
Fast Algorithms for SDPs derived from the
Kalman-Yakubovich-Popov Lemma

Venkataramanan (Ragu) Balakrishnan
School of ECE, Purdue University

8 September 2003
European Union RTN Summer School on Multi-Agent Control

Hamilton Institute

Fast Algorithms for SDPs derived from the
Kalman-Yakubovich-Popov Lemma

Venkataramanan (Ragu) Balakrishnan
School of ECE, Purdue University

8 September 2003
European Union RTN Summer School on Multi-Agent Control

Hamilton Institute

Joint work with Lieven Vandenberghe, UCLA
Anders Hansson and Ragnar Wallin, Linkoping University

FAST ALGORITHMS FOR KYP SDPS 1

Outline

• A brief introduction to Semidefinite Programming (SDP)

FAST ALGORITHMS FOR KYP SDPS 1

Outline

• A brief introduction to Semidefinite Programming (SDP)

• Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

FAST ALGORITHMS FOR KYP SDPS 1

Outline

• A brief introduction to Semidefinite Programming (SDP)

• Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

• Fast algorithms for SDPs from KYP Lemma

FAST ALGORITHMS FOR KYP SDPS 2

Semidefinite Programming (SDP)
Convex optimization of the form:

minimize cTx

subject to F0 + x1F1 + · · ·+ xpFp � 0

F0, F1, . . . , Fp are given symmetric matrices, c is a vector, x is the vector of
optimization variables

FAST ALGORITHMS FOR KYP SDPS 2

Semidefinite Programming (SDP)
Convex optimization of the form:

minimize cTx

subject to F0 + x1F1 + · · ·+ xpFp � 0

F0, F1, . . . , Fp are given symmetric matrices, c is a vector, x is the vector of
optimization variables

• F (x) = F0 + x1F1 + · · ·+ xpFp � 0 called an “LMI”

• F � 0 means F is positive semidefinite, that is uTFu � 0 for all vectors u

• LMIs are nonlinear, but convex constraints:
If F (x) � 0 and F (y) � 0, then

F (λx + (1− λ)y) = λF (x) + (1− λ)F (y) � 0 for all λ ∈ [0, 1]

FAST ALGORITHMS FOR KYP SDPS 3

SDP vs. LP

SDP: minimize cTx

subject to F0 + x1F1 + · · ·+ xpFp � 0

F0, F1, . . . , Fp are given symmetric matrices, c is a vector, x is the vector of
optimization variables

LP: minimize cTx

subject to aT
i x ≤ bi, i = 1, . . . , N

• Same linear objective

• Linear matrix inequality constraint instead of linear scalar inequalities

FAST ALGORITHMS FOR KYP SDPS 4

More on LMIs

• Matrices as variables:
Example: Lyapunov inequality

ATP + PA ≺ 0

A is given, P = PT is the variable

Can write it as an LMI in the entries of P

Better to leave LMIs in a condensed form

? saves notation
? leads to more efficient computation

FAST ALGORITHMS FOR KYP SDPS 4

More on LMIs

• Matrices as variables

• Multiple LMIs F (1)(x) � 0, . . . , F (N)(x) � 0 same as single LMI

diag (F (1)(x), . . . , F (N)(x)) � 0

FAST ALGORITHMS FOR KYP SDPS 5

LMI examples

Many standard constraints can be written as LMIs

• Linear constraints Ax + b > 0 (componentwise)

Can be rewritten as an LMI using diagonal matrices

FAST ALGORITHMS FOR KYP SDPS 5

LMI examples

Many standard constraints can be written as LMIs

• Linear constraints

• Quadratic constraints:
Inequality (Ax + b)T (Ax + b) + cTx + d < 0 is equivalent to the LMI[

I Ax + b
(Ax + b)T −(cTx + d)

