Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University

8 September 2003 European Union RTN Summer School on Multi-Agent Control Hamilton Institute

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University

8 September 2003 European Union RTN Summer School on Multi-Agent Control Hamilton Institute

Joint work with Lieven Vandenberghe, UCLA Anders Hansson and Ragnar Wallin, Linkoping University

• A brief introduction to Semidefinite Programming (SDP)

- A brief introduction to Semidefinite Programming (SDP)
- Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

- A brief introduction to Semidefinite Programming (SDP)
- Focus: LMIs from the Kalman-Yakubovich-Popov Lemma
- Fast algorithms for SDPs from KYP Lemma

Semidefinite Programming (SDP)

Convex optimization of the form:

minimize $c^T x$ subject to $F_0 + x_1 F_1 + \dots + x_p F_p \succeq 0$

 F_0, F_1, \ldots, F_p are given symmetric matrices, c is a vector, x is the vector of optimization variables

Semidefinite Programming (SDP)

Convex optimization of the form:

minimize $c^T x$ subject to $F_0 + x_1 F_1 + \dots + x_p F_p \succeq 0$

 F_0, F_1, \ldots, F_p are given symmetric matrices, c is a vector, x is the vector of optimization variables

- $F(x) = F_0 + x_1F_1 + \cdots + x_pF_p \succeq 0$ called an "LMI"
- $F \succeq 0$ means F is positive semidefinite, that is $u^T F u \succeq 0$ for all vectors u
- LMIs are nonlinear, but *convex* constraints: If $F(x) \succeq 0$ and $F(y) \succeq 0$, then

$$F(\lambda x + (1 - \lambda)y) = \lambda F(x) + (1 - \lambda)F(y) \succeq 0$$
 for all $\lambda \in [0, 1]$

SDP vs. LP

SDP: minimize $c^T x$

subject to $F_0 + x_1F_1 + \dots + x_pF_p \succeq 0$

 F_0, F_1, \ldots, F_p are given symmetric matrices, c is a vector, x is the vector of optimization variables

LP: minimize $c^T x$ subject to $a_i^T x \le b_i, i = 1, \dots, N$

• Same linear objective

• Linear matrix inequality constraint instead of linear scalar inequalities

More on LMIs

 Matrices as variables: Example: Lyapunov inequality

 $A^T P + P A \prec 0$

A is given, $P = P^T$ is the variable

Can write it as an LMI in the entries of P

Better to leave LMIs in a condensed form

★ saves notation

★ leads to more efficient computation

More on LMIs

- Matrices as variables
- Multiple LMIs $F^{(1)}(x) \succeq 0, \dots, F^{(N)}(x) \succeq 0$ same as single LMI

 $diag(F^{(1)}(x), ..., F^{(N)}(x)) \succeq 0$

Many standard constraints can be written as LMIs

• Linear constraints Ax + b > 0 (componentwise)

Can be rewritten as an LMI using diagonal matrices

- Linear constraints
- Quadratic constraints: Inequality $(Ax + b)^T (Ax + b) + c^T x + d < 0$ is equivalent to the LMI

$$\begin{bmatrix} I & Ax+b\\ (Ax+b)^T & -(c^Tx+d) \end{bmatrix} \succ 0$$

- Linear constraints
- Quadratic constraints
- Trace constraints: Inequality $P = P^T$, $A^T P + PA \prec 0$, $\text{Tr} P \leq 1$ is an LMI

- Linear constraints
- Quadratic constraints
- Trace constraints
- Norm constraints: Inequality $\sigma_{\max}(A) < 1$ is equivalent to LMI

$$\begin{bmatrix} I & A \\ A^T & I \end{bmatrix} \succ 0$$

- Linear constraints
- Quadratic constraints
- Trace constraints
- Norm constraints
- ... mixtures of these constraints and many more

SDP applications

Systems and control (quite well-known)

FAST ALGORITHMS FOR KYP SDPS

SDP applications

- Systems and control (quite well-known)
- Circuit design

FAST ALGORITHMS FOR KYP SDPS

SDP applications

- Systems and control (quite well-known)
- Circuit design
- Nonconvex optimization

