SPIN-to-GRAPE: A tool for analysing symmetry in Promela models

A. Donaldson, A. Miller and M. Calder

Department of Computing Science
University of Glasgow
Glasgow, Scotland.

Abstract. We provide two examples of Promela models of concurrent, distributed systems, whose associated Kripke structures have more complex symmetry groups than those of models commonly cited in the literature. We present a tool, SPIN-to-GRAPE, which allows the state-graph of a Promela model to be manipulated using the group-theoretic package GAP and its graph-theoretic add on, GRAPE. Through studying these examples we show a correspondence between the symmetry group of the channel diagram of a system and the symmetry group of the Kripke structure associated with the system. We then identify some general classes of systems and describe the symmetry groups of the associated models. Finally we discuss ways in which symmetry reduction techniques incorporated within SPIN, e.g. the SymmSpin package, could be extended to exploit symmetry in such models.

Keywords

Reactive systems; concurrency; formal modelling and verification; symmetry reduction; distributed systems; Promela/SPIN; GAP/GRAPE; nauty

1 **Introduction**

Model checking is a technique whereby properties of a system can be checked by building an abstract model of the system and, by exploring all possible execution paths, checking whether the model satisfies the properties. Often models exhibit high degrees of symmetry, and this can be exploited, to reduce the cost of the search. The SPIN model checker [12] is an explicit state, on-the-fly model checker, designed primarily for the verification of communications protocols. Verification models for use with SPIN are written using the specification language Promela (Process meta language).

Recently attempts have been made to incorporate symmetry reduction techniques within the SPIN model checker [2]. In particular, the SymmSpin package has been shown to give very large factors of reduction when applied to models with many replicated components which are fully symmetric. The symmetry reduction techniques employed by SymmSpin are based on the approach of Ip and Dill using the notion of the scalarset [14]—a special data type with restricted,
symmetry-preserving operations. In addition to SPIN, scalarsets have also been used to add symmetry reduction to other model checkers such as UPPAAL [11] and Murϕ [6]. Scalarsets are an ideal means by which to exploit symmetry in models with many replicated components if there is full symmetry between these components. For example, scalarsets could be effectively used to gain symmetry reductions when verifying a model of a network of identical processes with the complete topology. Ip and Dill also note that the scalarset type could be modified to work with other kinds of symmetry, e.g. rotational symmetry in a system with a ring topology.

However, although symmetry reduction is currently a hot topic, few examples are available to (a) illustrate the fundamental concepts and (b) generalise the results to more realistic systems. In this paper we provide some concrete examples of models which have more complicated symmetry groups than those of examples commonly cited in the literature, symmetries which cannot be exploited currently by the scalarset approach. Our models are of distributed systems which exhibit both concurrency and non-determinism. We show that the symmetry groups of our models are isomorphic to the symmetry groups of the channel diagrams associated with the models, and describe the structure of these groups in terms of basic permutation groups. Through these examples we identify some more general classes of systems and predict the symmetry present in the associated models. We describe a technique by which the group theoretic package GAP [9] is used to investigate the automorphism groups of Promela models, and present a software tool, SPIN-to-GRAPE, which allows the state-graph of a Promela model to be loaded into GAP and manipulated using GRAPE, a graph-theoretic package for GAP. Finally we propose some extensions to the scalarset data type which could be used to apply symmetry reduction techniques to a larger class of Promela models than is currently possible with SymmSpin.

2 Preliminaries

In section 2.1 we give some mathematical definitions which will be used throughout. The application of symmetry reduction to model checking is briefly discussed in section 2.2, and we give an outline of the GAP package in section 2.3.

2.1 Basic group theory and automorphisms of Graphs

Definition 1. Let G be a non-empty set, and let $\circ: G \times G \to G$ be a binary operation. We say that (G, \circ) is a group if G is closed under \circ; \circ is associative; G has an identity element 1_G; and for each element $x \in G$ there is an inverse element $x^{-1} \in G$ such that $x \circ x^{-1} = x^{-1} \circ x = 1_G$.

We call the operation \circ *multiplication* in G. When it is clear what the binary operation is, we simply refer to a group as G rather than (G, \circ). Let H be a non-empty subset of a group G. If H is a group in its own right under the binary operation of G, i.e. it satisfies definition 1, then we call H a subgroup of G and write $H \leq G$.

Let \(G \) be a group, and let \(g_1, g_2, \ldots, g_n \in G \). The set of elements of \(G \) obtained by multiplying together (in any order and allowing repetition) any of the elements \(g_1, g_2, \ldots, g_n \) is denoted by \(\langle g_1, g_2, \ldots, g_n \rangle \). This set is a subgroup of \(G \), called the subgroup generated by \(g_1, g_2, \ldots, g_n \).