]
� 0

FAST ALGORITHMS FOR KYP SDPS 5

LMI examples

Many standard constraints can be written as LMIs

• Linear constraints

• Quadratic constraints

• Trace constraints:
Inequality P = PT , ATP + PA ≺ 0, TrP ≤ 1 is an LMI

FAST ALGORITHMS FOR KYP SDPS 5

LMI examples

Many standard constraints can be written as LMIs

• Linear constraints

• Quadratic constraints

• Trace constraints

• Norm constraints:
Inequality σmax(A) < 1 is equivalent to LMI[

I A
AT I

]
� 0

FAST ALGORITHMS FOR KYP SDPS 5

LMI examples

Many standard constraints can be written as LMIs

• Linear constraints

• Quadratic constraints

• Trace constraints

• Norm constraints

• ... mixtures of these constraints and many more

FAST ALGORITHMS FOR KYP SDPS 6

SDP applications

• Systems and control (quite well-known)

FAST ALGORITHMS FOR KYP SDPS 6

SDP applications

• Systems and control (quite well-known)

• Circuit design

FAST ALGORITHMS FOR KYP SDPS 6

SDP applications

• Systems and control (quite well-known)

• Circuit design

• Nonconvex optimization

FAST ALGORITHMS FOR KYP SDPS 6

SDP applications

• Systems and control (quite well-known)

• Circuit design

• Nonconvex optimization

• ... many others

FAST ALGORITHMS FOR KYP SDPS 7

Outline

• A brief introduction to Semidefinite Programming (SDP)

• Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

• Fast algorithms for SDPs from KYP Lemma

FAST ALGORITHMS FOR KYP SDPS 8

Kalman-Yakubovich-Popov lemma

Frequency-domain inequality, rational in frequency ω, and affine in a design
vector x, expressed as

[
(jωI −A)−1B

I

]∗
(

p∑
i=1

xiMi −N)
[

(jωI −A)−1B
I

]
� 0

FAST ALGORITHMS FOR KYP SDPS 8

Kalman-Yakubovich-Popov lemma

If (A,B) is controllable, then

[
(jωI −A)−1B

I

]∗
(

p∑
i=1

xiMi −N)
[

(jωI −A)−1B
I

]
� 0

hold for all ω ∈ R

FAST ALGORITHMS FOR KYP SDPS 8

Kalman-Yakubovich-Popov lemma

If (A,B) is controllable, then

[
(jωI −A)−1B

I

]∗
(

p∑
i=1

xiMi −N)
[

(jωI −A)−1B
I

]
� 0

hold for all ω ∈ R

⇐⇒

[
AP + PA PB

BTP 0

]
+

p∑
i=1

xiMi −N � 0

is feasible (an LMI with variables P , x)

FAST ALGORITHMS FOR KYP SDPS 9

KYP Lemma consequences

• Semi-infinite frequency domain inequality is exactly equivalent to LMI (no
sampling)

• P serves as an auxiliary variable

• Of enormous importance for systems, control, and signal processing

FAST ALGORITHMS FOR KYP SDPS 10

KYP LMI applications

• Linear system analysis and design:

f Plant

Controller

-

�

6

- -w z

? Problem: Design LTI controller for LTI plant

? Constraints specified as frequency domain inequalities on TF from w to z

? Youla parametrization used to express TF from w to z

T (jω, x) = T1(jω) + T2(jω)

pX

i=1

xiQi(jω)

!
T3(jω),

? KYP Lemma used to obtain LMIs in variable x

FAST ALGORITHMS FOR KYP SDPS 10

KYP LMI applications

• Linear system analysis and design

• Digital filter design:

? An FIR or more general filter design problem: Find x such that

H(e
jθ

, x) =

p−1X
i=0

xiHi(e
jθ

)

satisfies frequency-domain constraints (i.e., for all θ ∈ [0, 2π])

? KYP Lemma used to obtain LMIs in variable x

FAST ALGORITHMS FOR KYP SDPS 10

KYP LMI applications

• Linear system analysis and design

• Digital filter design

• Robust control analysis:

? Stability of interconnected systems via passivity or small-gain analysis

? Techniques that take advantage of uncertainty structure/nature

? Performance analysis via Lyapunov functions

FAST ALGORITHMS FOR KYP SDPS 11

KYP SDP

Focus on:

minimize cTx + Tr(CP)

subject to
[

ATP + PA PB
BTP 0

]
+
∑p

i=1 xiMi � N

where c ∈ Rp, C ∈ Sn, A ∈ Rn×n, B ∈ Rn×m,Mi ∈ Sn+m, N ∈ Sn+m

FAST ALGORITHMS FOR KYP SDPS 11

KYP SDP

Focus on:

minimize cTx + Tr(CP)

subject to
[

ATP + PA PB
BTP 0

]
+
∑p

i=1 xiMi � N

where c ∈ Rp, C ∈ Sn, A ∈ Rn×n, B ∈ Rn×m,Mi ∈ Sn+m, N ∈ Sn+m

(Extension to multiple LMIs in multiple variables straightforward)

minimize cTx +
PK

k=1 Tr(CkPk)

subject to
»

