coverage of the whole
state-space any shape can be approximated with arbitrary accuracy. With candidates from the class of
the ray-polytopes R(λ) , 0 < λ ≤ λ the search for invariant polytopes can be done very efficiently due
to simplicity in the invariance conditions. For linear switched systems, centrally symmetric polytopes
P, 0 ∈ ri{P} is a suitable choice, since ∀x : x ∈ vert{P} , − x ∈ vert{P}, hence the invariance
conditions in (8) need to be checked for half of the vertices only. For simplicity in the presentation of
the ideas and the main issues, we deal initially with planar systems.

3.2 Planar case

Before proceeding further let us recall some basic results from the literature on infinity norm LFs. The
existence of a Lyapunov function of the form (3) for a linear system ẋ = A ·x , x ∈ Rn is equivalent to
the conditions of Lemma 2 and it has been proved [28],[41] that there always exists a PLF (3) that can
be constructed using the transformation matrix that transforms the system into block diagonal form.
For systems with eigenvalues inside the 45o-region (|re(µi)| ≤ |im(µi)|) a minimal number of m = n
generators is required (i.e. F ∈ Rn×n in (3)), whereas outside the 45o-region a number of generators
proportional to the ratio |re(µi)|

|im(µi)| ≤ 1 is required (re(µi) and im(µi) are the real and imaginary part of
an eigenvalue µi, respectively). The maximal number of generators required for a PLF (3), as well as
upper estimates on their number are given in [12],[13]. In other words, for a single linear system, the
previously mentioned results determine the number and position of suitable ray directions that can
form a ray partition for which existence of a PLF is guaranteed.

For linear switched systems similar results do not yet exist. Recently, for switching between two
stable linear systems in R2 some results by Wulff et. al. in [47] suggest those particular ray directions
for which the existence of a PLF with a minimal number of m = n generators (called unic LF in [47])
is guaranteed. These are the directions of common flow, i.e. rays on which the flow of both systems
is collinear.

Lemma 3. [47] Given two stable matrices A1,A2 in R2×2 each having real eigenvalues, the constituent
systems of the switched system (1) have a common unic Lyapunov function (along the directions of
common flow) if the matrix pencil αA1 + (1− α)A2 has complex eigenvalues for some α ∈ [0, 1] and
if its eigenvalues lie in the interior of the 45o-region for all α ∈ [0, 1].

However, the extension of the previous results to general switched systems in Rn with eigenvalues
that may lie outside the 45o-region is a challenging but also very difficult problem. Until this prob-
lem is theoretically deeply understood and properly investigated for analytic solutions, efficient and
systematic numerical techniques for solving Problem 1 are essential.

Intuition suggests that in state-space regions in which there is oscillatory motion, a large number
of linear segments may be required for forming an invariant set –the ratio of imaginary to real part
being a relevant measure– , while in other regions few segments may be sufficient. Points of common
flow can be a good initial guess only. Ways for exploring the whole state space with sufficiently dense
local and global ray populations are essential, since apart from special cases mentioned above, there
is no way to know which subsets of the state-space require complex descriptions. Let us consider
symmetric and unit ray partitions in R2

R = { ri , i = 1, 2, . . . , N , N = 2 · q , q ≥ 2} (11)

which specify families of closed and bounded ray-polytopes R(λ) , 0 < λ ≤ 1 , λ ∈ Rq×1 containing
the origin in their interior and being centrally symmetric w.r.t. the origin.
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In the planar case, uniform ray partitions can be simply constructed in a number of ways. E.g.
the family of regular polygons (N-gons) [51]

P (N) := conv

{
(cos(

2πk

N
), sin(

2πk

N
)) , 0 ≤ k ≤ N

}
(12)

can cover uniformly the phase plane (and approximate the circumscribed unit circle) to any prescribed
degree of accuracy, for sufficiently large N . Moreover, regular polygons induce ray partitions where the
angles between consecutive rays are equal and there is a regular simplicial decomposition in equilateral
equal triangles (Figure 2). These features make the families of regular polygons P (N) good candidates
in the search for invariant polytopes.
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Figure 2: A regular polygon with 7 sides and its circumscribed unit circle.

3.2.1 Linear planar systems

For a solution to Problem 1 for a single linear system ẋ = A · x in R2 let us consider a regular
polygon P (N) and the ordered ray-partition R induced by it, where ek =

[
cos(2πk

N ), sin(2πk
N )

]T
. R

specifies a family of ray-polytopes RN (λ) , 0 < λ ≤ 1 , λ ∈ RN×1, which are scaled versions of
RN (1) = P (N). If a solution cannot be found with a polytope from RN (λ) progressive refinements
with larger values for n which offer added flexibility can be considered. For the family RN (λ) we have
the following:

Proposition 1. A necessary and sufficient condition for the existence of an invariant ray-polytope
RN (λ) under the dynamical flow of ẋ = A · x in R2 is the existence of positive scaling factors
λk > 0, k = 1, . . . , N s.t. the following set of conditions is satisfied

λk ≤ ∆q(k)
k · λq(k) , k = 1, . . . , N (13)

where

∆q(k)
k =

det[A · ek, eq(k)]
det[A · ek,ek]

(14)

and q(k) determines the ray rq(k) which together with the current ray rk specify the conic sector
S(k, q(k)) = cconv{ek,eq(k)} which contains the velocity vector at ek (for all points on ray rk).

Proof: The proof is based on Lemma 1 and Corollary 1 and is given in the Appendix.

Remark 3. Note that only one condition of the form (13), parameterized by the two scaling factors
λk , λq(k) is imposed at each vertex of the ray-polytope Rn(λ), although the active constraints in
Lemma 1 are two. The derivative for points on the current ray rk belongs to the single active sector
S(k, q(k)), and the condition of this single sector is solely considered. If a ray direction coincides with
an eigenvector line (such a ray is called trivial), there is no condition to be checked for invariance,
since the velocity vector points inwards along the ray direction.

For planar systems, only few possibilities for the direction of the dynamical flow exist. For systems
with complex eigenvalues the flow is either clockwise or counterclockwise in the whole phase plane,
whereas for systems with real eigenvalues the flow changes direction across the eigenvector lines. Note
that on the eigenvector lines the flow remains on them since the derivative points inwards along them.
The notion of the dependency graph of a ray-partition is next introduced:
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Definition 6. The dependency graph GR of a ray-partition R for a single linear system ẋ = A · x in
R2 is a planar directed graph (digraph) GR = (V, E) of order (number of vertices) nv with nv labeled
nodes vi ∈ V, |V | = nv and size (number of edges) ne with arcs (edges) ej ∈ E directed from k to q(k).
The vertices (nodes) of the graph are labeled after the rays k and q(k) as defined in Proposition 1.
Hence, the dependency graph depicts the dependency of ray k to ray q(k), as expressed algebraically
in (13). Each arc ej , j = 1, . . . , ne carries a weight wj = ∆q(k)

k .

Definition 7. If v and w are vertices of a directed graph (digraph), a directed walk from v to w is
a finite sequence v = v0, e1, v1, e2, v2, e3, . . . , en, vn = w, of vertices and arcs of the digraph such that
each arc in the sequence is an arc from vi−1 to vi. If the arcs are distinct and no vertices repeat the
same sequence is called a directed path v to w. A closed walk in a graph is a walk between a vertex
and itself. A closed walk in which no edges repeat is a circuit. A cycle C is a circuit with no repeated
vertices.

Definition 8. If v is a vertex of a dependency graph, the cycle C = {v = v0, e1, v1, e2, v2, e3, . . . , en, vn =
v} between v and itself is called feasible iff

N∏

i=1

wi ≥ 1 (15)

where wi are the weights of the edges ei , i = 1, . . . , N

Proposition 2. The dependency graph of a ray-partition of a linear system ẋ = A ·x in R2 contains
at most two cycles, no loops, no isolated vertices for non-trivial rays and all vertices are of degree
k , k = 0, 1, 2. If the system has complex eigenvalues the graph is 2-regular.

Proof: See the Appendix.

We have the following results for linear planar systems :

Corollary 3. A necessary and sufficient condition for the existence of an invariant ray-polytope RN (λ)
with complex eigenvalues under the dynamical flow of ẋ = A · x in R2 is

N∏

k=1

∆q(k)
k ≥ 1 (16)

Then there exist positive scaling factors λk > 0, k = 1, . . . , N s.t. (13) is satisfied.

Proof: See the Appendix.

Corollary 4. A necessary and sufficient condition for the existence of an invariant ray-polytope RN (λ)
with real eigenvalues under the dynamical flow of ẋ = A · x in R2 is

∆k2
k1

∆k1
k2
≥ 1 (17)

for the indices 0 ≤ k1, k2 ≤ N which specify the cycles in the dependency graph of the ray partition. If
no cycle exists, then no conditions are imposed for the existence of positive scaling factors λk > 0, k =
1, . . . , N s.t. (13) is satisfied.

Proof: See the Appendix.

It is obvious from the previous results for a single linear system that the existence of a PLF from a
family of ray-polytopes RN (λ) is reduced to checking simple conditions of the form (16) or (17). If these
easily verifiable conditions are not satisfied, a larger family of ray-polytopes RN̂ (λ) ⊃ RN (λ) , N̂ > N
can be considered until a solution is found.

Note that satisfaction of (16) or (17) guarantees the existence of λ∗ > 0 s.t. RN (λ∗) is invari-
ant. This value can be easily calculated from conditions (13) with the help of the following iterative
algorithm :
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Algorithm 1. The algorithm consists of the following steps :
Step 1 : Consider a unit normalized ray-partition R induced by a regular polygon P (N) and the

corresponding family of ray-polytopes RN (λ) , 0 < λ ≤ 1 , λ ∈ RN×1, which are scaled versions
of RN (1) = P (N) , 1 = [1, 1, . . . , 1]T ∈ RN×1. Start from the initial polytope RN (1) in which the
scaling factors λi = 1 of all rays have their maximum value.