SDP applications

- Systems and control (quite well-known)
- Circuit design
- Nonconvex optimization
- ... many others

- A brief introduction to Semidefinite Programming (SDP)
- Focus: LMIs from the Kalman-Yakubovich-Popov Lemma
- Fast algorithms for SDPs from KYP Lemma

Kalman-Yakubovich-Popov lemma

Frequency-domain inequality, rational in frequency ω , and affine in a design vector x, expressed as

$$\begin{bmatrix} (j\omega I - A)^{-1}B\\ I \end{bmatrix}^* \left(\sum_{i=1}^p x_i M_i - N\right) \begin{bmatrix} (j\omega I - A)^{-1}B\\ I \end{bmatrix} \succeq 0$$

Kalman-Yakubovich-Popov lemma

If (A, B) is controllable, then

$$\begin{bmatrix} (j\omega I - A)^{-1}B\\ I \end{bmatrix}^* (\sum_{i=1}^p x_i M_i - N) \begin{bmatrix} (j\omega I - A)^{-1}B\\ I \end{bmatrix} \succeq 0$$

hold for all $\omega \in \mathbf{R}$

Kalman-Yakubovich-Popov lemma

If (A, B) is controllable, then

$$\begin{bmatrix} (j\omega I - A)^{-1}B\\ I \end{bmatrix}^* (\sum_{i=1}^p x_i M_i - N) \begin{bmatrix} (j\omega I - A)^{-1}B\\ I \end{bmatrix} \succeq 0$$

hold for all $\omega \in \mathbf{R}$

$$\quad \Longleftrightarrow \quad$$

$$\begin{bmatrix} AP + PA & PB \\ B^TP & 0 \end{bmatrix} + \sum_{i=1}^p x_i M_i - N \succeq 0$$

is feasible (an LMI with variables P, x)

KYP Lemma consequences

- Semi-infinite frequency domain inequality is exactly equivalent to LMI (no sampling)
- *P* serves as an auxiliary variable
- Of enormous importance for systems, control, and signal processing

KYP LMI applications

Linear system analysis and design:

- ★ Problem: Design LTI controller for LTI plant
- $\star\,$ Constraints specified as frequency domain inequalities on TF from w to z
- $\star\,$ Youla parametrization used to express TF from w to z

$$T(j\omega, x) = T_1(j\omega) + T_2(j\omega) \left(\sum_{i=1}^p x_i Q_i(j\omega)\right) T_3(j\omega),$$

\star KYP Lemma used to obtain LMIs in variable x

KYP LMI applications

- Linear system analysis and design
- Digital filter design:
 - \star An FIR or more general filter design problem: Find x such that

$$H(e^{j\theta}, x) = \sum_{i=0}^{p-1} x_i H_i(e^{j\theta})$$

satisfies frequency-domain constraints (i.e., for all $\theta \in [0, 2\pi]$)

\star KYP Lemma used to obtain LMIs in variable x

KYP LMI applications

- Linear system analysis and design
- Digital filter design
- Robust control analysis:
 - ★ Stability of interconnected systems via passivity or small-gain analysis
 - ★ Techniques that take advantage of uncertainty structure/nature
 - ★ Performance analysis via Lyapunov functions

FAST ALGORITHMS FOR KYP SDPS

KYP SDP

Focus on:

minimize
$$c^T x + \operatorname{Tr}(CP)$$

subject to $\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \sum_{i=1}^p x_i M_i \succeq N$

where $c \in \mathbf{R}^p, C \in \mathbf{S}^n, A \in \mathbf{R}^{n \times n}, B \in \mathbf{R}^{n \times m}, M_i \in \mathbf{S}^{n+m}, N \in \mathbf{S}^{n+m}$

FAST ALGORITHMS FOR KYP SDPS

KYP SDP

Focus on:

minimize
$$c^T x + \operatorname{Tr}(CP)$$

subject to $\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \sum_{i=1}^p x_i M_i \succeq N$

where $c \in \mathbf{R}^p, C \in \mathbf{S}^n, A \in \mathbf{R}^{n \times n}, B \in \mathbf{R}^{n \times m}, M_i \in \mathbf{S}^{n+m}, N \in \mathbf{S}^{n+m}$