AT
k Pk + PkAk PkBk

BT
k Pk 0

–
+
Pp

i=1 xiMki � Nk, k = 1, . . . , K.

FAST ALGORITHMS FOR KYP SDPS 12

Numerical solution of SDPs

All SDPs are convex optimization problems:

• Generic algorithms will work in polynomial-time

• Matlab “LMI Control Toolbox” available

• Moderate size problems solved quite easily

But...

FAST ALGORITHMS FOR KYP SDPS 12

Numerical solution of SDPs

All SDPs are convex optimization problems:

• Generic algorithms will work in polynomial-time

• Matlab “LMI Control Toolbox” available

• Moderate size problems solved quite easily

But...

KYP SDPs tend to be of very large scale

Large problem sizes due to:

• underlying problems themselves

• auxiliary variable P

Rest of the talk on efficient solution of KYP SDPs using convex duality

FAST ALGORITHMS FOR KYP SDPS 13

Convex duality

Rewrite SDP as

minimize cTx
subject to F0 + x1F1 + · · ·+ xpFp − S = 0

S � 0

FAST ALGORITHMS FOR KYP SDPS 13

Convex duality

Primal SDP minimize cTx
subject to F0 + x1F1 + · · ·+ xpFp − S = 0

S � 0

Dual SDP maximize −TrF0Z
subject to Z � 0

TrFiZ = ci, i = 1, . . . ,m

FAST ALGORITHMS FOR KYP SDPS 13

Convex duality

Primal SDP minimize cTx
subject to F0 + x1F1 + · · ·+ xpFp − S = 0

S � 0

Dual SDP maximize −TrF0Z
subject to Z � 0

TrFiZ = ci, i = 1, . . . ,m

• If Z is dual feasible, then −TrF0Z ≤ p∗

• If x is primal feasible, then cTx ≥ d∗

• Under mild conditions, p∗ = d∗

• At optimum, SoptZopt = F (xopt)Zopt = 0

FAST ALGORITHMS FOR KYP SDPS 14

Primal-dual algorithms

Solve primal and dual problem together:

minimize cTx + TrF0Z
subject to F0 + x1F1 + · · ·+ xpFp − S = 0

S � 0, Z � 0
TrFiZ = ci, i = 1, . . . ,m

FAST ALGORITHMS FOR KYP SDPS 14

Primal-dual algorithms

Solve primal and dual problem together:

minimize cTx + TrF0Z (= TrSZ)
subject to F0 + x1F1 + · · ·+ xpFp − S = 0

S � 0, Z � 0
TrFiZ = ci, i = 1, . . . ,m

(Optimal value is zero!)

FAST ALGORITHMS FOR KYP SDPS 15

Why primal-dual algorithms?

• At every iteration, we have upper and lower bounds, thus guaranteed
accuracy

• Early termination possible

• Other advantages at algorithmic level

FAST ALGORITHMS FOR KYP SDPS 16

Primal-dual algorithm outline

For simplicity, suppose we have a feasible point, i.e., x, Z and S s.t.

F0 + x1F1 + · · ·+ xpFp − S = 0
S � 0, Z � 0

TrFiZ = ci, i = 1, . . . ,m

(More general case, with infeasible starting points, essentially the same)

FAST ALGORITHMS FOR KYP SDPS 16

Primal-dual algorithm outline
For simplicity, suppose we have a feasible point, i.e., x, Z and S s.t.