Step 2 : Consider all rays one after another in their ordered sequence and update their scaling
factors. When ray rk , k = 1, . . . , N is visited, its corresponding condition (13) is checked and its
scaling factor is left unchanged if (13) is satisfied or is reduced to a new value λ̂k with λ̂k = ∆q(k)

k · λ̂q(k)

if not.
Step 3 : The algorithm concludes when all scaling factors have converged to a constant value.

Therefore, the stopping criteria is a check of convergence.
After visiting all rays in Step 2, the values of some scaling factors may have been reduced, thus (13)

is not necessarily satisfied for all rays. The algorithm checks whether all conditions (13) are satisfied
for the new updated values λ̂k. If they are satisfied, the algorithm stops and a solution is found. If
not, the algorithm continues in a number of iterations, i.e. it returns to Step 2 and updates all scaling
factors again until they have converged.

Step 4 : Since there is a lower limit (=0) for the scaling factors, when the algorithm stops the
scaling factors have converged either to fixed positive values or to zero. In the first case a solution is
found, while in the second it is proved that no invariant set from the family RN (λ) exists .

Proposition 3. Algorithm 1 converges to an optimal solution RN (λ∗) iff an invariant polytope from
family RN (λ) , 0 < λ ≤ 1 , λ ∈ RN×1 exists.

Proof. Necessity : Suppose there exists an invariant polytope from the family RN (λ) , 0 < λ ≤
1 , λ ∈ RN×1 for some λ∗ > 0. Algorithm 1 starts from the upper bound λ = λ = 1 and progressively
reduces some of the scaling factors when this is found necessary in order to satisfy conditions (13).
Since these are not only sufficient but also necessary for invariance, the steps followed by Algorithm 1
are also necessary for a solution. Algorithm 1 is a means for “scanning” the interior of the unit circle
with scaled versions of ray-polytopes exhaustively, and therefore, it cannot miss to find RN (λ∗) or a
polytope arbitrarily close to RN (λ∗).

Sufficiency : When Algorithm 1 finds a solution this obviously proves the existence of an invariant
ray-polytope. The solution is also optimal in size, since a ray-polytope with maximal scaling factors
for all rays is obviously found. This is true because the algorithm starts from the upper bound
and reduces the scaling factors when this is necessary. Note that restriction of the polytope families
considered in the interior of the unit circle (which is selected as our working domain) does not restrict
the applicability of the technique. For linear systems, if an invariant polytope not included in the unit
circle exists, there always exists a scaled version of it in our working domain.

The following Theorem summarizes the previous results for stable linear systems in R2:

Theorem 1. A necessary and sufficient condition for the existence of a PLF for a single linear
system ẋ = A · x in R2 is the existence of a sufficiently large n s.t. conditions (13) are satisfied, or
equivalently that Algorithm 1 converges to a positive solution λ∗ > 0.

Proof. The existence of a PLF from the family RN (λ) , 0 < λ ≤ 1 , λ ∈ RN×1 for a single stable
linear system ẋ = A ·x in R2 is guaranteed for sufficiently large n, since any invariant set shape can be
approximated with arbitrary accuracy with a regular polygon. Algorithm 1 is operating on the basis
of the necessary and sufficient conditions (13) therefore it can locate the invariant ray-polytope.

Remark 4. Algorithm 1, as described above, operates on the equality in conditions (13) and there-
fore checks stability (and not asymptotic stability), i.e. it specifies invariant (Definition 1) and not
contractive (Definitions 2,3) polytopes. However, Algorithm 1 can be easily modified to search for
contractive polytopes if conditions (13) are modified accordingly to reflect (6) for some contractivity
factor ε > 0. All basic results can be also extended to this case.

11



Remark 5. The basic advantage of Algorithm 1 is that, although it implements an exhaustive “scan-
ning”, the simplicity of the conditions (13) checked guarantees efficiency and low computational com-
plexity, even when large families of rays are considered or a large number of iterations are required
for a solution to be found. Fortunately, the same idea can be extended to linear switched systems of
any dimension.

The previous results are illustrated with two simple examples :

Example 1. [real eigenvalues] The following LTI systems have real eigenvalues, σ(A1) = {−2,−3}
and σ(A2) = {−1.17,−0.53}, where σ(A) the spectrum of matrix A.

A1 =
[ −2 0

0 −3

]
, A2 =

[ −1.8 1.0
−0.8 0.1

]
(18)

For system A1 and the 4 trivial rays (eigenvector lines) in Figure 3 no conditions are imposed and
an invariant polytope is found for maximal scaling factors. This is the case where a minimal number
of generators m = 2 is sufficient for a PLF.

A solution with 8 non-trivial and uniformly distributed rays for system A2 in (18) is shown in
Figure 4.

Example 2. [complex eigenvalues] The following LTI system has complex eigenvalues, σ(A) =

{−0.5 ± j ·
√

4k+7
4 }.

A =
[

0 1
−(2 + k) −1

]
(19)

For k = 0 a solution with 16 uniformly distributed rays is shown in Figure 5. Condition (16) is
satisfied with

∏N
k=1 ∆q(k)

k = 1.57 ≥ 1.
For k = 2 a solution with 32 uniformly distributed rays is shown in Figure 6. Condition (16) is

satisfied with
∏N

k=1 ∆q(k)
k = 1.50 ≥ 1. An increase in the number of rays is naturally expected for larger

values of k, since they specify a smaller ratio |re(µi)|
|im(µi)| ≤ 1 of real to imaginary part of the eigenvalues

µi. The solutions shown are no optimal in terms of number or position of rays. Upper estimates on
the number of rays required are given in [12],[13]. For single linear systems, optimal solutions can be
easily specified analytically [41]. Unfortunately, these results do not extend to switched linear systems,
hence numerical techniques with uniform distributions cannot be avoided.
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Figure 3: An invariant polytope with 4 trivial rays
corresponding to system A1 in (18).
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Figure 4: An invariant polytope with 8 non trivial
rays corresponding to system A2 in (18).
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Figure 5: An invariant polytope with 16 rays cor-
responding to system A in (19) with k = 0.
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Figure 6: An invariant polytope with 32 rays cor-
responding to system A in (19) with k = 2.

3.2.2 Linear planar switched systems

The ray-gridding technique outlined in the previous section for linear systems has a number of attrac-
tive features: it reduces Problem 1 to easily verifiable conditions. These conditions can be checked for
refinable families of ray-polytopes and if satisfied for a sufficiently large family, the scaling vector is
easily calculated using Algorithm 1, which is extremely efficient in R2 since it is based on very simple
calculations.

However, although the existence of an invariant polytope is theoretically guaranteed, a very im-
portant practical consideration is the computational complexity required for its calculation. For linear
systems, there is fortunately an upper bound for n as remarked in [12],[13], which assures that the
computational burden is limited. This fact has been observed in Example 2.

The main results obtained for linear systems using the ray-gridding idea can be extended to linear
switched systems. However, an upper bound on the computational complexity is not yet available,
and it is shown later in this section with an example that the complexity can grow arbitrarily under
certain circumstances.

Proposition 1 can be easily extended to switched systems (1) or LDIs (2) in R2, where conditions
of the form (13) have to be simultaneously satisfied for all linear subsystems involved.

Proposition 4. A necessary and sufficient condition for the existence of an invariant ray-polytope
RN (λ) under the dynamical flow of system (1) in R2 is the existence of positive scaling factors λk >
0, k = 1, . . . , N s.t. the following set of conditions is satisfied

λk ≤ ∆qi(k)
k · λqi(k) , k = 1, . . . , N , i = 1, . . . , p (20)

where

∆qi(k)
k =

det[Ai · ek, eqi(k)]
det[Ai · ek, ek]

(21)

and qi(k) determines the ray rqi(k) which together with the current ray rk specify the conic sector
S(k, qi(k)) = cconv{ek, eqi(k)} which contains the velocity vector at ek (for all points on ray rk) for
the linear subsystem ẋ = Ai · x of (1).

The dependency graph GR for a linear switched system is defined similarly as in Definition 6 and
has in principle different characteristics. It is basically the superposition of the individual dependency
graphs G(i)

R for all subsystems involved in (1) and it can be much more complex. It may contain many
cycles and end-vertices and have vertices with degrees as high as 2 · p. However, feasibility can be still
inferred by the cycles present in the graph. We have the following results :

Proposition 5. The existence of an invariant polytope from the family RN (λ) for a linear switched
system (1) in R2 is equivalent to the feasibility of all cycles present in its dependency graph.

Proof: This is an obvious result. Provided that a sensible ray-partition has been selected, i.e.
one for which all weights ∆qi(k)

k > 0 are positive, there always exist values λi > 0 for all nodes of the
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graph satisfying (20) if all cycles are feasible. To see this, assume all cycles are feasible. Then (15)
is satisfied for all weights involved and therefore fixed values λi > 0 for the corresponding rays can
be specified. Then all other rays can be assigned their values λi > 0 from the weights of the graph.
Conversely, the feasibility of all cycles is also necessary. An infeasible cycle corresponds to infeasibility
of the conditions involving its rays and hence the absence of an invariant polytope induced by the
ray-partition chosen.

When all subsystems involved have complex eigenvalues of the same direction, the conditions are
significantly simplified :

Corollary 5. If all subsystems for a linear switched system (1) in R2 have complex eigenvalues and
are of the same direction, the existence of an invariant polytope from the family RN (λ) is equivalent
to the conditions

N∏

k=1

min
i
{∆qi(k)

k } ≥ 1 , k = 1, . . . , N , i = 1, . . . , p (22)

Proof: Obvious, since satisfaction of (16) for a number of subsystems is possible if and only if
(22) is satisfied.