(Extension to multiple LMIs in multiple variables straightforward)

minimize
$$c^T x + \sum_{k=1}^{K} \operatorname{Tr}(C_k P_k)$$

subject to $\begin{bmatrix} A_k^T P_k + P_k A_k & P_k B_k \\ B_k^T P_k & 0 \end{bmatrix} + \sum_{i=1}^{p} x_i M_{ki} \succeq N_k, \quad k = 1, \dots, K.$

Numerical solution of SDPs

All SDPs are convex optimization problems:

- Generic algorithms will work in polynomial-time
- Matlab "LMI Control Toolbox" available
- Moderate size problems solved quite easily

But...

Numerical solution of SDPs

All SDPs are convex optimization problems:

- Generic algorithms will work in polynomial-time
- Matlab "LMI Control Toolbox" available
- Moderate size problems solved quite easily

But...

KYP SDPs tend to be of very large scale

Large problem sizes due to:

- underlying problems themselves
- auxiliary variable P

Rest of the talk on efficient solution of KYP SDPs using convex duality

FAST ALGORITHMS FOR KYP SDPS

Convex duality

Rewrite SDP as

minimize $c^T x$ subject to $F_0 + x_1 F_1 + \dots + x_p F_p - S = 0$ $S \succeq 0$ FAST ALGORITHMS FOR KYP SDPS

Primal SDP

Convex duality

minimize $c^T x$ subject to $F_0 + x_1 F_1 + \dots + x_p F_p - S = 0$ $S \succeq 0$

Dual SDP	maximize	$-\mathrm{Tr}F_0Z$
	subject to	$Z \succeq 0$
		$\operatorname{Tr} F_i Z = c_i, \ i = 1, \dots, m$

FAST ALGORITHMS FOR KYP SDPs

Convex duality

Primal SDPminimize $c^T x$ subject to $F_0 + x_1 F_1 + \dots + x_p F_p - S = 0$ $S \succeq 0$

Dual SDPmaximize
subject to $-\mathbf{Tr}F_0Z$
subject to $Z \succeq 0$
 $\mathbf{Tr}F_iZ = c_i, i = 1, \dots, m$

- If Z is dual feasible, then $-\mathbf{Tr}F_0Z \leq p^*$
- If x is primal feasible, then $c^T x \ge d^*$
- Under mild conditions, $p^* = d^*$
- At optimum, $S_{opt}Z_{opt} = F(x_{opt})Z_{opt} = 0$

Primal-dual algorithms

Solve primal and dual problem together:

minimize subject to

e
$$c^{T}x + \operatorname{Tr} F_{0}Z$$

to $F_{0} + x_{1}F_{1} + \dots + x_{p}F_{p} - S = 0$
 $S \succeq 0, Z \succeq 0$
 $\operatorname{Tr} F_{i}Z = c_{i}, i = 1, \dots, m$

Primal-dual algorithms

Solve primal and dual problem together:

minimize subject to

te
$$c^T x + \operatorname{Tr} F_0 Z$$
 (- Tr SZ)
to $F_0 + x_1 F_1 + \dots + x_p F_p - S = 0$
 $S \succeq 0, Z \succeq 0$
 $\operatorname{Tr} F_i Z = c_i, i = 1, \dots, m$

(Optimal value is zero!)

Why primal-dual algorithms?

At every iteration, we have upper and lower bounds, thus guaranteed accuracy

- Early termination possible
- Other advantages at algorithmic level

Primal-dual algorithm outline

For simplicity, suppose we have a feasible point, i.e., x, Z and S s.t.

$$F_0 + x_1 F_1 + \dots + x_p F_p - S = 0$$

$$S \succeq 0, Z \succeq 0$$

$$\operatorname{Tr} F_i Z = c_i, \ i = 1, \dots, m$$

(More general case, with infeasible starting points, essentially the same)

Primal-dual algorithm outline

For simplicity, suppose we have a feasible point, i.e., x, Z and S s.t.