F0 + x1F1 + · · ·+ xpFp − S = 0
S � 0, Z � 0

TrFiZ = ci, i = 1, . . . ,m

At each iteration:

• Compute product SZ. If it is “small”, stop

• Otherwise, take steps ∆S, ∆Z, and ∆x such that

∆x1F1 + · · ·+ ∆xpFp −∆S = 0
TrFi∆Z = 0, i = 1, . . . ,m
S + ∆S � 0, Z + ∆Z � 0

 (maintain feasibility)

FAST ALGORITHMS FOR KYP SDPS 16

Primal-dual algorithm outline
For simplicity, suppose we have a feasible point, i.e., x, Z and S s.t.

F0 + x1F1 + · · ·+ xpFp − S = 0
S � 0, Z � 0

TrFiZ = ci, i = 1, . . . ,m

At each iteration:

• Compute product SZ. If it is “small”, stop

• Otherwise, take steps ∆S, ∆Z, and ∆x such that

∆x1F1 + · · ·+ ∆xpFp −∆S = 0
TrFi∆Z = 0, i = 1, . . . ,m
S + ∆S � 0, Z + ∆Z � 0

 (maintain feasibility)

(S + ∆S)(Z + ∆Z) is made “smaller” (address objective)

FAST ALGORITHMS FOR KYP SDPS 17

Solving search equations

1. ∆x1F1 + · · ·+ ∆xpFp −∆S = 0

2. TrFi∆Z = 0, i = 1, . . . ,m

3. (S + ∆S)(Z + ∆Z) is made “smaller”

4. S + ∆S � 0, Z + ∆Z � 0

FAST ALGORITHMS FOR KYP SDPS 17

Solving search equations

1. ∆x1F1 + · · ·+ ∆xpFp −∆S = 0

2. TrFi∆Z = 0, i = 1, . . . ,m

3. (S + ∆S)(Z + ∆Z) is made “smaller”

4. S + ∆S � 0, Z + ∆Z � 0

(1), (2) linear equations

FAST ALGORITHMS FOR KYP SDPS 17

Solving search equations

1. ∆x1F1 + · · ·+ ∆xpFp −∆S = 0

2. TrFi∆Z = 0, i = 1, . . . ,m

3. (S + ∆S)(Z + ∆Z) is made “smaller”

4. S + ∆S � 0, Z + ∆Z � 0

(1), (2) linear equations

(3) accomplished via
Newton step, another
linear equation

FAST ALGORITHMS FOR KYP SDPS 17

Solving search equations

1. ∆x1F1 + · · ·+ ∆xpFp −∆S = 0

2. TrFi∆Z = 0, i = 1, . . . ,m

3. (S + ∆S)(Z + ∆Z) is made “smaller”

4. S + ∆S � 0, Z + ∆Z � 0

(1), (2) linear equations

(3) accomplished via
Newton step, another
linear equation

Solution strategy:

• First, eliminate ∆S from the linear equations

• Next eliminate ∆Z

• Solve a dense linear system in variable ∆x

• Reconstruct ∆Z and ∆S

• S + ∆S � 0, Z + ∆Z � 0 ensured using line search

FAST ALGORITHMS FOR KYP SDPS 18

Outline

• A brief introduction to Semidefinite Programming (SDP)

• Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

• Fast algorithms for SDPs from KYP Lemma

FAST ALGORITHMS FOR KYP SDPS 19

General-purpose implementation for KYP SDPs

minimize cTx + Tr(CP)

subject to
[

ATP + PA PB
BTP 0

]
+
∑p

i=1 xiMi � N

• A ∈ Rn×n, B ∈ Rn×1

• (A,B) controllable

• p + n(n + 1)/2 variables

FAST ALGORITHMS FOR KYP SDPS 20

Primal and dual KYP SDPs

Primal SDP

minimize cTx + Tr(CP)

subject to
[

ATP + PA PB
BTP 0

]
+
∑p

i=1 xiMi � N

Dual SDP maximize −Tr(NZ)

subject to AZ11 + Z11A
T + z̃BT + Bz̃T = C

TrMiZ = ci

Z =
[

Z11 z̃
z̃T 2zn+1

]
� 0

FAST ALGORITHMS FOR KYP SDPS 20

Primal and dual KYP SDPs

Primal SDP

minimize cTx + Tr(CP)

subject to
[

ATP + PA PB
BTP 0

]
+
∑p

i=1 xiMi � N

Dual SDP maximize −Tr(NZ)

subject to AZ11 + Z11A
T + z̃BT + Bz̃T = C

TrMiZ = ci

Z =
[

Z11 z̃
z̃T 2zn+1

]
� 0

(For future reference z = [z̃T , zn+1]T)