Similarly to the linear case, the scaling vector can be calculated using the following algorithm :

Algorithm 2. This algorithm differs from Algorithm 1 only in Step 2, where a number of conditions
for all linear subsystems involved are checked. The algorithm starts again from the initial polytope
RN (1) = P (N) in which the scaling factors λi = 1 of all rays have their maximum value and visits
progressively all rays in their ordered sequence in a number of iterations. When a ray is visited,
all corresponding conditions (20) of all subsystems are checked and its scaling factor is reduced,
if necessary, in order to satisfy all simultaneous invariance conditions. After visiting all rays, the
algorithm continues in the same fashion until all scaling factors have converged to fixed positive values
or reached zero. In the first case a solution is found, while in the second it is proved that no invariant
set from the family RN (λ) exists.

The following result is also a straightforward extension of Proposition 3 :

Proposition 6. Algorithm 2 converges to an optimal solution RN (λ∗) iff an invariant polytope from
family RN (λ) , 0 < λ ≤ 1 , λ ∈ RN×1 exists.

Theorem 1 is next extended to linear switched systems :

Theorem 2. A necessary and sufficient condition for the existence of a PLF for the linear switched
system (1) in R2 is the existence of a sufficiently large N s.t. conditions (20) are satisfied, or equiva-
lently that Algorithm 2 converges to a positive solution λ∗ > 0.

An illustrative example is next given :

Example 3. We consider an example from [32] in which the absolute stability problem for planar
systems is studied and the “most destabilizing” nonlinearity which corresponds to a closed trajectory
(periodic motion) is characterized. We have the system

ẋ1 = x2 , ẋ2 = −2x1 − x2 − φ(t, x1) (23)

where φ(t, x1) is a scalar time-varying function in the sector [0, k], that is, φ(t, 0) = 0 and 0 ≤ zφ(t, z) ≤
kz2 for all t ≥ 0. This system can be restated in switched linear form [32] as

ẋ ∈ conv{A,Bk} , A =
(

0 1
−2 −1

)
, Bk =

(
0 1

−(2 + k) −1

)
(24)

Problems 2 and 3 defined below are considered in [32] :

Problem 2. Find the value k∗ = inf{k ≥ 0 : ∃φ∗ for which system (23) is not asymptotically stable}
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Problem 2 is equivalent to Problem 3 :

Problem 3. Find the value k∗ = inf{k ≥ 0 : ∃φ∗ for which the switched system (24) is not asymp-
totically stable}

Using the notion of generalised first integrals and a numerical solution to the resulting equation
the authors in [32] obtain the value k∗ = 6.98513. Thus, a necessary and sufficient condition for
asymptotic stability is is k < k∗ = 6.98513.

We have considered a different problem, Problem 1, which can check stability of the linear switched
system (24) provided k is given. The solution to Problem 3 can be approximated by an iterative
application of Problem 1 using e.g. bisection. Both systems A and Bk are of the same direction of
flow and possess complex eigenvalues, hence for each candidate value k Theorem 2 and the simple
conditions in Corollary 5 can be applied and progressively larger values for n can be used until a
solution is found. The value of the product Π =

∏N
k=1 mini{∆qi(k)

k } ≥ 1 , k = 1, . . . , N , i = 1, . . . , p
in (22) is calculated for different values of k and n in the search for a solution to Problem 3 using
bisection (only half of the rays are considered due to symmetry). The results are shown in Table 1.
The limiting polytope is shown in Figure 7.

k N Π Time (secs) k N Π Time (secs)
5 50 0.67 0.00 6.98 10000 0.99873 0.72
5 100 1.16 0.00 6.98 20000 0.99966 0.87
6 100 0.79 0.00 6.98 40000 1.00012 1.13
6 150 0.94 0.00 6.985 10000 0.99447 0.74
6 200 1.04 0.00 6.985 50000 0.99892 1.35

6.9 200 0.77 0.00 6.985 100000 0.99948 2.83
6.9 500 0.917 0.02 6.985 200000 0.99976 5.77
6.9 700 0.947 0.02 6.985 300000 0.99985 8.77
6.9 1000 0.97 0.04 6.985 500000 0.99993 14.21
6.9 1600 0.99 0.05 6.985 800000 0.99997 23.11
6.9 2000 0.997 0.06 6.985 1000000 0.99998 28.28
6.9 2200 1.004 0.06 6.985 1500000 1.000001 43.05

Table 1: Calculation of Π =
∏N

k=1 mini{∆qi(k)
k } in (22) for system (24) in [32]
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Figure 7: Invariant polytope found for example 3 (periodic motion).

Solving Problem 3 is much more computationally demanding than solving Problem 1. The reason
is not only that many iterative attempts to solve Problem 1 are required, but also another problematic
issue revealed by this experiment. In Table 1 we note that as the value k approaches k∗ = 6.98513
the number of sides n of families of scaled polygons becomes very large (we needed 40000 rays for
a two-digit accuracy with k = 6.98 and 1500000 rays for a three-digit accuracy with k = 6.985)
before a solution can be found. Hence, although the number of attempts is fixed by the accuracy
required, at each attempt an increased number of sides n needs to be considered. Although the
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computational complexity is not significant for planar systems as can be seen from the computational
time requirements in Table 1, we certainly expect significant increase of the computational burden
in higher dimensions, which will restrict the applicability of any numerical technique for calculating
PLFs and solving Problem 3. This issue has been remarked also in [11] (Section 3.5) for the iterative
algorithm used in [17], [18] and certainly applies to all similar procedures.

3.3 Ray-gridding in Rn , n > 2

The main results obtained for planar systems can be extended to higher-dimensional families of ray-
polytopes R(λ) in Rn. Inspired by the use of regular polytopes in the planar case –which ensure
a uniform coverage of the phase plane by approximating uniformly the unit circle– we would like
to consider similar families R(λ) of ray-polytopes which correspond to uniform simplicial partitions
of the unit n-sphere Sn = {x ∈ Rn : ‖x‖ = 1}. Strictly speaking, uniform partitions of the unit n-
sphere cannot be achieved in the same sense as in R2, since there are only few regular polytopes in
Rn. However, nearly uniform simplicial subdivisions of the unit n-sphere with corresponding refinable
ray-partitions can be generated.

3.3.1 Simplicial partitions in Rn , n > 2

Global uniform partitions We propose a technique based on regular simplicial subdivision of a
hypercube in Rn−1 , followed by a “lifting” map which results in a corresponding regular simplicial
subdivision of the boundary of a crosspolytope in Rn. All points generated on the boundary are
subsequently pulled up to the unit n-sphere forming a nearly regular simplicial subdivision. All
vertices on the unit n-sphere induce a ray-partition and the corresponding families of ray-polytopes
R(λ) in Rn are invariant polytope candidates.

For our families of ray-polytopes R(λ) in Rn a decision has been made to work with simplicial
polytopes, because this simplifies the facial structure and permits easier handling of the geometric
objects formed. Our invariance conditions are imposed on the boundary of ray-polytopes. A simplicial
decomposition of a boundary in Rn−1 guarantees uniformity in the conditions imposed for each simplex,
since the neighboring vertices involved are a priori known and are not modified at each step of the
iterative algorithm.

If x0, x1, . . . ,xn are (n + 1) points in Rn, a simplex S(x0, . . . ,xn) is their convex combination

S(x0, . . . ,xn) =

{
x : x =

n∑

i=0

µixi , 0 ≤ µi ≤ 1 ,

n∑

i=0

µi = 1

}
(25)

It is called proper iff it cannot be contained in an (n-1)-dimensional hyperplane H = {x : nT x = c},
where c a constant.

Systematic simplicial subdivisions of n-dimensional rectangular domains have a long history in the
circuits community, starting from Chien and Kuh [19] and continuing with Chua [20] and recently
Julian [27], [26]. The procedure consists of a tessellation into small rectangles (producing a grid
of points and regions) followed by a canonical decomposition of each region into simplices. This
approach is useful for piecewise linear modelling and the parametrization of PL LFs, as shown in
[27]. However, it is not useful, as it is, for our purpose of checking invariance on (n-1)-dimensional
boundaries of candidate ray-polytopes. We propose another technique for generating nearly uniform
simplicial subdivisions on (n-1)-dimensional boundaries :

• Step 1 : Start from a regular simplicial subdivision ∆(n−1)(as proposed in [19]) of a hypercube
in Rn−1 placed symmetrically around the origin, with an adjustable grid size δ.

• Step 2 : Apply a lifting map L : Rn−1 → Rn−1 which “lifts” all points from the rectangular
grid to the boundary of a crosspolytope C∆

n ∈ Rn. The result is a regular simplicial subdivision
of the boundary ∂C∆

n . The lifted points covering the state-space nearly uniformly induce a
ray-partition R.
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• Step 3 : All ray-points of R are “pulled-up” along their rays to the boundary of the unit n-
sphere to form a unit normalized ray-partition. Repeating steps 1-3 with progressively smaller
grid sizes generates denser ray-partitions and corresponding polytopes that can approximate the
unit n-sphere to any prescribed degree of accuracy.

In Step 1 we start from an initial symmetric rectangular domain Dn(L) in Rn

Dn(L) = {x : −L · 1 ≤ x ≤ L · 1} , 1 = [1, . . . , 1]T ∈ Rn , L ∈ Z+ (26)

which corresponds to a carving up of the state-space with hyperplanes parallel to the main axes
xi = ci , ci = −L, . . . , 0, . . . , L into N(L) = (2 · L)n unit hypercubes with vertices V = {x : xi = ci}.

We next follow Brandts [14] to construct uniform partitions ∆n of Dn(L) into n-simplices satisfying
the following uniformity condition : All unit hypercubes are decomposed into n! path simplices such
that n of the 1

2n(n + 1) edges of each simplex coincide with n orthonormal edges of the hypercube.
This construction generalizes the partition of the unit square K2 into two congruent triangles S12, S21

S12 = {x ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1} , S21 = {x ∈ R2 : 0 ≤ x2 ≤ x1 ≤ 1} (27)

to Rn. The unit hypercube is decomposed into n-simplices

Sσ = {x = (x1, . . . , xn) ∈ Rn : 0 ≤ xσ(1) ≤ . . . ≤ xσ(n) ≤ 1} , σ ∈ Σn (28)

where Σn is the group of all n! permutations of the numbers 1, . . . , n. A decomposition of a unit cube
in R3 into path simplices is shown in Figure 8.