$$F_0 + x_1 F_1 + \dots + x_p F_p - S = 0$$

$$S \succeq 0, Z \succeq 0$$

$$\operatorname{Tr} F_i Z = c_i, \ i = 1, \dots, m$$

At each iteration:

- Compute product SZ. If it is "small", stop
- Otherwise, take steps ΔS , ΔZ , and Δx such that

$$\Delta x_1 F_1 + \dots + \Delta x_p F_p - \Delta S = 0$$

$$\mathbf{Tr} F_i \Delta Z = 0, \ i = 1, \dots, m$$

$$S + \Delta S \succeq 0, \ Z + \Delta Z \succeq 0$$
 (maintain feasibility)

Primal-dual algorithm outline

For simplicity, suppose we have a feasible point, i.e., x, Z and S s.t.

$$F_0 + x_1 F_1 + \dots + x_p F_p - S = 0$$

$$S \succeq 0, Z \succeq 0$$

$$\operatorname{Tr} F_i Z = c_i, \ i = 1, \dots, m$$

At each iteration:

- Compute product SZ. If it is "small", stop
- Otherwise, take steps ΔS , ΔZ , and Δx such that

$$\Delta x_1 F_1 + \dots + \Delta x_p F_p - \Delta S = 0$$

$$\mathbf{Tr} F_i \Delta Z = 0, \ i = 1, \dots, m$$

$$S + \Delta S \succeq 0, \ Z + \Delta Z \succeq 0$$

(maintain feasibility)

 $(S + \Delta S)(Z + \Delta Z)$ is made "smaller" (address objective)

- 1. $\Delta x_1 F_1 + \dots + \Delta x_p F_p \Delta S = 0$
- **2.** $\operatorname{Tr} F_i \Delta Z = 0, \ i = 1, \dots, m$
- 3. $(S + \Delta S)(Z + \Delta Z)$ is made "smaller"
- 4. $S + \Delta S \succeq 0, \ Z + \Delta Z \succeq 0$

1. $\Delta x_1 F_1 + \cdots + \Delta x_p F_p - \Delta S = 0$

(1), (2) linear equations

- **2.** $\operatorname{Tr} F_i \Delta Z = 0, \ i = 1, \dots, m$
- 3. $(S + \Delta S)(Z + \Delta Z)$ is made "smaller"
- 4. $S + \Delta S \succeq 0, \ Z + \Delta Z \succeq 0$

- 1. $\Delta x_1 F_1 + \dots + \Delta x_p F_p \Delta S = 0$
- **2.** $\operatorname{Tr} F_i \Delta Z = 0, \ i = 1, \dots, m$
- 3. $(S + \Delta S)(Z + \Delta Z)$ is made "smaller"

4. $S + \Delta S \succeq 0, \ Z + \Delta Z \succeq 0$

(1), (2) linear equations

(3) accomplished via Newton step, another linear equation

- 1. $\Delta x_1 F_1 + \dots + \Delta x_p F_p \Delta S = 0$
- **2.** $\operatorname{Tr} F_i \Delta Z = 0, \ i = 1, \dots, m$
- 3. $(S + \Delta S)(Z + \Delta Z)$ is made "smaller"
- 4. $S + \Delta S \succeq 0, \ Z + \Delta Z \succeq 0$

(1), (2) linear equations

(3) accomplished via Newton step, another linear equation

Solution strategy:

- First, eliminate ΔS from the linear equations
- Next eliminate ΔZ
- Solve a dense linear system in variable Δx
- Reconstruct ΔZ and ΔS
- $S + \Delta S \succeq 0, \ Z + \Delta Z \succeq 0$ ensured using line search

- A brief introduction to Semidefinite Programming (SDP)
- Focus: LMIs from the Kalman-Yakubovich-Popov Lemma
- Fast algorithms for SDPs from KYP Lemma

General-purpose implementation for KYP SDPs

minimize
$$c^T x + \operatorname{Tr}(CP)$$

subject to $\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \sum_{i=1}^p x_i M_i \succeq N$

- $A \in \mathbf{R}^{n \times n}$, $B \in \mathbf{R}^{n \times 1}$
- (A, B) controllable
- p + n(n+1)/2 variables

