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Abstract

A rolling mill  process control system calculates the setup
for the mill’s actuators based on models of the
technological process. Neural networks are applied as
components of hybrid neuro/analytical process models.
They are the key to fit  the general physical models to the
needs of the automation of a specific mill.
Present applications include the calculation of  the rolling
force and strip temperature (hot and cold rolling);
prediction of width-spread in the finishing mill; control of
strip width shape; and control of the coiling temperature in
a cooling train (hot rolling). The authors outline how
significant benefits are achieved in rolling mill technology
by using neural networks.
The work presented here is the result of a close
cooperation between Siemens Corporate Technology in
Munich and the Industrial Projects and Technical Services
Group in Erlangen.

1.  Introduction

Today’s rolling mill process models are fairly mature.
Typically, the adaptation of these mathematical models to
the individual conditions of the plant is done using a
fragmented, look-up table based approach with short- and
long-term inheritance. This approach has drawbacks due to
the required size for the look-up tables for large product
ranges and the lack of interpolation capability. The
application of  neural networks within a new control
strategy has reduced these problems significantly. The
application strategy for neural networks within hybrid
systems, their role in various rolling mill applications
(rolling force, stock temperature, width) and the benefits
achieved by implementations of this technology are
described in this paper.

In Siemens rolling mill process control automation, neural
networks always complement (but never replace)
physical/analytical models. Neural networks improve the
overall model accuracy around setpoints where process
data is available. They are the key to fit  the general
physical models to the needs of the automation of a
specific mill. Knowledge gathered by process engineers
doing analytical modeling has not become obsolete, but
plays an important role in the hybrid system as the source
of the analytical system component. The analytical model
structure is the basis of the complete model. Only the
analytical model allows for operation in novel process
setpoints and for interpretation of results.

2. Application environment

The technical process to be automated is, for example, the
multiple stand finishing mill of a wide-strip hot rolling
mill. From strip to strip, this is a cyclic process. On a first
level a basic automation system serves sensors and
actuators and performs feedback control. The next level is
the process control level.
Fig. 1 depicts the hierarchical structure of a generalised
process automation system. The task of the process control
level is the pre-calculation, i.e. the accurate determination
of the mill settings needed for the incoming strip before it
actually enters the mill. The pre-calculation is based on a
pool of relevant model equations. The models describe the
technical process adequately, though, of course, never
exactly. Because of this, a post-calculation is performed,
which compensates for the error by continuously adapting
the models to the living technical process.
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An on-line adaptation is carried out. At this instance,
neural networks are applied. They favourably contribute to
both tasks, modelling and adaptation.
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Fig. 1: Organisation of a typical process control system

3. The application strategy

The authors do not promote a replacement of the analytical
models by neural networks. Combinations of neural
network and classical analytical models are preferred.
Such a combination of a mathematical model and a neural
network can take various forms, the neural network can be
employed at various stages (Portmann, et al., 1995).
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Fig. 2: Parallel configuration of an analytical model and a
neural network

Fig. 2 shows one possible way: A parallel configuration of
mathematical model and neural network. The
mathematical model calculates an approximate value for
the target value as accurately as possible, while the neural
network produces an estimate of the inherent error in the
mathematical model’s approximation. The sum of both
results should yield an accurate target value y.
Of course, the parallel combination of the two model
components can also be done by multiplication.
For all kinds of neuro-analytical combinations applied in
the Siemens steel mill automation, the following
statements can be made:
- Within the combined system, on-line adaptation is the

neural network’s task.
- All knowledge that was gathered by engineers in the

past doing analytical modelling has not become

obsolete, but is still fully integrated into the system in
form of the analytical system component.

- A model that is based only on neural networks
appears as a ”black box” to technologists. In contrast,
the combination of neural network and mathematical
model highlights the analytical relationships within
the technical process.

- The neural networks adapt the general analytical
models to the specific environment of the plant.