In the uniform simplicial decomposition described the simplices around any vertex (which will
specify the invariance conditions) can be easily determined and the construction also guarantees that
all simplices have equal volume. A similar procedure for the three-dimensional case (without an
explicit construction procedure applicable in Rn) has been implemented in [44].

In Step 2 a “lifting” map L : Rn−1 → Rn is applied

x = [x1 x2 . . . xn−1]
T ∈ Rn−1 −→ ±x̂ =

1
L
·
[
x1 x2 . . . xn−1 ± (L−max

i
|xi|)

]T

∈ Rn (29)

which “lifts” all points from the rectangular grid to the boundary of a crosspolytope C∆
n ∈ Rn. A

crosspolytope C∆
n = {x ∈ Rn :

∑
i |xi| ≤ 1} is the equivalent of an octahedron in R3 or a rhombus

in R2. The result is a regular simplicial subdivision of the boundary ∂C∆
n . The grid size is δ = 1

L .
The vectors ±x̂ in (29) can be shown to belong to the boundary of a transformed crosspolytope
∂Ĉ∆

n = {x ∈ Rn :
∑

i |yi| ≤ 1} , y = T · x for appropriate T. Points with maxi |xi| = k , 0 ≤ k ≤ L
are said to belong to the (L − k)-th layer. Hence, points on the boundary of the initial rectangular
grid –with maxi |xi| = L– belong to the 0-th layer and have xn = 0, i.e. they are not lifted and
therefore remain at their initial starting position. All other intermediate points in the grid –with
maxi |xi| = k , 0 ≤ k < L– are lifted to the (L−k)-th layer and have xn = L−k

L . The origin is lifted to
the top vertex of the crosspolytope which satisfies xn = 1 and constitutes the uppermost L-th layer.

Finally in Step 3 all points from ∂Ĉ∆
n are mapped to the boundary of the unit n-sphere forming a

nearly uniform simplicial subdivision, provided that the grid size is sufficiently small. The simplicial
facial structure constructed in Step 1 is now transferred to the boundary of the unit sphere in Rn.
This construction allows the efficient application of the ray-gridding approach in high dimensions and
the specification of invariant ray-polytopes in the interior of the unit n-sphere.

The “lifting” procedure is illustrated for n = 2 and n = 3 in Figure 10.

Edgewise simplex subdivisions Another policy frequently used for performing partition refine-
ments is to start from a regular initial choice (a unit hypercube or crosspolytope) and proceed to
progressive refinements using successive edgewise subdivisions. This process can operate globally as
well as locally, allowing denser refinement in subsets of the state-space, in which more flexibility is
perhaps required, while leaving other subsets with coarser partitions. This policy can avoid a great
deal of redundant operations, but it requires a priori good knowledge of the problem for a successful
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Figure 8: The path simplex σ = (2, 3, 1) following
the path of orthogonal edges of the cube in respec-
tive directions x1, x3 and x2.

Figure 9: Edgewise subdivisions of a triangle and
a tetrahedron
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Figure 10: The lifting procedure for n = 2 and n = 3.

application (see e.g. Example 4). The main difficulty is to build a logic intelligent enough to avoid
getting stuck in cumbersome local search which can increase the computational burden. Local re-
finement strategies can perhaps produce results with much coarser ray partitions in some cases, but
they can be also significantly slower when dense global partitions are required and their efficiency may
also be largely dependent on the initial choice. It is therefore advisable to apply a global refinement
strategy with uniform partitions at first in order to check feasibility. If a solution is guaranteed one
can apply local refinement strategies to search for another solution with a minimal number of rays.

Efficient techniques for edgewise subdivision of a simplex have been proposed in [38] and [22]. In
Figure 9 edgewise subdivisions of a triangle and a tetrahedron are shown. Note the similarity with the
result of “lifting” points from uniform simplicial rectangular partitions. Similar ideas of subdividing
edges have been proposed in [23].

3.3.2 Invariance conditions

All basic results can be extended from planar to linear switched systems (1) or LDIs (2) in Rn :

Proposition 7. A necessary and sufficient condition for the existence of an invariant ray-polytope
R(λ) , λ ∈ RN×1 under the dynamical flow of system (1) in Rn is the existence of positive scaling
factors λr > 0, r = 1, . . . , N s.t. the following set of conditions is satisfied

n∑

k=1

δ
(i)
k · λ

k
(i)
1

λ
k
(i)
2

. . . λ
k
(i)
n−1

≤ 0 (30)

where δ
(i)
k , i = 1, . . . , p , k = 1, . . . , n appropriate coefficients and k

(i)
j (with k

(i)
j 6= k

(i)
l for j 6= l , j, l =

1, . . . , n−1) determine the rays r
k
(i)
j

which specify the active conic sector (simplex) which contains the

velocity vector for all points on the current ray for the linear subsystem ẋ = Ai · x of (1).
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The dependency graph GR for a linear switched system in Rn is defined similarly and has in principle
vertices with higher degrees, since each vertex is associated with (n− 1) different neighboring vertices
in the active simplex. Unfortunately, feasibility cannot be directly inferred by the cycles present in
the graph, since Definition 8 is not extendable to n ≥ 3.

Similarly to the planar case, the scaling vector can be calculated using the following iterative
algorithm :

Algorithm 3. The algorithm starts again from the initial polytope Rn(1) generated by a uniform
simplicial decomposition of the unit n-sphere in which the scaling factors λi = 1 of all rays have their
maximum value and visits progressively all rays in their ordered sequence in a number of cycles. When
a ray is visited, all corresponding conditions (30) of all subsystems are checked and its scaling factor is
reduced, if necessary, in order to satisfy all simultaneous invariance conditions. After visiting all rays,
the algorithm continues in the same fashion until all scaling factors have converged to fixed positive
values or reached zero. In the first case a solution is found, while in the second it is proved that no
invariant set from the family RN (λ) exists .

Proposition 8. Algorithm 3 converges to an optimal solution iff an invariant polytope from the family
of ray-polytopes considered exists.

Theorem 3. A necessary and sufficient condition for the existence of a PLF for the linear switched
system (1) in Rn is the existence of a sufficiently large N s.t. conditions (30) are satisfied, or equiva-
lently that Algorithm 3 converges to a positive solution λ∗ > 0.

Remark 6 (computational complexity). The computational complexity of Algorithm 3 in Rn

increases exponentially with the dimension n of the problem. The iterative algorithm is performed in
three steps.

The first step of constructing a uniform partition of the unit n-sphere and building the incidence
relations of neighboring rays in simplices is less demanding compared to the next two steps. However,
the number of rays considered, which is 2 ·N = (1+2 ·L)n−1, is exponentially increasing with the grid
size L and dimension n. The next two steps are found to be the most demanding. The second step
is the determination of the active rays for all subsystems involved (which specify the active simplices
in (30)) and the third is the iterative procedure in which the scaling factors are progressively reduced
until they converge to a constant value.

The second part is performed once only. All incident simplices to a ray have to be considered one
after another before the active one is found. The number of incident simplices to a ray are n! (with
the exception of vertices belonging to layers 0 and L, which have a reduced number). An upper bound
of the tests that need to be carried out at the second step is Nt = p · n! ·N = 1

2 p · n! · (1 + 2 · L)n−1 .
However, usually a fraction of Nt tests is only required, since when a test is successful the remaining
tests –for the same ray– are omitted. Detection of the active simplices is necessary in order to keep the
number of conditions Nc checked in the next step (Step 3) polynomially increasing with the number
of rays N .

The computational requirements of the third step depend on the number of iterations NI . Since p
conditions –p is the number of subsystems in (1)– are checked for each ray (one for each subsystem),
the total number of conditions checked in Step 3 are Nc = NI · p ·N = 1

2 p ·NI · (1 + 2 · L)n−1 . The
third part is most demanding when the scaling vector found is small or converges to zero. In this case
a large number NI of iterations may be required before the scaling factors approaches its final value.

The iterative algorithm described in this report has been implemented in a number of examples
in 2 and 3 dimensional problems. Planar examples can be tackled very efficiently, even for very large
populations of rays, as reported in Example 3 for a solution to the very demanding Problems 2 and 3
(absolute stability). Implementation in three dimensional problems has also shown very good results
in terms of computational efficiency, and a significant improvement compared to previous techniques,
as evidenced by Example 5 in the next section.

Remark 7 (working domain). The reader may have observed the use of unit ray-partitions for the
implementation of the iterative algorithms 1, 2 and 3 described in the previous sections. This fact
results in the consideration of ray-polytopes which are contained in the closure of the unit n-sphere,
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since the algorithms start with polytopes inscribed on the unit n-sphere and progressively shrink them
to the interior. It is important to note that such restriction is chosen for computational simplicity and
does not affect the efficiency of the technique. It can be easily proved that, due to linear dynamics for
all subsystems involved, if an invariant polytope P not fully contained in the unit n-sphere is found,
then there always exists a scaled version of it that can be found using our iterative algorithms for a
sufficiently dense ray partition.

3.3.3 Examples

Example 4. [rays of common flow] We consider a linear switched system (1) with two stable subsys-
tems

A1 =
[

0.3 0.7
−2.3 −2.3

]
, A2 =

[ −1.8 1.0
−0.8 0.1

]
(31)

For this system it has been shown [47] that there does not exist a PLF with the minimal number
of rays N = 4, because the eigenvalue-locus of A1 + µA2 , 0 ≤ µ ≤ 1 is outside of the 45o-region.
Starting with the two axes as an initial choice for ray directions and refining uniformly in steps in the
search of a solution we obtain the polytope depicted in Figure 11 with 32 rays.