Consider the set \([n] = \{1, 2, \ldots, n\} \). A permutation of \([n] \) is a bijection from \([n] \) to \([n] \). We use disjoint cycle form \([19]\) to represent permutations of \([n] \). The set of all permutations of \([n] \) forms a group under composition of mappings. This group is called the symmetric group on \(n \) points, and is denoted \(S_n \).

Definition 2. Let \((G, \circ) \) and \((H, \ast) \) be groups, and let \(\theta : G \to H \) be a mapping. We say that \(\theta \) is an isomorphism from \(G \) to \(H \) if it is bijective and satisfies the following condition:

\[
\forall g, h \in G. \theta(g \circ h) = \theta(g) \ast \theta(h).
\]

In this case the inverse mapping \(\theta^{-1} \) is also an isomorphism from \(H \) to \(G \), and we say that \(G \) and \(H \) are isomorphic, denoted \(G \cong H \).

The relation \(\cong \) is an equivalence relation on groups \([19]\), so if groups \(G \) and \(H \) are isomorphic they are equivalent in group theoretic terms. In fact they are algebraically indistinguishable. Hence isomorphic groups are often regarded as equal since they have exactly the same structure. If a group \(H \) is isomorphic to a subgroup of a group \(G \) we just say that \(H \) is a subgroup of \(G \).

For neatness, and the ability to compare structural properties of different groups, we often identify a group \(G \) as being isomorphic to a product of permutation groups \(H \) and \(K \). For example as a direct product (denoted \(H \times K \)), a semi-direct product (denoted \(H \rtimes K \)), or a wreath product (denoted \(H \wr K \)). We do not provide definitions of these products here, for details see \([19]\).

Definition 3. Let \(\Gamma = (V, E) \) be a directed, uncoloured graph, where \(V \) is a non-empty set of vertices and \(E \subseteq V \times V \) is a set of edges. An automorphism of \(\Gamma \) is a bijection \(\alpha \) from \(V \) to \(V \) which satisfies the following condition:

\[
\forall x, y \in V. (x, y) \in E \iff (\alpha(x), \alpha(y)) \in E.
\]

If \(\Gamma \) is a coloured graph with a colouring \(C \) (\(C \) maps each element of \(V \) to exactly one colour taken from some non-empty set) then an automorphism of \(\Gamma \) must satisfy the additional condition:

\[
\forall x \in V. C(x) = C(\alpha(x)).
\]

For a directed graph \(\Gamma \) (coloured or uncoloured), let \(Aut(\Gamma) \) denote the set of all automorphisms of \(\Gamma \). It can be shown that \(Aut(\Gamma) \) forms a group under composition of mappings. We call \(Aut(\Gamma) \) the automorphism group of \(\Gamma \).

2.2 Symmetry and model checking

Throughout this section let \(P = p_1 \parallel p_2 \parallel \cdots \parallel p_n \) be a concurrent program, where \(p_1, p_2, \ldots, p_n \) are processes running in parallel for some \(n \geq 1 \), and \(AP \) a set of atomic propositions for the program \(P \). The set of communication channels associated with \(P \) is denoted by \(\{c_{n+1}, c_{n+2}, \ldots, c_{n+k}\} \) for some \(k \geq 0 \).
Definition 4. The Kripke structure \mathcal{M} over AP associated with \mathcal{P} is a quadruple $\mathcal{M} = (S, R, L, s_0)$ where:

1. S is a non-empty, finite set of states
2. $R \subseteq S \times S$ is a total transition relation, that is for each $s \in S$ $\exists t \in S$ such that $(s, t) \in R$
3. $L : S \rightarrow 2^{AP}$ is a mapping that labels each state in S with the set of atomic propositions true in that state
4. $s_0 \in S$ is an initial state.

The Kripke structure \mathcal{M} gives the formal semantics of the program \mathcal{P}. An automorphism of the Kripke structure \mathcal{M} is an automorphism of the uncoloured, directed graph with vertex set S and edge set R (see definition 3). The group of automorphisms of a Kripke structure \mathcal{M} is denoted $Aut(\mathcal{M})$. A subgroup G of $Aut(\mathcal{M})$ induces an equivalence relation \equiv_G on the states of \mathcal{M} by the rule $s \equiv_G t \iff s = \alpha(t)$ for some $\alpha \in G$. The equivalence class under \equiv_G of a state $s \in S$, denoted $[s]$, is called the orbit of s under the action of G. The orbits can be used to construct a quotient Kripke structure \mathcal{M}_G as follows:

Definition 5. The quotient Kripke structure \mathcal{M}_G of \mathcal{M} with respect to G is a quadruple $\mathcal{M}_G = (S_G, R_G, L_G, [s_0])$ where:

1. $S_G = \{[s] : s \in S\}$ (the set of orbits of S under the action of G)
2. $R_G = \{([s], [t]) : (s, t) \in R\}$
3. $L_G([s]) = L(\text{rep}([s]))$ (where $\text{rep}([s])$ is a unique representative of $[s]$)
4. $[s_0] \in S_G$ (the orbit of the initial state $s_0 \in S$).