4. Novel methods

Complex applications using artificial intelligence in
process automation would not have been possible without
further development of existing methods. First application
attempts in steel manufacturing with standard neural
network methods, such as static mappings with MLP or
RBF networks, failed due to process drift, the high
dimension and strongly clustered nature of the relevant
process data. New developments for robust on-line
adaptation and ”Initialisation Learning” are discussed in
the following sections.
Know-how is also required concerning pre- and post-
processing of the neural network input and output data.
The proper choice and application of methods for e.g. data
scaling, selection of relevant inputs and elimination of
invariances is crucial.

Selection of relevant inputs

In many industrial applications it is not known a priori,
which input variables have a significant influence on the
process. In practice there are a couple of measurements
which “might” be important. As well known from
theoretical considerations (curse of dimensionality) the
number of  irrelevant and less relevant inputs should be as
small as possible.
That’s why we developed a method for semi-automatic
detection of relevant inputs. Based on a subspace of the
input parameters a neural model is trained with measured
data. Then the model can be tested with a ten-fold cross-
validation. This process is repeated for different input
subsets. The comparison of the validation errors leads to
the best subsets. The number of different input selections
grows exponentially with the number of input dimensions.
The computational effort can be reduced, if an intelligent
search strategy is applied: in the cooling section
application (see below) a combination of forward subset
selection and backward subset elimination reduced the
computing power compared to an exhaustive search by the
factor of  100.

On-line Adaptation

For a good accuracy of the neural controller, the rolling
mill’s "form of the day" must be taken into account.



(Schlang, et al., 1997).  Undetermined or hidden influence
parameters, such as wear, have an essential influence on
the rolling mill process. Online adaptation accounts for
this “form of the day” as well as for novel control
situations (new products). Target values for the models are
derived in various ways from measurements during
processing (see examples). The neural models are adapted
according to the error between the neural estimate for the
model output and the target value derived in post-
calculation. Online adaptation must be very robust to
maintain stability under the rough conditions in rolling
mill control and measurement systems.

Based on the theory of stable, adaptive systems and
nonlinear control, Siemens has developed new neural
network architectures, training and adaptation techniques
to meet the practical requirements of fast adaptation at
high robustness. As an example for the performance of the
online adaptation, the effect on strip temperature
prediction is illustrated in figure 3. Here, the temperature
after the finishing train is predicted. The temperature
model consists of an analytical model and a neural
network correction factor. The root mean square error is
plotted against the strip counter. Two pre-calculations are
initiated at the instance of strip entry, each starting with
the same trained neural network. One network is adapted
online while the other is kept static.
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Fig. 3: Effect of on-line adaptation on the accuracy of strip
temperature prediction

The network with online adaptation achieves a mean per-
stand accuracy (fig. 3) of about one 1 Kelvin (lower
curve). The accuracy of the non-adaptive model is initially
only slightly worse than that of the adaptive model but it
drifts off with time to up to 8 Kelvins (upper curve). The
difference between the two models is due to the effect of
online adaptation. At strip number 1900, the non-adaptive
neural network was copied and re-started as an adaptive
model. Within no more than 100 strips, the error of this
network has decreased to the range of the error of the
originally adaptive one.

Initialisation Learning

Usually neural networks have to be trained with a
representative plant data set before they can generalise to
new data and thus can securely be used in a controller.
However, building a representative data set for a steel mill
typically takes several  thousands of strips (i.e. several
weeks’ production). Such waiting times are often not
acceptable when commissioning a new plant or a new
controller. It is also not desirable to employ additional
conventional modules, whose only job would be to
guarantee sufficient operation in this training phase.

Consequently, "Initial(isation) Learning" methods have
been developed that adapt to each single data point,
starting from scratch, however resulting in reasonable on-
line behaviour at new data points.
Initialisation Learning is supported efficiently by hybrid
systems: The more elaborated the static analytical model
is, the less the neural network has to learn. Small
correction values can be found securely and rapidly by on-
line adaptation. The analytical model is usually good
enough to master the first few strips without support by a
neural network.
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Fig. 4: Neural network "Initialisation Learning" applied to
strip temperature prediction

For Initialisation Learning multiple on-line adaptive neural
networks are used. The adaptive process starts using a very
small network. Training data is stored throughout the
whole initialisation phase. As soon as there is a certain
amount of data, the smaller network is deleted and a new,
bigger network is trained in the background with the
complete stored data set and subsequently takes over on-
line adaptation for the next production cycles. This method
is repeated in several steps until, after several thousands of
training examples, a network with the final size is used.