There exist two points of common flow between the two systems. Using these points as an initial
choice and a selective local refinement strategy based on edgewise subdivision (section 3.3.1) we obtain
the polytope depicted in Figure 12 with 14 rays. Note the selective placement of new rays in areas
where they are needed. The velocity vectors on all rays are also shown in solid arrows for system A1

and larger arrows for A2. The common velocity points are the four corner vertices of the polytope.

Example 5. [absolute stability] Absolute stability of the following LDI in R3

A1 =



−10 −10α −10 α
1 0 0
0 1 0


 , A2 =



−10 −10β −10β
1 0 0
0 1 0


 (32)

has been considered in [44], where α has been assigned a fixed value α = 0.2. The problem of finding
the maximum value of β for absolute stability using a PLF gave the result β = 1.00 with a polytope
constructed with 40 layers. Note that the circle criterion (quadratic function) gives β = 0.5467. This
example is appropriate for testing the efficiency of the ray-gridding technique and for comparison with
existing techniques.

The results in [44] reveal that the implementation using the formulation in (10) with linear pro-
gramming suffers from high computational complexity. Indeed, experiments with more than 40 layers
fail due to high memory requirements, since –although being sparse– extremely large matrices are
required. Implementation of the ray-gridding technique in this example revealed its superiority both
in terms of computational time and complexity of the polytope structures. The ray-gridding technique
is much faster and polytopes with up to L = 250 layers (with 2× 125001 vertices) can be dealt with,
although the computational time increases significantly compared to smaller values for L. The results
found for different values for L and β are shown in Table 2 1. Computational time versus number
of layers L is plotted in Figure 15. For α = 0.2 , β = 0.6 and L = 15 layers the polytope found is
depicted in Figure 13. The maximal value found with L = 200 layers (2× 80001 vertices) is β = 1.57
with a two digit accuracy and is shown in Figure 14. The value L = 200 has been found a good choice
for checking absolute stability, resulting in a good trade-off between computational complexity and
efficiency in finding solutions.

We observe significant improvement (from β = 1.0 with 40 layers to β = 1.57 with 200 layers) in
the maximum value found for β which assures absolute stability. Although partitions with L = 200
layers correspond to polytopes with a very complex structure (2× 80001 vertices), Figure 15 suggests
that such polytopes can be found in relatively reasonable computational times. This implies that the
technique suggested can provide complete solutions even in very demanding cases and problems, such
as absolute stability. Moreover, the computational complexity measures discussed in the previous

1The computational times shown have been obtained from experiments with Matlab v.6.5 running on a Pentium 4,
1.8 GHZ personal computer
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Figure 11: An invariant polytope with 32 rays cor-
responding to uniform global refinement.
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Figure 12: An invariant polytope with 14 rays cor-
responding to selective local refinement.
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Figure 13: An invariant polytope (after computing
the convex hull) with 15 layers corresponding to the
LDI (32) with α = 0.2, β = 0.6.

Figure 14: An invariant polytope(after computing
the convex hull) with 200 layers corresponding to
the LDI (32) with α = 0.2, β = 1.57.

section suggest that application of the technique in higher dimensions n = 4 or n = 5 can be carried
out for medium-sized problems, i.e. those that can be resolved with a reduced number of layers and
corresponding polytopes of limited complexity.

4 Existence of stabilising switching sequences for switched systems
with unstable subsystems

In the previous sections the ray-gridding approach has been applied to the problem of calculating
common PLFs for stable linear subsystems via the use of a simple and efficient iterative algorithm.
The extension of the same ideas to unstable subsystems and the problem of calculating stabilising
switching sequences is investigated in this section.

Associated to any ray-partition formed by a uniform simplicial decomposition as described in
Section 3.3.1 there is a corresponding family of ray-polytopes. A family of candidate switching domains
SD

ij = {x ∈ Rn : x ∈ Ci ∩ Cj} , i, j ∈ I , i 6= j which lie in the intersection of two neighboring convex
cones (simplices) Ci, Cj , i 6= j of the simplicial decomposition can be considered for the following
problem :

Problem 4. Check the existence of stabilising switching sequences for system (1) in Rn, where all
subsystems are unstable, and the switching domains are the common boundaries between simplices in
the simplicial decomposition.

In Proposition 7 the conditions of the form (30) are checked for all subsystems since the existence of
a common PLF is investigated. For a solution to Problem 4 satisfaction of (30) for a single subsystem
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Figure 15: Computational time versus number of layers for Example 5.

Description of the ray-polytope R Result of applying the algorithm

No. of layers No. of vertices Succeeded Time Failed Time
2L = 2N = for β = (mins) for β = (mins)

2× 50 2× 5101 1.0 2.18 1.5 3.5
2× 100 2× 20001 1.2 30 1.5 55
2× 150 2× 45001 1.5 213 1.7 256
2× 200 2× 80001 1.55 675 1.6 610
2× 200 2× 80001 1.57 620 1.5 580
2× 250 2× 125001 1.5 1560 2.0 2200

Table 2: Implementation results of the ray-gridding technique for the absolute stability of the LDI
with vertex matrices (32) for α = 0.2 and changing values for β and L.

is necessary and may also be sufficient for an invariant polytope under the dynamical flow of the
switched system (1) for unstable subsystems. Hence, Proposition 7, Algorithm 3 and Theorem 3 can
be extended to provide solutions to Problem 4.

4.1 Planar case

For planar systems, the switching domains proposed coincide with the rays of the ray-partition. We
have the following :

Proposition 9. A necessary condition for the existence of an invariant ray-polytope R(λ) , λ ∈ RN×1

under the dynamical flow of system (1) in R2 for unstable subsystems is the existence of positive scaling
factors λk > 0, k = 1, . . . , N s.t. the following condition is satisfied for each ray rk and its associated
subsystem ẋ = Ai(k) · x

λk ≤ ∆qi(k)
k · λqi(k) , k = 1, . . . , N , i = 1, . . . , p (33)

where

∆qi(k)
k =

det[Ai · ek, eqi(k)]
det[Ai · ek, ek]

(34)

and qi(k) determines the ray rqi(k) which together with the current ray rk specify the conic sector
S(k, qi(k)) = cconv{ek, eqi(k)} which contains the ve0locity vector at ek (for all points on ray rk) for
the linear subsystem ẋ = Ai(k) · x of (1). Conditions (33) with the following additional conditions

∆k
qi(k) ·∆qi(k)

k ≥ 1 , k = 1, . . . , N , i = 1, . . . , p (35)

are sufficient for the existence of an invariant polytope and a stabilising switching sequence.

Proof: The existence of a Lyapunov function for asymptotically stable switching systems is
shown by a converse Lyapunov theorem in [21]. This result implies that if there exists a stable switching
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sequence based on the switching domains defined above, then there exists a Lyapunov function to show
stability, although its form and degree cannot be specified in [21]. PLFs can approximate any shape
with arbitrary accuracy, thus the existence of a stabilising switching sequence is equivalent to the
existence of a PLF, in theory.

We have investigated the problem of existence of a common PLF in the previous sections using
sufficiently dense ray-partitions which allowed solutions to be found. In this section we consider
switching systems with a priori specified switching domains specified by the ray-partition chosen. The
same ray-partition induces a corresponding family of polytopes. The necessary and the sufficient
conditions for the existence of an invariant polytope from this family under the switched dynamics
are obviously (33) and (35), respectively. Conditions (33) impose invariance on the switching domains
(i.e. on the vertices of the ray-polytopes) and are only necessary for an invariant polytope, whereas
(33),(35) impose invariance for all points on the boundary of the ray-polytopes and are sufficient for
an invariant ray-polytope.

Although this family is not universal, it can provide solutions as shown in the next examples.
Moreover, by increasing sufficiently the density of the ray-partition and the number of switching
domains, the flexibility of the PLF Lyapunov function candidates is increased and at some stage
one expects to find an invariant polytope if a stabilising switching sequence exists. This implies the
following result.

Theorem 4. A necessary and sufficient condition for the existence of a stabilising switching sequence
on the switching domains induced by the selected ray-partition is the existence of an invariant ray-
polytope for a sufficiently dense ray-partition.

The dependency graph GR for a linear switched system with unstable subsystems can be also of
great help in identifying different possibilities. Specifying a subgraph containing all rays and feasible
cycles only is equivalent to finding a stabilising switching sequence.

Proposition 10. A necessary condition for the existence of an invariant ray-polytope for a linear
switched system (1) in R2 with unstable subsystems is the existence of a subgraph of its dependency
graph containing all rays and feasible cycles only.

The scaling vector and the switching strategy can be also calculated using the following iterative
algorithms :

Algorithm 4 (necessary type). The algorithm operates on the basis of the necessary conditions
(33) in Proposition 9. It starts from the initial polytope RN (1) generated by a uniform simplicial
decomposition of the unit circle in which the scaling factors λi = 1 of all rays have their maximum
value and visits progressively all rays in their ordered sequence in a number of iterations. When
a ray is visited, the corresponding necessary conditions (33) of all subsystems are checked and the
subsystem which specifies the smaller decrease for the current scaling factor is chosen. This choice
can be interpreted as switching to the subsystem which imposes the less restrictive conditions. After
visiting all rays, the algorithm continues in the same fashion until all scaling factors have converged to
fixed positive values or reached zero. In the first case a solution is found, while in the second it is proved
that no invariant set from the family RN (λ) exists. This implies that no solution to Problem 4 exists
for the family of switching domains corresponding to the ray-partition chosen. Denser ray-partitions
should be checked.

Algorithm 5 (sufficient type). This modified algorithm operates on the basis of the sufficient
conditions in Proposition 9. When a ray is visited, the corresponding sufficient conditions (33) and
(35) of all subsystems are checked and the subsystem which specifies the smaller decrease for the
current scaling factor is chosen. This choice can be interpreted as switching to the subsystem which
imposes the less restrictive conditions.

