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Abstract

A new steering control structure for cars equipped with 4-wheel steering is presented. This control structure is based on a simplified linear model that captures 

the main features of the lateral dynamics of 4-wheel steering cars at constant speed. The proposed control structure allows for the decomposition of an 

originally 2-by-2 MIMO control design problem into two SISO control design problems by using individual channel decomposition. The control design can be 

carried out using classical Bode-plot based techniques and results in very simple sideslip and yaw rate controllers valid for the entire speed operating envelope. 

2 Single-track linear model of 4-wheel steering dynamics

3. Individual channel decomposition (Diagonal controller)

4. Control structure

5. Simulation results
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Using a non-linear two-track model of a Mercedes S Class

• Step reference of 0.04 rad/s in yaw rate. Maintain sideslip at 0 rad

• �–split braking (1-0.2). Initial speed: 40 m/s. Braking: 9 m/s in 4 seconds 
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Original yaw rate equation
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Resulting yaw rate equation
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4. Control design
• Design is carried out in the frequency domain using an improved linear 

model of the car that includes time delay and actuator dynamics.

• The controller structure allows for the design of two controllers      and      

valid for the entire operating envelope. 

• The design is based on      and      , respectively.

• Bandwidth separation is imposed (BW of Channel 1<<BW of Channel 2) 

in order to improve cross-channel disturbance rejection.

• Good phase and gain margins are obtained with integral control in 

Channel 1 and PID control in Channel 2.
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1. The control problem
• Track reference yaw rate (   ) and sideslip 

signals (   ) with the highest possible 

closed-loop bandwidth (Desirable: 3 Hz).

• Reject any disturbances in sideslip and 

yaw rate (i.e. those caused by wind gusts 

or �–split braking) with highest possible 

bandwidth.

• Robustness to uncertainties and 

parameter changes (e.g. tyre stiffness).

• Speed operating envelope: 10–60 m/s.
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