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Data on Manifolds

• Most data we can collect has many more correlated features
than true degrees of freedom. Geometrically, this is equivalent
to a curved manifold living in a high-dimensional space.

• Sensory percepts can be viewed as points in a high-D space.
Coherent structure in the world
generates strong correlations
between inputs.
Observations lie on or near
low dimensional manifolds.

• Nonlinearity is key: we want to model the curved geometry of
high-dimensional manifolds, not just linear subspaces.

• Applications: visualization, compression, classification
interpolation, generation, denoising of complex data, efficient
learning in huge feature spaces, finding compact
representations of state,...



Learning Non-Smooth, Self-Intersecting Manifolds

• Many interesting algorithms have been proposed in recent and
older work on nonlinear dimensionality reduction

• Almost all need to assume the manifold is smooth at some
scale, or else we could explain any observations we wanted
with a sufficiently convoluted manifold; but many data
manifolds that we encounter in practice aren’t smooth at all

• They also can’t deal easily with many-to-one manifolds that
intersect themselves, because nearby points in the high-D
space might not be nearby in the low-D space.

• Are these cases hopeless for unsupervised manifold learning?



But...



But...

There are just two rules for success:
1. Never tell all you know.

- Roger H. Lincoln



Temporal Smoothness: Sequences on Manifolds

• There’s another kind of smoothness: data might be generated
using a smooth trajectory in the underlying manifold
coordinates, even though the embedding function into the high
dimensional observation space might not be smooth.

• “Things that are nearby in time are nearby on the manifold.”

• Now we see a vector time series as an input, not just a random
sample of points from the manifold.



A twist...

When you are stuck, try solving a different problem.



Structured Sequence Learning

• Many time series actually come from dynamical systems with a
few degrees of freedom which produce complicated sequences
of high-dimensional data.



Structured Sequence Learning

• Many time series actually come from dynamical systems with a
few degrees of freedom which produce complicated sequences
of high-dimensional data.

• Latent variable models with low-dimensional hidden states
that evolve through time are ideal for learning such time series.

• Once learned, they can be used to classify, do outlier detection,
fill-in (interpolate) or predict (extrapolate) measurements and
infer hidden states given noisy observations.



A Game

• Input data: one or more sequence(s) of numbers
generated by connected movement in an underlying map.

1 2 3

4 5 6

7 8 9 1, 4, 1, 4, 5, 2, 4, 1, ...
4, 5, 2, 1, 2, 3, 5, 4, ...

4, 8, 9, 6, 5, 8, 4, 2, ...
3, 5, 8, 7, 4, 1, 2, 5, ...

5, 6, 9, 8, 4, 7, 8, 7, ... ?
• Learning task: reconstruct the topology of underlying map

(clearly absolute scale and rotation cannot be recovered).

• Many non-probabilistic methods can solve this problem
(e.g. adjacency graphs).

(This simple example has discrete-valued data, but we can play
the same game with continuous vector observations.)



A Harder Game

• Now make the output process noisy and allow repeated
numbers in the underlying map (output process many to one).

1 11 24 10 25

17 7 5 9 20

8 6 21 15 22

18 2 16 14 12

19 10 3 23 1 1, 11, 1, 11, ...

2, 2, 16, 16, ...
15, 15, 2, 3, ...

18, 19, 10, 3, ...
24, 2, 21, 2, ...

?
• If the sequence is “exciting enough” learning is still possible,

but deterministic methods will not work.

• Sounds like a job for statistical learning,
but which model should we use?



Idea: Constrained Hidden Markov Models

• We can create spatial dynamics in HMMs by thinking of each
state as corresponding to a cell in a fictitious topology space.

• Now by constraining the
transition probabilities
we can ensure that all
valid state sequences
correspond to continuous
(connected) paths in
the topology space. 1 64

1

64

• We must choose

– the dimensionality of the topology space
– a packing (e.g. cubic,hexagonal)
– a neighbourhood rule (e.g. share face/edge/corner)



Inference & Learning in CHMMs

Initialization: chose
(1) dimensionality for the topology space,
(2) packing and (3) neighbourhood rule, then create
CHMM by precomputing the transition matrix.

Inference: use forward-backward algorithm
or Viterbi decoding (very sparse). st

at
es

time

Learning:
Use Baum-Welch algorithm (EM)
to update the emission parameters,
holding transition matrix fixed.

lik
el
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parameter space

Local minima can be a problem (must use tricks).
Model structure (e.g. number of states), if not limited by
computation, must be chosen using e.g. cross-validation.



CHMMs can win the game

Training data:
600 symbols
15% noise

(In the pictures below,
fontsize ∝

√
probability

so that ink ∝ probability.)
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Iteration:005       logLikelihood:−2.4270
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Iteration:030       logLikelihood:−1.9624

2D topology space with hex packing (cubic also works)



Example application: inferring mouth movements

Can you hear the shape of the mouth? (after Kac)

?
Articulatory
space

Acoustic 
space

Old and interesting problem in speech science and engineering.