Proposition 11. Algorithm 4 converges to a solution if an invariant polytope induced by the selected
ray-partition exists.
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Proof: This result follows directly from Proposition 10. If an invariant polytope exists, then
a subgraph exists and Algorithm 4 cannot miss it, since all possibilities are covered based on the
necessary conditions. Note that there are cases in which Algorithm 4 may find a solution which does
not correspond to a stabilising switching sequence. Moreover, the polytopes specified by a solution
found by Algorithm 4 are not necessarily invariant. They are invariant only if (35) is additionally
satisfied.

Proposition 12. If Algorithm 5 converges to a solution then there exists a stabilising switching
sequence based on the family of switching domains induced by the selected ray-partition.

Proof: If Algorithm 5 converges to a solution then the sufficient conditions (33) and (35) in
Proposition 9 are satisfied. This implies that the polytopes specified by a solution found by Algorithm
5 are invariant. Hence the existence of a stabilising switching sequence is guaranteed.

Remark 8. The switching strategy implied by the previous arguments chooses to switch to a linear
subsystem Aij when one of the boundaries SD

ij = {x ∈ Rn : x ∈ Ci ∩ Cj} , i, j ∈ I , i 6= j is hit.
Each boundary is associated to a single subsystem. It might be the case that for a number of conic
regions switching to the same subsystem is identified. Unification of all these conic domains is possible.
Moreover, for neighboring regions associated with switching to different subsystems identification of
sliding modes or sliding-like motion is possible. If undesirable, avoidance of sliding modes can be
incorporated into the switching strategies considered in the iterative algorithm.

We consider three planar switched systems from [48] and show that Algorithms 4 and 5 can find
stabilising switching sequences.

Example 6. The following LTI systems are both unstable foci of clockwise direction.

A1 =
[

1 13
−2 3

]
, A2 =

[ −1 2
−10 3

]
(36)

After appropriate refinement (16 rays) a solution is found. The ray-partition considered and the
polytope found are shown in Figure 16. The velocity vectors on all rays are also shown in solid arrows
for system A1 and larger arrows for A2. By unifying the conic sectors for which switching to the
same subsystem has been identified, two switching lines L1, L2 shown dotted are obtained. This result
is very close to the result found in [48]. The dependency graph of the switched system is shown in
Figure 17 (Only half of the rays are considered due to symmetry). It can be checked that the solution
found (shown on the right graph of Figure 17) is the only one corresponding to a feasible cycle with
Π =

∏8
k=1 ∆k = 1.29 > 1 and satisfies the sufficient conditions (33),(35). The existence of stabilising

switching sequences is proved.

Example 7. The following LTI systems are both unstable foci of opposite directions.

A1 =
[ −2 52
−8 6

]
, A2 =

[
11 −10
50 −9

]
(37)

A solution with 16 rays is shown in Figure 18. The velocity vectors on all rays are also shown in solid
arrows for system A1 and larger arrows for A2. By unifying the conic sectors for which switching
to the same subsystem has been identified, two sectors S1, S2 shown dotted are obtained, where the
motion is directed to and sliding-like motion follows. The dependency graph of the switched system
is also shown in Figure 19 (Only half of the rays are considered due to symmetry). It can be checked
that the solution found is one corresponding to a feasible cycle (nodes 2,3), and there are also other
2 solutions (with the cycle between nodes 1,2 or between nodes 1,8). Note that nodes 5 and 6 are
not connected, which implies that either subsystem can be chosen in their conic sector S3, S4. The
trajectories are attracted by sectors S1, S2 and then a stable sliding-like motion (chattering with finite
frequency) occurs. This motion is reflected in the dependency graph by the presence of a feasible
cycle between the corresponding rays (nodes 2,3). The strategy selected is shown in the right graph
of Figure 19. Note that in the solution found only the necessary conditions (33) are satisfied. This
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implies that the polytope found is not invariant (there exist boundary points for which invariance
fails). However, the switching law considered is still asymptotically stable thanks to stable chattering
motion. This fact is reflected by its non-convex shape.

Hence, although the necessary conditions (33) in Algorithm 4 cannot prove the existence of sta-
bilising switching sequences, they can still be useful in practice. In this example Algorithm 4 found
a solution satisfying the necessary conditions which with further investigation proved the existence
although it doesn’t specify an invariant polytope. Since stabilising switching sequence exist in this
example, the existence of invariant ray-polytopes is guaranteed by Theorem 4 for sufficiently dense
ray-partitions. Denser partitions can also reveal further possibilities for stable switching.

Example 8. The following LTI systems are both saddle points.

A1 =
[

1 0
0 −1

]
, A2 =

[ −1.5714 −0.8571
1.7143 1.5714

]
(38)

A solution with 8 rays is shown in Figure 20. The velocity vectors on all rays are also shown in solid
arrows for system A1 and larger arrows for A2. The dependency graph of the switched system is
also shown in Figure 21 (Only half of the rays are considered due to symmetry). Note that node 4 is
the eigenvector line for system A1 and thus a simple path without any cycles can be chosen to prove
stability (right graph in Figure 21). The switching strategy implied is simple : switch to system A2

until the eigenvector line of A1 is approached, then switch to A1. Again only the necessary conditions
are satisfied.
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responding to a stabilising switching se-
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4.2 Extension to higher dimensions

The switching domains considered in the previous section for planar systems are the ray lines and
therefore consideration of the usual conditions (30) for ray points covers all points on the switching
boundaries and is extremely efficient even for very large populations of rays due to simplicity of the
conditions. The same ideas can be trivially extended to Rn if the switching boundaries remain the
ray lines. However, this is not a reasonable choice for non-planar systems. One obvious choice could
be the (n-1)-dimensional boundaries between neighboring simplices of the simplicial decomposition.
However, in this case invariance conditions cannot be imposed in terms of a single ray. Further work
is required for investigating whether an extension of the ideas in higher dimensions is possible.

5 Calculation of multiple Lyapunov functions for linear switched
systems with stable subsystems

When a linear switched system (1) with stable subsystems does not admit a common LF, this implies
that destabilising switching sequences exist, even if all subsystems are stable [16], [30]. In this case,
a stability analysis requires finding the family –or a subset– of all switching sequences that result in
stable systems. Such sequences can be specified using the multiple Lyapunov function idea [15],[16],
[6],[29]. Such a possibility is investigated in this section.

In [29], the authors propose stabilising switching control laws for discrete and continuous-time
linear systems using PLFs. In this section we extend the applicability of the methodology introduced
in [29] using the ray-gridding approach developed in the previous sections.

5.1 Multiple PLFs and associated problems

The proposed methodology in [29] is based on the assumption that each individual subsystem i admits
a PL LF Vi(x) with the minimal number of generators m = n –i.e. in the form of a transformed hyper-
rectangle in dimension n–, so that efficient computation of the PL LFs is guaranteed. Then a multiple
Lyapunov function is defined by V (x) = Vi(x) for the time interval for which subsystem i is active.
If for any switching from subsystem i to subsystem j the inequality

Vj(x) ≤ Vi(x) (39)

is satisfied then the switching system is stable. Identification of all conic domains for which the
previous inequality is satisfied specifies the switching law proposed. When the state reaches a region
in which (39) is satisfied then obviously switching from subsystem i to subsystem j is safe and produces
a stabilising switching sequence. Switching laws based on (39) for all subsystems involved are easily
specified. An algorithm is proposed to compute the domains

Ωj
i = {x ∈ Rn : Vj(x) ≤ Vi(x)} (40)
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as unions of polyhedral cones. The cones are the regions defined by the ray partitions of the invariant
polytopes which correspond to the PL LFs of the individual subsystems. Since, in general, a different
ray-partition for each subsystem is selected, the algorithm has to construct a new composite ray-
partition which is the union of the individual ray-partitions and iterate through all conic sectors of
the composite partition to specify subsets of them that satisfy (39) for all pairs of indexes i, j. The
regions Ωj

i in (40) are then specified as unions of conic subsectors.
Although this methodology is simple and can pave the way for future work in the area, its appli-

cability is limited by a number of issues that need to be addressed :

• It is explicitly mentioned in [29] that the efficiency of the technique is based on the efficient
computation of the individual functions. For a single linear system inside or outside the 45o-
degree region straightforward analytical computation of the PLFs is possible [28],[41]. There
is no need to invoke the technique proposed in [17],[18], which suffers from high computational
complexity for non-planar systems. However, the PLFs found is one possible choice and there is
no guarantee that they can specify a large class of stabilising switchings sequences.

• The applicability of the technique depends on the size and shape of the invariant polytopes spec-
ified. Appropriate normalisation (scaling) is required so that the algorithm can find non-trivial
results. The technique is not robust, since for different scaling and different initial polytopes
different results are found. Methods for specifying optimal or suboptimal or refined choices of
individual Lyapunov functions that can specify larger classes of stabilising switching laws are
not proposed.

• Chattering motion is excluded, although it is one of the basic stabilising mechanisms for switching
systems. Moreover, for each conic sector specified, switching to a single linear system is only
allowed, although situations in local regions in which arbitrary switching between two or more
subsystems can result in stable trajectories are usual, e.g. stable chattering motion with finite
or infinite frequency.

The previous remarks suggest that the class of stabilising switching sequences identified by the tech-
nique proposed is limited and depends on the Lyapunov functions Vi(x) chosen initially. Moreover,
techniques for generating efficient and flexible LFs that can specify larger classes of stabilising switch-
ing laws are not provided.

The following example reveals some of the issues mentioned above :

Example 9. We consider the example used in [29], a switched continuous-time system ẋ = Ap ·x , p ∈
{1, 2}, where

A1 =
[

1.7 1.8
−4.5 −3.7

]
, A2 =

[
0.7 −1
1.6 −1.7

]
(41)

Both subsystems have eigenvalues in the 45o-degree region and thus admit PLFs with a minimal
number of generators. The PLF functions used in [29] are V1(x) = max{|x1 + x2| , |2x1 + x2|} and
V2(x) = max{|−x1 + x2| , |2x1 − 0.5x2|}. In Figure 22 (upper left picture) the invariant polytopes
P1, P2 , P1 ∩ P2 6= ∅ corresponding to V1(x), V2(x) and the result returned by the technique are
shown. The conic partition and the number of the subsystem (to which we can safely switch) specified
at each region are also shown. If instead of P1 a scaled version 2 · P1 is used, a different result is
obtained (upper right picture in Figure 22).