FAST ALGORITHMS FOR KYP SDPS

Primal and dual KYP SDPs

Primal SDP

D

minimize
$$c^T x + \operatorname{Tr}(CP)$$

subject to $\begin{bmatrix} A^T P + P A & PB \\ B^T P & 0 \end{bmatrix} + \sum_{i=1}^p x_i M_i \succeq N$

Dual SDPmaximize
$$-\mathbf{Tr}(NZ)$$
subject to $AZ_{11} + Z_{11}A^T + \tilde{z}B^T + B\tilde{z}^T = C$ $\mathbf{Tr}M_iZ = c_i$ $Z = \begin{bmatrix} Z_{11} & \tilde{z} \\ \tilde{z}^T & 2z_{n+1} \end{bmatrix} \succeq 0$

FAST ALGORITHMS FOR KYP SDPs

Primal and dual KYP SDPs

Primal SDP

minimize
$$c^T x + \operatorname{Tr}(CP)$$

subject to $\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \sum_{i=1}^p x_i M_i \succeq N$

Dual SDPmaximize $-\mathbf{Tr}(NZ)$ subject to $AZ_{11} + Z_{11}A^T + \tilde{z}B^T + B\tilde{z}^T = C$ $\mathbf{Tr}M_iZ = c_i$ $Z = \begin{bmatrix} Z_{11} & \tilde{z} \\ \tilde{z}^T & 2z_{n+1} \end{bmatrix} \succeq 0$ (For future reference $z = [\tilde{z}^T, z_{n+1}]^T$)

Search equations for KYP SDPs

$$W\Delta ZW + \begin{bmatrix} A^T \Delta P + \Delta PA & \Delta PB \\ B^T \Delta P & 0 \end{bmatrix} + \sum_{i=1}^p \Delta x_i M_i = D$$
$$A\Delta Z_{11} + \Delta Z_{11} A^T + \Delta \tilde{z} B^T + B\Delta \tilde{z}^T = 0$$
$$\mathbf{Tr} M_i \Delta Z = 0$$

 $W \succ 0$; values of W, D change at each iteration

Search equations for KYP SDPs

$$W\Delta ZW + \begin{bmatrix} A^T \Delta P + \Delta PA & \Delta PB \\ B^T \Delta P & 0 \end{bmatrix} + \sum_{i=1}^p \Delta x_i M_i = D$$
$$A\Delta Z_{11} + \Delta Z_{11} A^T + \Delta \tilde{z} B^T + B\Delta \tilde{z}^T = 0$$
$$\mathbf{Tr} M_i \Delta Z = 0$$

 $W \succ 0$; values of W, D change at each iteration

For convenience:

$$\mathcal{K}(P) = \begin{bmatrix} A^T P + P A & P B \\ B^T P & 0 \end{bmatrix}, \qquad \mathcal{M}(x) = \sum_{i=1}^p x_i M_i$$

Search equations for KYP SDPs

$$W\Delta ZW + \begin{bmatrix} A^T \Delta P + \Delta PA & \Delta PB \\ B^T \Delta P & 0 \end{bmatrix} + \sum_{i=1}^p \Delta x_i M_i = D$$
$$A\Delta Z_{11} + \Delta Z_{11} A^T + \Delta \tilde{z} B^T + B\Delta \tilde{z}^T = 0$$
$$\mathbf{Tr} M_i \Delta Z = 0$$

 $W \succ 0$; values of W, D change at each iteration

For convenience:

$$\mathcal{K}(P) = \begin{bmatrix} A^T P + P A & P B \\ B^T P & 0 \end{bmatrix}, \qquad \mathcal{M}(x) = \sum_{i=1}^p x_i M_i$$

Then,

 $\mathcal{K}^{\mathrm{adj}}(\Delta Z) = A\Delta Z_{11} + \Delta Z_{11}A^T + \Delta \tilde{z}B^T + B\Delta \tilde{z}^T, \quad \mathcal{M}^{\mathrm{adj}}(\Delta Z) = \{\mathsf{Tr}M_i \Delta Z\}$