At hot strip mills, using Initalisation Learning, high quality
strip temperature prediction was achieved after only a few
operation days. As fig. 4 indicates, the quality after about
2000 strips was equal to the quality of off-line and/or on-
line pre-trained networks and better than the conventional
method.



5. Examples of current applications

For six years, neural networks from Siemens AG have
been applied in steel process control (Röscheisen, et al.,
1992; Poppe and Martinetz, 1993; Poppe, et al., 1995;
Martinetz et al., 1995; Schlang et al., 1996; Jansen et al.,
1999, Döll et al., 1999). Current neural modelling
applications for predictive control of strip rolling mills
include prediction of the temperature of the rolling stock,
prediction of the spread in the roughing mill and the
finishing mill, prediction of the rolling forces, prediction
of mechanical properties, and others. For more than four
years electric arc furnaces are controlled by neural
networks. Neural networks are also employed for direct
control: The neural "short-stroke controller" controls the
width shape at the strip head and tail.
Some results from hot wide strip mills are explained in the
following sections. In general, using a neural network
based improved automation system, the product quality is
increased and the amount of scrap is reduced avoiding
unnecessary recycling .

Application in cold rolling mills

In cold rolling mills the material strength increases in each
stand. This makes the process modelling considerably
more difficult. That’s why we split the modelling into two
steps: a model for the material strength and a second one
for the rolling forces in each stand.
Physically both models are coupled: if the material
strength increases the rolling force will increase too.
The input to the material network is the chemical
composition of  the steel, the output some characteristic
parameters which describe the material strength. These
target values can not be measured directly. They are
calculated from the rolling forces by the solution of an
optimisation problem.
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Fig. 5: Normalised root-mean-square error of the rolling
force in cold rolling mills

The material parameters and some other parameters
(geometry, slip...) are the inputs to an analytical rolling

model which describes the physics in the roll gap. With
this combination we get good prediction results. If some
additional stand networks are introduced the modelling
errors can be decreased: the stand networks learn the
individual modelling error of each stand.

Fig. 5 shows the results for some simulations based on
data of the cold rolling mill at Voest: the normalised root-
mean-square error (rms) of the rolling force for a typical
stand is shown as a function of different conventional and
neural approaches. Mean is the rms of a simple prediction
of the mean value, roll the error of the analytical model
without any correction, linReg the result for correction
with a linear regression, NN a static neural net. Int,
linReg+ and NN+ are the same methods expanded by an
on-line adaptation. Fig. 5 shows that the best performance
both for the static models and the on-line adaptive ones is
obtained by neural networks. A comparison of the best
linear approach linReg+ and the neural network modelling
NN+ shows an improvement in generalisation accuracy of
25%.

Prediction of strip temperature in the
finishing mill and the cooling section

In order to obtain adequate material properties the strip
temperature has to be met exactly at the different
processing states. Hybrid models can predict the
temperature at different stages of the rolling process.
Figure 6 shows a typical temperature distribution in the
mill.
In the finishing mill the stock temperature at each roll gap
can not be known a priori, but must be calculated. This is
done by an analytical model in combination with a neural
correction network. The mathematical model calculates
the variation of stock temperature from its entry to its exit
from the finishing mill, based on temperature
measurement following its pass through the roughing mill.
During the next strip pass, this temperature curve is
checked by measurements at two points, behind the second
and the last stand.

position

roughing mill finishing mill cooling section

temperature

Fig. 6: rolling stock temperature (arbitrary units) in a hot
rolling mill



This procedure results in the post-calculation errors for use
of on-line adaptation of the neural network. Thus the
networks are capable of forecasting the systematic error
component within the framework of post-calculation.