Manifold is self-intersecting, so naive regression won’t work.
(Many articulatory positions can produce the same acoustics.)



An experiment with real data

X-ray microbeam data from U.Wisconsin, Madison.

reference
beads

u.lip

l.lip

t.body{1,2}
t.dorsum t.tip

ref

jaw.molar

y-axisReference
Tracking &

Bead Placement

jaw.incisor

x-axis

palate

• simultaneous audio
and movements

• audio: 21kHz, 16bit

• movement: 8 beads
accuracy: 146Hz, ±1mm

• midsaggital only

• lots of material (numbers,
words, sentences, etc. read by
32 women, 25 men)

• Movement parameterization: 16 bead positions every 7ms
(can be linearly projected down to 5–8 dims)

• Audio parameterization: 12 line spectral pair (LSP)
coefficients plus log energy every 7ms (25 ms windows)



Articulatory Recovery with CHMMs

• Used a four-dimensional CHMM with several thousand states
(cubic packing, face neighbours).

• Each state has a Gaussian distrib. over spectral params (LSP).

• To recover a continuous state trajectory, do Viterbi decoding
and then interpolate smoothly between centres.

• After the unsupervised learning, find a single linear mapping
between the 4D state trajectories and articulator movements.

• Vicious local minima. Need to both
1) anneal very gently and carefully and
2) use an initialization trick

• A good initialization trick is to train a similar 4D CHMM on
sequences of movement data and then convert this it to an
acoustic CHMM by taking conditional densities.



Recovered mouth movements using CHMMs
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Recovery of tongue tip vertical motion from acoustics
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Recovery of tongue dorsum horizontal motion from acoustics
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Simultaneous Localization and Surveying
(work with Ruslan Salakhutdinov)

Goal: learn the responses of (survey) some variables across an
unknown space, given only time series logs of noisy sensors.

, ...
0 20 40 60 80 100 120 140 160 180 200

Time 

Sensor 1 

Sensor 2 

Sensor 3 

Wall Sensor  

Proximity Sensor  

Occupancy grid of world is typically empty (except at boundary).
No odometry available (except binary boundary signal).



CHMM results for a simple 15x15 grid world

True Sensor Responses
Learned Survey



Multiple Agents

• A single robot takes a long time to cover a certain area, so
surveying large maps requires huge amounts of data, and the
outputs are unreliable in places never visited.

• Multiple robots can explore the space faster, but if they do not
interact the resulting learning problem is the same as if a single
robot went on many excursions.

• The interesting case is when
agents interact, even rarely.

• Now we have multiple simul-
taneous sequences from the
manifold but they are linked in
some way by extra signals.

• Example: proximity detectors between multiple mobile agents.



Approximate Inference with Loopy BP

• Once we have multiple interacting sequences, we can no longer
apply the standard HMM inference and learning rules.

• The graphical model (like a factorial HMM) couples our beliefs
about the robot positions given the observations.

• We designed an efficient loopy BP algorithm for approximate
inference, which works well when interactions are rare.

• Intuition: run FB on one robot, taking into account where other
robots think you should be. Send your resulting “gammas” as
messages telling other robots where you think they should be.
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Results - 2 Robots, 1/2 data each

True Sensor Responses
Learned Survey



Results - 4 Robots, 1/4 data each

True Sensor Responses
Learned Survey



Local Inference Algorithm For Robot r

• Define & initialize α, β, γ as usual: αr
t (i) = p(yr

1:t, s
r
t = i|Θ);

βr
t (i) = p(yr

t+1:T , sr
t = i|Θ); γr

t (i) = p(sr
t = i|Y, Θ)

αr
1(i) = πr

i p(yr
1|sr

t = i); βr
T (i) = 1

• Initialize messages to unity: µt
q→r = 1

• Run forward-backward, except including incoming messages:

αr
t+1(j) =

[

∑

i

αr
t (i)Tij

∏

q

µt
q→r(i)

]

p(yr
t+1|sr

t = j)

βr
t (i) =

∑

j

Tijp(yr
t+1|sr

t = j)βr
t+1(j)

∏

q

µt+1
q→r(j)

• Compute marginal beliefs and outgoing messages:

γr
t (i) =

αr
t (i)β

r
t (i)

∏

q(µ
t
q→r)i

∑

j αr
t (j)βr

t (j)
∏

q(µ
t
q→r)j

µt
r→q(i) =

αr
t (i)β

r
t (i)

∑

j αr
t (j)βr

t (j)
∀q



Efficient Handling of Interaction Potentials

• In general, should account for both false positives and false
negatives, but we assume fp rate is zero (though it isn’t, even in
our simulations) to keep loops large and sparse.