In general \mathcal{M}_G is a smaller structure than \mathcal{M}, but \mathcal{M}_G and \mathcal{M} are equivalent in the sense that they satisfy the same set of logic properties which are invariant under the group G (that is, properties which are “symmetric” with respect to G). Thus by choosing a suitable symmetry group G, model checking can be performed over \mathcal{M}_G instead of \mathcal{M}, often resulting in considerable savings in memory and verification time. For more details of quotient structures and symmetry reduced model checking see for example [5].

It would be possible in principle to construct a quotient Kripke structure by constructing the original structure, finding its automorphism group, and identifying the orbits of the structure under this group. However, finding automorphisms of a graph is a hard problem, for which no polynomial time algorithm is known [18]. In addition a quotient Kripke structure cannot be found if the original structure is intractable. Thus any useful symmetry reduction method must allow us to find automorphisms of a Kripke structure without explicitly building the structure.

It is well known that automorphisms of a Kripke structure often arise as a result of symmetry in the architecture or network topology of the concurrent system being modelled [4]. We show in this paper that, in some cases, such symmetries can be detected by looking at the channel diagram [20] of the system.
Definition 6. The channel diagram corresponding to the concurrent program
\(\mathcal{P} \) is a directed, coloured graph \(\mathcal{C}(\mathcal{P}) = (V, E, C) \) where: \(V = V_P \cup V_C \) and
\(V_P = \{1, \ldots, n\} \) and \(V_C = \{n + 1, \ldots, n + k\} \) are the set of indices of processes and
channels in the system respectively; for \(i, j \in V \), \((i, j) \in E \) if and only if \(i \in V_P \), \(j \in V_C \) and process \(p_i \) can send a message on channel \(c_j \), or \(i \in V_C \), \(j \in V_P \)
and process \(p_j \) can receive a message on channel \(c_i \); the mapping \(C \) assigns each
process or channel to a process type or channel type respectively (where process
types and channel types are disjoint).

In Figure 1 we give an example of the channel diagram of a distributed system,
where processes are represented by ovals, channels by rectangles, and types by
textual labels. Indices are indicated beside each oval or rectangle.

Definition 6 is specific to the message passing computation paradigm. In [4],
a similar definition is made for a shared variable computation paradigm—the
coloured hypergraph corresponding to the concurrent program \(\mathcal{P} \). Under certain
restrictions, each automorphism of the coloured hypergraph corresponds to an
automorphism of the underlying Kripke structure associated with the system. An
automorphism \(\alpha \) of the hypergraph is applied to a state of the Kripke structure
by permuting the shared variables and local variables of processes according to
the permutation of process indices by \(\alpha \).

An analogous result holds for the message passing paradigm. An automorphism
of a channel diagram \(\mathcal{C}(\mathcal{P}) = (V, E, C) \) is a graph automorphism (see
definition 3) of \(\mathcal{C}(\mathcal{P}) \) considered as a directed, coloured graph. Elements of \(\text{Aut}(\mathcal{C}(\mathcal{P})) \)
permute both the set \(V_P \) of process indices and the set \(V_C \) of channel indices,
and can therefore be applied to states of a Kripke structure as follows. Let us
refer to the set of variables whose domains are process identifiers as \(I \)-variables.
The labelling function \(L \) of the Kripke structure labels each state \(s \) with a set
of assignments to local variables and channels of \(\mathcal{P} \). If \(v_i \) is a local variable of
process \(p_i \), then, since \(\alpha \) maps the process index \(i \) to the index of a process with
the same process type as \(p_i \), there is a corresponding local variable \(v_{\alpha(i)} \) of
process \(p_{\alpha(i)} \). The labelling of local variables in the state \(\alpha(s) \) is therefore defined
by the following rules:

\[
(v_i = x) \in L(s) \Rightarrow (v_{\alpha(i)} = x) \in L(\alpha(s)) \quad \text{if } v_i \text{ is not an } I\text{-variable}
\]

and

\[
(v_i = x) \in L(s) \Rightarrow (v_{\alpha(i)} = \alpha(x)) \in L(\alpha(s)) \quad \text{if } v_i \text{ is an } I\text{-variable}
\]

The automorphism \(\alpha \) permutes the contents of channels in \(\mathcal{P} \) in a similar way.
Under certain restrictions, an automorphism \(\alpha \in \text{Aut}(\mathcal{C}(\mathcal{P})) \) corresponds to an
automorphism \(\alpha' \in \text{Aut}(\mathcal{M}) \), thus:

Lemma 1. If \(\mathcal{P} \) is a concurrent program satisfying a set of restrictions \(R \), \(\mathcal{M} \)
is the Kripke structure associated with \(\mathcal{P} \), and \(\mathcal{C}(\mathcal{P}) \) is the channel diagram
corresponding to \(\mathcal{P} \), then \(\text{Aut}(\mathcal{C}(\mathcal{P})) \leq \text{Aut}(\mathcal{M}) \).