Standard method of solving the search equations

$$W\Delta ZW + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D$$

$$\mathcal{K}^{\mathrm{adj}}(\Delta Z) = 0$$

$$\mathcal{K}^{\mathrm{adj}}(\Delta Z) = 0$$

 $\mathcal{M}^{\mathrm{adj}}(\Delta Z) = 0$

Standard method of solving the search equations

$$W\Delta ZW + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D$$
$$\mathcal{K}^{\mathrm{adj}}(\Delta Z) = 0$$
$$\mathcal{M}^{\mathrm{adj}}(\Delta Z) = 0$$

General-purpose solvers eliminate ΔZ from first equation:

$$\mathcal{K}^{\mathrm{adj}}(W^{-1}(\mathcal{K}(\Delta P) + \mathcal{M}(\Delta x))W^{-1}) = \mathcal{K}^{\mathrm{adj}}(W^{-1}DW^{-1})$$
$$\mathcal{M}^{\mathrm{adj}}(W^{-1}(\mathcal{K}(\Delta P) + \mathcal{M}(\Delta x))W^{-1}) = \mathcal{M}^{\mathrm{adj}}(W^{-1}DW^{-1})$$

A dense set of linear equations in ΔP , Δx **Cost**: At least $O(n^6)$

$$W\Delta ZW + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D$$

$$\mathcal{K}^{\mathrm{adj}}(\Delta Z) = 0$$

$$\mathcal{M}^{\mathrm{adj}}(\Delta Z) = 0$$

 $W\Delta ZW + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D$

$$A\Delta Z_{11} + \Delta Z_{11}A^T + \Delta \tilde{z}B^T + B\Delta \tilde{z}^T = 0$$

 $\mathcal{M}^{\mathrm{adj}}(\Delta Z) = 0$

Use second equation to express ΔZ_{11} in terms of $\Delta \tilde{z}$:

$$\Delta Z_{11} = \sum_{i=1}^{n} \Delta z_i X_i, \quad \text{where } AX_i + X_i A^T + Be_i^T + e_i B^T = 0$$

Thus
$$\Delta Z = \mathcal{B}(\Delta z) = \begin{bmatrix} \sum_{i=1}^{n} \Delta z_i X_i & \Delta \tilde{z} \\ \Delta \tilde{z}^T & 2\Delta z_{n+1} \end{bmatrix}$$

 $W\Delta ZW + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D$

$$A\Delta Z_{11} + \Delta Z_{11}A^T + \Delta \tilde{z}B^T + B\Delta \tilde{z}^T = 0$$

 $\mathcal{M}^{\mathrm{adj}}(\Delta Z) = 0$

Use second equation to express ΔZ_{11} in terms of $\Delta \tilde{z}$:

$$\Delta Z_{11} = \sum_{i=1}^{n} \Delta z_i X_i, \quad \text{where } AX_i + X_i A^T + Be_i^T + e_i B^T = 0$$

Thus
$$\Delta Z = \mathcal{B}(\Delta z) = \begin{bmatrix} \sum_{i=1}^{n} \Delta z_i X_i & \Delta \tilde{z} \\ \Delta \tilde{z}^T & 2\Delta z_{n+1} \end{bmatrix}$$

Substituting in first and third equations gives

$$\mathcal{WB}(\Delta z)W + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D$$

 $\mathcal{M}^{\mathrm{adj}}(\mathcal{B}(\Delta z)) = 0$

$$W\mathcal{B}(\Delta z)W + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D$$
$$\mathcal{M}^{\mathrm{adj}}(\mathcal{B}(\Delta z)) = 0$$

Note that $G = \mathcal{K}(\Delta P)$ for some $\Delta P \iff \mathcal{B}^{\mathrm{adj}}(G) = 0$

$$W\mathcal{B}(\Delta z)W + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D$$
$$\mathcal{M}^{\mathrm{adj}}(\mathcal{B}(\Delta z)) = 0$$

Note that $G = \mathcal{K}(\Delta P)$ for some $\Delta P \iff \mathcal{B}^{\mathrm{adj}}(G) = 0$