FAST ALGORITHMS FOR KYP SDPS 21

Search equations for KYP SDPs

W∆ZW +
[

AT∆P + ∆PA ∆PB
BT∆P 0

]
+

p∑
i=1

∆xiMi = D

A∆Z11 + ∆Z11A
T + ∆z̃BT + B∆z̃T = 0

TrMi∆Z = 0

W � 0; values of W , D change at each iteration

FAST ALGORITHMS FOR KYP SDPS 21

Search equations for KYP SDPs

W∆ZW +
[

AT∆P + ∆PA ∆PB
BT∆P 0

]
+

p∑
i=1

∆xiMi = D

A∆Z11 + ∆Z11A
T + ∆z̃BT + B∆z̃T = 0

TrMi∆Z = 0

W � 0; values of W , D change at each iteration

For convenience:

K(P) =
[

ATP + PA PB
BTP 0

]
, M(x) =

∑p
i=1 xiMi

FAST ALGORITHMS FOR KYP SDPS 21

Search equations for KYP SDPs

W∆ZW +
[

AT∆P + ∆PA ∆PB
BT∆P 0

]
+

p∑
i=1

∆xiMi = D

A∆Z11 + ∆Z11A
T + ∆z̃BT + B∆z̃T = 0

TrMi∆Z = 0

W � 0; values of W , D change at each iteration

For convenience:

K(P) =
[

ATP + PA PB
BTP 0

]
, M(x) =

∑p
i=1 xiMi

Then,
Kadj(∆Z) = A∆Z11 + ∆Z11A

T + ∆z̃BT + B∆z̃T , Madj(∆Z) = {TrMi∆Z}

FAST ALGORITHMS FOR KYP SDPS 22

Standard method of solving the search equations

W∆ZW +K(∆P) +M(∆x) = D

Kadj(∆Z) = 0

Madj(∆Z) = 0

FAST ALGORITHMS FOR KYP SDPS 22

Standard method of solving the search equations

W∆ZW +K(∆P) +M(∆x) = D

Kadj(∆Z) = 0

Madj(∆Z) = 0

General-purpose solvers eliminate ∆Z from first equation:

Kadj(W−1(K(∆P) +M(∆x))W−1) = Kadj(W−1DW−1)

Madj(W−1(K(∆P) +M(∆x))W−1) = Madj(W−1DW−1)

A dense set of linear equations in ∆P , ∆x

Cost : At least O(n6)

FAST ALGORITHMS FOR KYP SDPS 23

Alternative method: Step 1

W∆ZW +K(∆P) +M(∆x) = D

Kadj(∆Z) = 0

Madj(∆Z) = 0

FAST ALGORITHMS FOR KYP SDPS 23

Alternative method: Step 1

W∆ZW +K(∆P) +M(∆x) = D

A∆Z11 + ∆Z11A
T + ∆z̃BT + B∆z̃T = 0

Madj(∆Z) = 0

Use second equation to express ∆Z11 in terms of ∆z̃:

∆Z11 =
∑n

i=1 ∆ziXi, where AXi + XiA
T + BeT

i + eiB
T = 0

Thus ∆Z = B(∆z) =
[∑n

i=1 ∆ziXi ∆z̃
∆z̃T 2∆zn+1

]

FAST ALGORITHMS FOR KYP SDPS 23

Alternative method: Step 1

W∆ZW +K(∆P) +M(∆x) = D

A∆Z11 + ∆Z11A
T + ∆z̃BT + B∆z̃T = 0

Madj(∆Z) = 0

Use second equation to express ∆Z11 in terms of ∆z̃:

∆Z11 =
∑n

i=1 ∆ziXi, where AXi + XiA
T + BeT

i + eiB
T = 0

Thus ∆Z = B(∆z) =
[∑n

i=1 ∆ziXi ∆z̃
∆z̃T 2∆zn+1

]
Substituting in first and third equations gives

WB(∆z)W +K(∆P) +M(∆x) = D

Madj(B(∆z)) = 0

FAST ALGORITHMS FOR KYP SDPS 24

Alternative method: Step 2

WB(∆z)W +K(∆P) +M(∆x) = D

Madj(B(∆z)) = 0

Note that G = K(∆P) for some ∆P ⇐⇒ Badj(G) = 0

FAST ALGORITHMS FOR KYP SDPS 24

Alternative method: Step 2

WB(∆z)W +K(∆P) +M(∆x) = D

Madj(B(∆z)) = 0

Note that G = K(∆P) for some ∆P ⇐⇒ Badj(G) = 0

Use to eliminate ∆P :

Badj(WB(∆z)W) + Badj(M(∆x)) = Badj(D)

Madj(B(∆z)) = 0

n + p + 1 linear equations in n + p + 1 variables ∆z, ∆x

FAST ALGORITHMS FOR KYP SDPS 25

Alternative method: Summary

Reduced search equations of the form[
P11 P12

PT
12 0

] [
∆z
∆x

]
=
[

q1

0

]

• Cost of solving is O(n3) operations (if we assume p = O(n))

• From ∆z, ∆x, can find ∆Z, ∆P in O(n3) operations

• Need to precompute Xis (O(n4))

• P12 is independent of current iterates and can be pre-computed, in O(n4)

• Constructing P11 requires constructing terms such as Tr(XiW11XjW11) and
W11XiW12 (also O(n4))

• Overall cost dominated by O(n4)

FAST ALGORITHMS FOR KYP SDPS 26

Numerical example
KYP IPM SeDuMi (primal)

n = p prep. time time/iter. time/iter.
25 0.1 0.07 0.1
50 1.2 0.3 7.4

100 21.7 3.3 324.7
200 438.3 31.6

• CPU time in seconds on 2.4GHz PIV with 1GB of memory

• KYP-IPM: Matlab implementation of alternative method

• SeDuMi (primal): SeDuMi version 1.05 applied to primal problem

• Prep. time is time to compute matrices Xi

• #iterations in both methods is comparable (7–15)

FAST ALGORITHMS FOR KYP SDPS 27

Further reduction in computation

Use factorization of A to compute terms such as Tr(XiW11XjW11) without
computing Xi, i.e., without explicitly solving

AXi + XiA
T + BeT

i + eiB
T = 0, i = 1, . . . , n

• Advantages: no need to store matrices Xi, faster construction of reduced
search equations

• Possible factorizations: eigenvalue decomposition, companion form, . . .

• For example, if A has distinct eigenvalues A = V diag (λ)V −1, easy to write
down search equations in O(n3), in terms of V and λ

FAST ALGORITHMS FOR KYP SDPS 28

Existence of distinct stable eigenvalues

• By assumption, (A,B) is controllable; hence can arbitrarily assign
eigenvalues of A + BK by choosing K

• Choose T =
[

I 0
K I

]
, and replace LMI by equivalent LMI

TT

([
ATP + PA PB

BTP 0

]
+

N∑
i=1

xiMi

)
T � TTNT

[
(A + BK)TP + P (A + BK) PB

BTP 0

]
+

N∑
i=1

xi(TTMiT) � TTNT

Conclusion: Can assume without loss of generality that A is stable with
distinct eigenvalues

FAST ALGORITHMS FOR KYP SDPS 29

Numerical example

Five randomly generated problems with p = 50, n = 100, . . . , 500

KYP IPM (fast) KYP IPM SeDuMi (primal)
n prep. time time/iter prep. time time/iter prep. time time/iter

100 1.3 1.2 21.7 3.3 – 324.7
200 10.1 8.9 438.3 31.6
300 32.4 27.3
400 72.2 62.0
500 140.4 119.4

• KYP-IPM (fast) uses eigenvalue decomposition of A to construct reduced
search equations

• Preprocessing time and time/iteration grow as O(n3)

FAST ALGORITHMS FOR KYP SDPS 30

Conclusions

SDPs derived from the KYP-lemma

• A useful class of SDPs, widely encountered in systems, control and signal
processing

• Difficult to solve using general-purpose software

• Generic solvers take O(n6) computation

Fast solution using interior-point methods

• Custom implementation based on fast solution of search equations
(cost O(n4) or O(n3))