• Potential function fqr(s
q, sr) is constant if proximity signal is

not observed, otherwise if proximity signal is observed:

f t
qr(s

q
t , s

r
t ) =

{

1 if s
q
t = sr

t
0 otherwise

}

• The message at time slice t that a factor node f t
qr sends to the

variable node sr
t now takes the form

mt
q→r ∝ µt

q→r

∑

st
q

f t
qr(s

q
t , s

r
t )

where µ are computing ignoring the interactions.
• This trick allows efficient inference: considering proximity just

another observation means pushing around a lot of zeros.



The obligatory demo...

If you can, always show movies.
Otherwise, scan in the first page of a very old paper.



Conclusions

• Like clustering, nonlinear dimensionality reduction tries to find
a set of small volumes in the high-dimensional observation
space that have large data density.

• For highly curved or self-intersecting manifolds, nearby
observations are not necessarily close in intrinsic coordinates.

• But if data are generated sequentially, by moving
slowly and smoothly on the manifold, we can use
temporal proximity as a learning signal, e.g. using
constrained HMMs.

• When we have multiple simultaneous observation
sequences and some interaction signals, some very
interesting new unsupervised learning problems
arise that use several datasets and exploit
partial correspondences between them.



Gamma Maps for Active Learning

By computing expected
occupancy of each state
(cell), we can obtain
confidence estimates on
our survey.

We can also send feed-
back to the controller to
recommend active ex-
ploration strategies that
will be maximally in-
formative.

Sensor 3



Instantaneous inversion is ill-posed...
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There are multiple articulatory configurations which produce
the same spectral shape. This means that no instantaneous
inversion function is possible since it would be one-to-many.
This problem is known from physical models of the vocal tract,
but we can verify it experimentally by looking at this dataset.



...articulatory to acoustic map is many-to-one
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Each group of four plots shows the articulatory configuration of:
1) a single “key-frame” (thick cross) from the database and
2) the 1000 frames (dots) which sound most like the key frame
(i.e. nearest in spectral distance as measured by LSP Gaussian).

[The four tongue beads are plotted. Data from single speaker.]



Global Kalman smoothing fails

We can construct the optimal linear
dynamical system model for the data
since we know both the noisy
observations (short time spectral
features of the acoustics) and the
hidden states (articulator positions).

Dynamics is random walk in
acceleration.

Then we can do exact inference using
Kalman smoothing to attempt to
recover the articulator movements
from the speech.

Even when tested on training data,
this procedure fails – the globally
linear output model simply is not
powerful enough.
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Recovery of tongue tip vertical motion from acoustics
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A different example: English text

Transition probabilities do not have to be constrained to allow
only diffusion type dynamics. Other dynamics constraints,
e.g. momentum are possible (may not be exactly Markov).

Unidirectional flow is another extreme, giving gives rise to
left-to-right HMMs (chain graphs). Constrained HMMs allow
mixtures of these chains, possibly of various lengths.

Here, a mixture of chains
(18 of len. 3; 8 of 2; 1 of 1)
were trained on
sequences of characters
from English text.

(In the pictures on right,
fontsize ∝

√
probability

so that ink ∝ probability.)

−
*

#

9

A B C D E

F G H I J

K L M N O

P Q R S T

U V W X YZ

−
*
#
9

ABCDE
FGHI J
KL MNO
PQRST
UVWXYZ

−
*

#

9

A B C D E

F G HI J

K L MNO

P Q RS T
U V W X YZ

−

*

#

9

AB C D E
F G H I J

K L M N O
P Q R S T

U V W X YZ

−

*

#

9

AB C D E
F G H I J

K L M N O
P Q R S T

U V W X YZ

−

*

#

9

A B CDE

F G H I J

K L MN O

P Q RS T

U VWX YZ

−

*

#

9

A B CDE

F G H I J

K L MN O

P Q RS T

U VWX YZ

−

*

#

9

A B C D EF G H I J

K L M N O

P Q R S T

U V W X YZ

−

*

#

9

A B C D EF G H I J

K L M N O

P Q R S T

U V W X YZ

−

*

#
9

A B C D E
F G H I J

K L MN O

P Q R ST
U V W X YZ

−*
#

9

A B C D E

F G H I J

K L M N O

P Q R S T

U V W X YZ

−

*

#

9

AB C DE
F G H I J

K L M NO

P Q RS T

U V W X YZ

−*
#

9

A B C D E

F G H I J

K L M N O

P Q R S T

UV W X YZ

−

*

#

9

A B CD E

F G H I J

K L M NO

P Q R ST

U V W X YZ

−
*

#

9

A B C D E
F G H I J

K L M N O
P Q R S T
U V W X YZ

−

*

#

9

A B CD E

F GH I J
K L M N O

P Q R S TU V W X YZ

−
*

#

9

AB C D E
F G HI J

K L M N O
P Q R S T

UV W X YZ

−

*

#

9

A B C DE

F G H I J

K LMN O

P Q RS T
U VWX YZ



Decline and Fall of the Roman Empire
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