Use to eliminate ΔP :

$$\begin{aligned} \mathcal{B}^{\mathrm{adj}}(W\mathcal{B}(\Delta z)W) + \mathcal{B}^{\mathrm{adj}}(\mathcal{M}(\Delta x)) &= \mathcal{B}^{\mathrm{adj}}(D) \\ \mathcal{M}^{\mathrm{adj}}(\mathcal{B}(\Delta z)) &= 0 \end{aligned}$$

n+p+1 linear equations in n+p+1 variables Δz , Δx

Alternative method: Summary

Reduced search equations of the form

$$\begin{bmatrix} P_{11} & P_{12} \\ P_{12}^T & 0 \end{bmatrix} \begin{bmatrix} \Delta z \\ \Delta x \end{bmatrix} = \begin{bmatrix} q_1 \\ 0 \end{bmatrix}$$

- Cost of solving is $O(n^3)$ operations (if we assume p = O(n))
- From Δz , Δx , can find ΔZ , ΔP in $O(n^3)$ operations
- Need to precompute X_i s ($O(n^4)$)
- P_{12} is independent of current iterates and can be pre-computed, in $O(n^4)$
- Constructing P_{11} requires constructing terms such as $Tr(X_iW_{11}X_jW_{11})$ and $W_{11}X_iW_{12}$ (also $O(n^4)$)
- Overall cost dominated by $O(n^4)$

Numerical example

	KYP IPM		SeDuMi (primal)	
n = p	prep. time	time/iter.	time/iter.	
25	0.1	0.07	0.1	
50	1.2	0.3	7.4	
100	21.7	3.3	324.7	
200	438.3	31.6		

- CPU time in seconds on 2.4GHz PIV with 1GB of memory
- KYP-IPM: Matlab implementation of alternative method
- SeDuMi (primal): SeDuMi version 1.05 applied to primal problem
- Prep. time is time to compute matrices X_i
- #iterations in both methods is comparable (7–15)

Further reduction in computation

Use factorization of A to compute terms such as $Tr(X_iW_{11}X_jW_{11})$ without computing X_i , i.e., without explicitly solving

$$AX_i + X_i A^T + Be_i^T + e_i B^T = 0, \quad i = 1, \dots, n$$

- Advantages: no need to store matrices X_i, faster construction of reduced search equations
- Possible factorizations: eigenvalue decomposition, companion form, ...
- For example, if A has distinct eigenvalues $A = V \operatorname{diag}(\lambda)V^{-1}$, easy to write down search equations in $O(n^3)$, in terms of V and λ

Existence of distinct stable eigenvalues

• By assumption, (A, B) is controllable; hence can arbitrarily assign eigenvalues of A + BK by choosing K

• Choose $T = \begin{bmatrix} I & 0 \\ K & I \end{bmatrix}$, and replace LMI by equivalent LMI $T^{T} \left(\begin{bmatrix} A^{T}P + PA & PB \\ B^{T}P & 0 \end{bmatrix} + \sum_{i=1}^{N} x_{i}M_{i} \right) T \succeq T^{T}NT$ $\begin{bmatrix} (A + BK)^{T}P + P(A + BK) & PB \\ B^{T}P & 0 \end{bmatrix} + \sum_{i=1}^{N} x_{i}(T^{T}M_{i}T) \succeq T^{T}NT$

Conclusion: Can assume without loss of generality that A is stable with distinct eigenvalues

Numerical example

Five randomly generated problems with p = 50, $n = 100, \ldots, 500$

	KYP IPM (fast)		KYP IPM		SeDuMi (primal)	
n	prep. time	time/iter	prep. time	time/iter	prep. time	time/iter
100	1.3	1.2	21.7	3.3	—	324.7
200	10.1	8.9	438.3	31.6		
300	32.4	27.3				
400	72.2	62.0				
500	140.4	119.4				

- KYP-IPM (fast) uses eigenvalue decomposition of A to construct reduced search equations
- Preprocessing time and time/iteration grow as $O(n^3)$

Conclusions

SDPs derived from the KYP-lemma

- A useful class of SDPs, widely encountered in systems, control and signal processing
- Difficult to solve using general-purpose software
- Generic solvers take $O(n^6)$ computation

Fast solution using interior-point methods

• Custom implementation based on fast solution of search equations (cost $O(n^4)$ or $O(n^3)$)