The coiler temperature of can be predicted by a hybrid
system.
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Fig. 7: A hybrid system for temperature prediction in the
cooling section

The analytical model consists of two parts (see fig. 7): a
sub-model for the heat transition coefficient (cooling
water/strip) and a model based on finite differences for the
heat conduction within the strip. The neural network learns
an e.g. material dependent correction of the heat transfer
coefficient.
The model is used to solve the “inverse” problem: given a
desired temperature at the coiler the amount of needed
water in the cooling section is calculated by a model based
optimisation. The result for a mill with an extremly wide
spectrum in different products and a very short cooling
section is shown in fig. 8. Neural networks helped to
reduce the resulting error in temperature prediction from
22 to 15 Kelvins.
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Fig. 8: The error of predicted vs. measured temperature at
the end of the cooling section. Results of a short
cooling section which handles over  250 different
steel qualities

Short-Stroke-Control

The rolling of strips or plates causes width variations
along the strip/plate. Equal width along the strip/plate is
desired to yield a good product quality, to save material,
and to comply with technological requirements for further
processing. Local width variations are a particular
problem at the instationary regions at the strip/plate head
and tail.
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("fish tail")

Strip body, cross section
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Edger roll
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Fig. 9: Width deviations at strip head and tail

If, during an edging pass, for example, the edger rolls
operate with a constant screw-down u (Figure 9), the strip
ends show a significant under-width s as compared to the
middle parts, the strip ends after edging resemble a "fish-
tail". Further width deformations occur in subsequent
passes. Various, complex superpositions of the width
deformations are occur in different pass schedules (using
combinations of edging and flat passes, forward and
reverse passes, longitudinal and broadside rolling of
plate).

In the roughing stand of a hot strip mill, hydraulic
actuators for the edger rolls allow for a local influence on
the width. A set of “short strokes” of the hydraulic
actuators onto the strip ends are calculated in each pass in
order to yield a desired width shape for the finished strip.
In the case of Short Stroke Control (SSC) for strip ends,
analytical models for the width shape are used. Due to the
analytical structure, they provide a good extrapolation
from the measured non-rectangular width shape to the
desired rectangular width shape. However, the calculation
of a suitable control using these analytical forward-models
in real time is very difficult in the case of complex pass
schedules and multiple technological constraints, such as
found in a reversing rougher. Therefore, a neural network
is trained as an inverse model under technological
constraints.

Details of the complex training procedure of the neural
SSC are depicted in Figure 10:



Fig. 10: The concept of a cyclic SSC,
v: precalculated  process variables,
n: postcalculated process variables,
u: actuation (short-stroke), s: width shape

The neural control module (SSC) is used for every
roughing cycle i. The short stroke u is directly derived
from the outputs of the neural network based on the
process parameters p. A cycle is defined according to the
roughing mill configuration and the pass schedule used at
the particular mill.
For training the SSC, the analytical model (proc.
model/gradient estimator) calculates the width shape s. A
width shape error ∆s (derivation from rectangular shape)
occurs for each cycle. Subsequently the model is used for
estimation of the width error gradient with respect to each
single SSC curve involved in the roughing process (Error
backpropagation). Techno-logical constraints are
introduced into the adaptation.
The neural SSC is one of the most recent and complex of a
family of successfully applied neural controllers.

6. Conclusions and further prospects

The long term objective of further application
development is the intelligent steel production plant. This
plant should one day operate using neural networks and
other methods from artificial intelligence at all higher
automation levels, including scheduling and management
systems. Besides control, automatic diagnosis of
automation and technological faults has become a broad
field of application of intelligent algorithms. The large
potential of these approaches can be exploited to create
integrated production techniques that improve the
efficiency and competitiveness of entire industrial
facilities while reducing demand for resources.
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Fig 11: Rolling mills, equipped (or in the process of being
equipped) with neural control by Siemens AG
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