For scaled versions of P1 or P2 for which one of the polytopes is included in the interior of the
other, a trivial result is returned. In the lower left picture of Figure 22 switching to subsystem 1 is
only possible (since V1(x) < V2(x) ∀x), while in the lower right picture of Figure 22 the opposite is
true.

5.2 Extension of ray-gridding to multiple PLFs

Application of the ray-gridding technique for the calculation of the multiple LFs (39) and the regions
(40) can provide solutions to many of the aforementioned problematic issues.
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Figure 22: The results returned by the technique in [29] for system (41) for P1∩P2 6= ∅ without scaling
(upper left) , with scaling (upper right), P2 ⊂ P1 (lower left) and P1 ⊂ P2 (lower right).

Suppose that an appropriate ray-partition R = {ri , i = 1, 2, . . . , N} is selected such that a PLF
Vk(x) , k = 1, 2, . . . , p is found for each linear subsystem ẋ = Ak ·x from the induced polytope family
R(λ). Let λ1, λ2, . . . , λp > 0 s.t. the ray-polytopes R(λk) , k = 1, 2, . . . , p are invariant polytopes
induced by the PLFs Vk(x) , k = 1, 2, . . . , p. Then application of the same algorithm (in [29]) is
simplified and can overcome the shortcomings identified :

Ray-gridding is much more efficient and flexible than the algorithm in [18] for linear systems.
Since all PLFs and corresponding ray-polytopes are induced by the same partition, there is no need to
specify the conic regions 40 by calculating intersections. They can be specified by the scaling factors.
Moreover, since all ray polytopes lie in the interior of the unit circle the scaling factors can easily
inform us when normalisation is required. Normalisation (scaling) can then easily be carried out with
the scaling factors. An additional benefit is the ability to refine and build up more complex polytopes
and corresponding PLFs which can possibly produce larger classes of stabilising sequences. Finally,
the possibility of switching to more than one subsystems in a local region can be investigated.

Example 10. We consider again the system used in Example 9 and apply the ray-gridding technique
with a number of progressively refined ray-partitions for the specification of stabilising switching
sequences.

Before applying the multiple LF technique, an attempt to find a common PLF for the two sub-
systems has been made, which failed to find a solution. Hence, there exist destabilising switching
laws. The results obtained for progressively refined uniform ray-partitions with 16,32,64 and 128 rays
are shown in Figure 23. The conic sectors and the number of the subsystem (to which we can safely
switch) are also marked.

We observe that as the ray-partition is progressively refined larger sectors are found which converge
to the sectors shown in Figure 23. Further refinement is not necessary. Note that the sufficiently dense
ray-partition in Figure 23 revealed a small sector (marked with A12) in which the two polytopes P1 , P2

coincide. This implies that in this sector V1 = V2 and thus arbitrary switching to any subsystem
guarantees stability. Switching from A1 to A2 and conversely will result in a chattering motion (the
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Figure 23: The results returned by the ray-gridding technique for system (41) with 16,32,64 and 128
rays.

two subsystems are of opposite direction, A1 is clockwise and A2 is anticlockwise). Infinite frequency
switching will produce a sliding mode, which is proved to be stable since V1 = V2 in A12. If sliding
modes are undesirable, the analysis informs us that infinite switching in A12 should be avoided.

In Example 10 we observe that the ability of the ray-gridding to refine allows the identification
of larger sectors and also additional subsectors in which switching to more than one subsystems is
possible.

However, a shortcoming of this multiple Lyapunov Function technique is that it is largely dependent
on the initial conditions. Indeed, observe the sectors found in Figures 22 and 23. For different scaled
versions of the polytopes P1 , P2 different results are obtained. It is easy to see in planar examples
that a contraction of a polytope, e.g. P1 will give part of the sector associated with A1 to the
sector associated with A2. Moreover, there might exist other invariant polytopes (and corresponding
Lyapunov functions) which can specify larger sectors for which switching to more than one subsystems
is possible. This discussion motivated by a simple planar example suggests that the class of switching
possibilities returned by the technique we described are limited. It is then natural to look for robust
methods that can specify optimal polytopes or ways for polytope manipulation specifying larger classes
of stabilising switching laws.

A further step for improving the multiple Lyapunov function technique introduced in [29] is next
described. Since global common PLFs do not exist, the main idea is to investigate the possibility for
the existence of local common PLFs. For the sake of simplicity assume that a linear switched system
(1) with two subsystems A1, A2 is considered.

Definition 9. Two linear systems A1,A2 ∈ Rn×n admit a local common PLF V (x) (usually called
a Lyapunov-like function) if for some subset of the state space Ω ∈ Rn we have positive definiteness
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V (0) = 0 , V (x) > 0 ∀x 6= 0 ∈ Ω , and negative definite derivative for both systems

V̇ (x) =
∂V (x)

∂x
·Aix ≤ 0 , i = 1, 2 (42)

Local common PLFs (LCPLFs) are useful for our purposes of finding stabilising switching sequences
because they specify regions of the state-space in which arbitrary switching to both subsystems is safe.

Algorithm 6. We propose a modified iterative algorithm for calculating LCPLFs:
Step 1 : Assume that on the basis of a ray-partitionR a PLF Vi(x) , i = 1, 2 with a corresponding

invariant set Pi , i = 1, 2 is found for each subsystem. We attempt to find LCPLFs for all conic sectors
of the simplicial decomposition for which it is possible using the individual Vi’s. The starting point
are the scaling vectors λ1, λ2 associated to the invariant sets Pi , i = 1, 2.

Step 2 : The algorithm visits progressively all simplices in the simplicial decomposition on a
number of iterations and updates the scaling vector λ1 with the help of λ2 until λ1 converges to a
constant value. In this step the scaling factors of λ2 are kept constant while the scaling factors of λ1

are updated according to the following rule :
For the current simplex Si and its associated rays rj , j = 1, . . . , n with scaling factors λj , j =

1, . . . , n search for the existence of new larger scaling factors λ̂j > λj , j = 1, . . . , n and a positive
constant k > 0 such that V̂1(x) = k V2(x) , x ∈ Si and the invariance conditions (30) are satisfied.
V̂1(x) is the PLF V1(x) with modified scaling factors λ̂j in the current simplex. If there exist λ̂j >
λj , j = 1, . . . , n these constitute the new updated scaling factors.

Step 3 : A convergence test is performed. The algorithm checks whether any modifications have
been made during the last iteration. If yes it returns to Step 2, otherwise convergence has occurred
to a new modified scaling vector λ̂1.

Step 4 : Steps 2 and 3 are repeated with a changing role for the two scaling vectors and cor-
responding LFs. Keep the initial scaling vector λ1 constant and update the scaling vector λ2 to a
modified λ̂2 using the same rule as in Step 2.

Step 5 : A convergence test is performed. The algorithm checks whether any modifications have
been made during the last iteration. If yes it returns to Step 4, otherwise convergence has occurred
to a new modified scaling vector λ̂2.

Proposition 13. The convergence of Algorithm 6 to invariant polytopes is guaranteed.

Proof: Algorithm 6 in Steps 2 and 4 starts from an initial choice which corresponds to an
invariant polytope and aims at approximating a target polytope in as many sectors as possible. The
algorithm converges since it operates by specifying monotonically increasing sequences of one of the
scaling vectors while there is an upper bound determined by the other scaling vector. It converges
to new invariant polytopes since it starts from an invariant polytope and at each step an increase of
some scaling factors is performed such that the invariance conditions are satisfied. Note that increase
of some scaling factors does not affect the invariance of neighboring rays and simplices, thus there is
no need to check other neighboring invariance conditions.

Algorithm 6 is applied to the switched system of Examples 9 and 10 to yield an improved result :

Example 11. Algorithm 6 has been applied successfully to the polytopes P1, P2 in Figure 10 with
64 rays and the result is shown in Figure 24. Two new invariant polytopes W1,W2 with 64 rays are
found which specify two conic sectors S1, S2 corresponding to LCPLFs.

This result provides more information on the local properties of the two vector fields and specifies
a larger class of stabilising switching sequences. We know now that in the sectors S1, S2 in Figure 24
arbitrary switching between the two subsystems is possible. Since the two subsystems are of opposite
directions, the result of switching in S1, S2 will be chattering. Infinitely fast switching will result in
sliding modes, which, however, can be proved to be stable using the LCPLFs found. If undesirable,
they can be avoided by keeping the frequency of switching low. Outside the sector S1 ∪ S2 switching
to one of the subsystems is only allowed. These rules specify a large class of different stabilising
switching laws, and stability can be proved using the same multiple Lyapunov function arguments
and an appropriate selection of any scaled versions of polytopes P1, P2,W1, W2, depending on the
switching strategy chosen.
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Figure 24: The LCPLF results returned by the ray-gridding technique for system (41) with 64 rays.

Algorithm 6 can be extended to more than two linear subsystems or can be applied to different
pairs of subsystems. Further work can look at other multiple Lyapunov function approaches, for which
algorithms based on the ray-gridding approach can be developed.

6 Concluding remarks

In this report the ray-gridding approach, a new framework for stability analysis of linear switched sys-
tems has been presented. It is based on uniform simplicial partitions of the state-space of adjustable
complexity. The technique is supported by simple and efficient numerical iterative algorithms that
have been shown to provide solutions to important problems related to stability analysis. The main
problem considered was the computation of common polyhedral Lyapunov functions that guarantee
stability of arbitrary switching between stable subsystems, without any a priori knowledge. The in-
trinsic difficulties in the numerical calculation of such functions have been noted once again : there is
an exponential increase of the computational demands w.r.t. to dimension and complexity of represen-
tation. There are also situations in which arbitrarily complex representations and many iterations of
solutions may be required for an accurate result (e.g. absolute stability problem). However, improved
results in terms of computational complexity have been found allowing a complete treatment of the
three-dimensional case. It is also believed that implementation to medium or small-sized problems in
higher dimensional systems is also possible.

The same framework has been also extended to the problem of specifying stabilising switching laws
for switched systems with stable or unstable subsystems, although further work is required in this area.
An algorithm for the calculation of stabilising switching sequences for unstable subsystems has been
outlined, which can operate very efficiently in the planar case. The technique proposed in Koutsoukos
and Antsaklis (2002) for the calculation of multiple Lyapunov functions for linear switched systems
is extended and improved by the ray-gridding approach. Calculation of local common polyhedral
LFs can be performed very efficiently and allows the identification of significantly wider classes of
stabilising switching sequences.
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Appendix

Invariance conditions for planar systems : proof of Proposition 1

Let ri−1, ri, ri+1 define three successive rays arranged in a counterclockwise order around the origin
(Figure 25), suppose that ei−1, ei, ei+1 are the corresponding extreme ray points (a constrained ray
partition is assumed), and let xi−1 = λi−1 · ei−1 , xi = λi · ei , xi+1 = λi+1 · ei+1 be points on
them. The invariance conditions for the point xi which lies in the intersection of the two sectors
S1 = cconv{ri−1, ri} (formed by the rays ri−1, ri) and S2 = cconv{ri, ri+1} (formed by the rays
ri, ri+1) take the form (see (8))

fT
1 ẋ ≤ 0 , fT

2 ẋ ≤ 0 (43)

where f1, f2 the normals of the lines −−−−→xi xi−1 and −−−−→xi xi+1, respectively. For S1 an equivalent condition
is that the velocity vector of the linear dynamics ẋi = Axi (for points on ray ri) points inwards
across the line −−−−→xi xi−1, or that ẋi lies on the same side of the line which contains the origin; this can
be translated into the algebraic statement that the area spanned by the vectors xi−1 − xi and ẋi,
namely det [xi−1 − xi , ẋi ] has the same sign as det [xi−1 − xi , −xi]. Since det [xi−1 − xi , −xi] =
det [xi , xi−1] and, with the vectors in the order stated this is negative, the condition becomes

det [xi−1 − xi , Axi] = det [xi−1 , Axi ] + + det [−xi , Axi ] ≤ 0

and the following relation is obtained

di λ
2
i − di−1 λi−1 λi ≤ 0 (44)

For the sector S2 a similar relation is obtained

−di λ
2
i + di+1 λi+1 λi ≤ 0 (45)

where

di = det [Aei, ei] ; di−1 = det [Aei, ei−1] ; di+1 = det [Aei, ei+1] ;

From (44),(45) we obtain linear relations

di λi − di−1 λi−1 ≤ 0 , − di λi + di+1 λi+1 ≤ 0 (46)

or since di > 0 if ėi = A · ei ∈ S1 (the sequence of the two points A · ei , ei is counterclockwise) and
di < 0 if A · ei ∈ S2 (clockwise sequence)

λi ≤ ∆i−1
i λi−1 , λi ≤ ∆i+1

i λi+1 (47)

with ∆i−1
i = di−1

di
, ∆i+1

i = di+1

di
.

It is also a matter of simple geometric intuition to note that when the velocity vector coincides
with the (inwardly pointing) ray vector, then both conditions are trivially satisfied and they do not
need to be checked. In any other case, the velocity vector will belong to one of the two sectors, and
then only the corresponding condition from (47) needs to be imposed. This proves Proposition 1,
where q(k) = k − 1 (if ėi ∈ S1) or q(k) = k + 1 (if ėi ∈ S2)

Proof of proposition 2 and corollaries 3 and 4

For a planar linear system with complex eigenvalues the flow has constant direction in the whole phase
plane (either clockwise or counterclockwise). All rays are non-trivial and the dependency graph is a
single cycle, a chain connecting all rays in their ordered sequence. In Figure 27 a ray-partition with
non-trivial rays in R2 for a clockwise system is shown, whereas Figure 28 depicts the corresponding
dependency graph. It is 2-regular graph (each node has degree 2, i.e. there are two edges incident
to it, one coming and one leaving) with no isolated vertices and no loops. The arrow directions and
weights encode the conditions (13), which take a simpler form

λi ≤ ∆i−1
i λi−1 , i = 1, . . . , 8. (48)
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Figure 26: A simplex in R3.

It is obvious that successive application of (48) for all rays in the cycle yields a solution if and only if∏
i ∆i−1

i ≥ 1. Then a scaling vector λ > 0 satisfying (48) can be easily found from the weights in the
graph using Algorithm 1. Corollary 3 is proved.

Planar systems with real eigenvalues possess trivial rays, i.e. rays along which the derivative
direction is radial. These are the eigenvector lines. For trivial rays no conditions of the form (13)
need to be imposed, hence the graph nodes corresponding to them are either of degree 0 (isolated) or
of degree two with two edges leaving from them. Both cases are shown in Figure 29 and 30 with the
corresponding graphs. It is easy to see that if there exist two separate eigenvector lines and 4 rays
on them, no conditions are imposed and an invariant polytope is found for arbitrary scaling factors
(Figure 29). This is the case where a minimal number of generators m = 2 is sufficient for a PLF,
specified by the transformation matrix to block diagonal form, which of course uses the eigenvector
directions.

In the presence of trivial rays, no restrictions to them apply, thus after a selection of some scaling
factors for them the remaining rays are assigned values according to their weights in the graph and
a solution is always feasible (Figure 30). If there exist cycles in the graph then the only condition
imposed is obviously that the product of their weights must satisfy ∆k2

k1
∆k1

k2
≥ 1 , where k1, k2 the two

nodes that form the cycle (nodes 1,2 and 5,6 in Figure 31). Corollary 4 is proved.
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Figure 27: A ray-partition with 8 rays in R2 for a
clockwise system.
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Figure 28: The dependency graph of a clockwise
system in R2.
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Figure 29: A ray-partition with 4 trivial rays in R2 for a system with real eigenvalues.
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Figure 30: A ray-partition with 8 rays in R2 for a system with real eigenvalues (4 trivial rays are
included).
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Figure 31: A ray-partition with 8 rays in R2 for a system with real eigenvalues (no trivial rays are
included and 2 cycles are formed).
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Invariance conditions for a simplex in Rn : proof of proposition 7

We consider a simplex S in Rn formed by the origin and n linearly independent points xi = λi ·ei , i =
1, ..., n on distinct rays ri with corresponding ray vectors ei. Such a simplex in R3 is shown in Figure
26. Our aim is to specify the invariance condition specified for one of the rays, e.g. r1 under the linear
switched dynamics (1) in terms of the remaining ones. Assuming that the simplex S considered is the
active simplex for the linear system ẋ = Ax, i.e the velocity vector ẋ for points on ray r1 points to
S, the invariance condition takes the form

nT · ẋ1 ≤ 0 (49)

where n the vector normal to the (n−1)-dimensional hyperplane defined by nT ·x = 1 and containing
the n vertices xi. Let X = [x1x2 . . .xn] ∈ Rn×n and E = [e1e2 . . . en] ∈ Rn×n. Then the normal n can
be found as n = (XT )−1 ·1 and can be directly related to E−1 and the scaling factors λi , i = 1, . . . , n.
If the cofactors in det(E) are Eij then simple calculations yield

ni =
n∑

j=1

Eij λk1 λk2 . . . λkn−1 , k1 6= k2 . . . 6= kn−1 6= j , 1 ≤ kr ≤ n , 1 ≤ r ≤ (n− 1) (50)

and with further manipulations we arrive at

nT · ẋ1 = nT ·A · x1 =
n∑

l=1

e1l ·
n∑

i=1

ail · ·
n∑

j=1

Eij λk1 λk2 . . . λkn−1 ≤ 0 (51)

or in simpler form
n∑

k=1

δk · λk1 λk2 . . . λkn−1 ≤ 0 (52)

Solving for the scaling factor λ1 yields

λ1 ≤ − δ1 · λ2 . . . λn∑n
k=2 δk · λk1 λk2 . . . λkn−2

, k1 6= k2 . . . 6= kn−2 6= 1 (53)

E.g. for n = 2 (53) gives λ1 ≤ − δ1
δ2
· λ2 while for n = 3 it yields λ1 ≤ − δ1·λ2λ3

δ2·λ2 + δ3·λ3
and for n = 4

λ1 ≤ − δ1·λ2λ3·λ4
δ2·λ2 λ3 + δ3·λ2 λ4 + δ4·λ3 λ4

. In the derivation of (53) we have implicitly assumed that

n∑

k=2

δk · λk1 λk2 . . . λkn−2 > 0 (54)

This a natural hypothesis, since for a sensible setting of ray directions satisfaction of the stability
condition (49) for λ1 = λ∗1 implies satisfaction for all λ1 ≤ λ∗1 (since for smaller values a larger
geometrical volume for inclusion of the velocity vector is specified). If inequality (54) is not satisfied,
this implies that a a new refined ray-partition with an increased number of rays needs to be considered.

For the linear switched dynamics (1) a number of linear subsystems ẋ = Aix are involved, hence
relation (52) becomes

n∑

k=1

δ
(i)
k · λ

k
(i)
1

λ
k
(i)
2

. . . λ
k
(i)
n−1

≤ 0 (55)

where δ
(i)
k , i = 1, . . . , p , k = 1, . . . , n the coefficients obtained for all individual subsystems. It is

obvious that the scaling factor upper bound is determined by the scaling factors of incident rays in
the same simplex in terms of a linear inequality (55) and this offers simplicity and efficiency in the
implementation of the technique. The use of linear programs or convex hull computations is not
necessary.
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