The set of restrictions \(R \) are similar to those associated with the scalar set
approach, described in section 7, in that they apply to the subset of the variables.
associated with P which are I-variables. In this case, statements in P involving an I-variable x are restricted to those of the form $x\Delta y$, where Δ is '=' or \neq, and y is an I-variable; $\text{chan}\?x$ (read x from channel with name chan); or $\text{chan}\!x$ (write x to channel with name chan).

Although straightforward, for space reasons we do not provide a proof of Lemma 1 here. However, we do prove the result for specific examples in sections 4 and 5. Lemma 1 enables us to find automorphisms of an intractably large Kripke structure by analysing the channel diagram of the system, which is typically a small graph.

2.3 GAP and GRAPE

GAP (Groups, Algorithms and Programming) [9], is a computational group theory package which consists of an imperative programming language, a type system for working with algebraic structures, and an extensive library of functions for computing with these structures. GAP provides a rich set of functions for computing with groups, but on its own provides little support for graph theoretic computation. GRAPE (GRaph Algorithms using PERmutation groups) [22] consists of a set of functions which can be imported into GAP. Among the functions which GRAPE provides is a function to compute the automorphism group of a directed, coloured graph. This function interfaces to the nauty (no automorphisms, yes) program [17], which uses the most efficient algorithm currently known for finding the automorphism group of a graph [18].

Full details of GAP and GRAPE can be found on the GAP website [9]. In this paper we make use of the following two functions:

- AutGroupGraph(Γ, C) — Returns the automorphism group of the directed graph Γ. The optional argument C allows a colouring on the vertices of Γ to be specified, and only automorphisms which preserve this colouring will be returned.
- IsomorphismGroups(G, H) — Computes an isomorphism between the groups G and H if they are isomorphic (see definition 2), and returns fail otherwise.

3 The Spin-to-GRAPE tool

Among the options which SPIN provides for running verifications on Promela models is the -dVERBOSE compile-time directive. This option causes every step of a verification to be recorded, and once completed, saved to a file. Running a verification to search for invalid end-states on a deadlock-free model with the -dVERBOSE option, and no partial order reduction (an algorithm ensuring that only one representative from a set of equivalent paths is searched), effectively causes the whole of the corresponding Kripke structure to be output. In order to manipulate the states and transitions of the Kripke structure associated with a model using GAP and GRAPE we have designed a tool, Spin-to-GRAPE, which takes relevant verbose output and produces a graph which can be input to GAP.
The SPIN-to-GRAPe tool is implemented as a PERL program, which effectively re-traces the steps taken by SPIN when performing the state-space search. The PERL code listing is available on our website [3].

Though the SPIN-to-GRAPe tool is extremely useful for working with simple Promela models, it has limitations. Use of the -DOVRBOS option greatly increases the time taken for a full state-space search, since SPIN displays on-screen every step involved. It would be preferable if the tool were incorporated into SPIN, so that as the state-space of a model is explored, SPIN could output a file containing the GAP and GRAPE commands required to build the state-graph, rather than the entire verbose output.

Another problem with the tool is that the size of input file which GAP can accept is limited due to a bug in GAP (version 4). The “current line” counter of an input file is held in a variable of type short, and this counter wraps back to 0 if the number of lines of an input file exceeds the capacity of a short variable. We have reported this bug and it will be fixed in the next release of GAP. Currently it is possible to modify and recompile GAP to solve the problem, or to split a large input into several smaller files. In addition, the nauty algorithm only works for graphs of size ≤ 2^{15} − 3 (although theoretically this bound can be raised via recompilation). More crucially, the complexity of the nauty algorithm means that it performs badly on large graphs, and its use is not generally feasible for graphs of more than around 15,000 vertices.

To accompany the SPIN-to-GRAPe tool we have written a GAP function, QuotientKripke(). This function takes the states and transitions of a Kripke structure M (as a directed graph) together with a subgroup G of Aut(M), and returns the directed graph consisting of the states and transitions of the quotient Kripke structure M_G. This function allows us to determine the potential factors of reduction available through the use of symmetry for small models. The code for the QuotientKripke() function is also available on our website [3].

In the following sections we describe two Promela models, and show how the SPIN-to-GRAPe tool allows us to analyse the symmetry present in both the state-graphs and the channel diagrams of these models.

4 Three-tiered architecture model

A common software engineering design pattern for distributed systems is the three-tiered architecture. Components in such an architecture are separated into three layers, a layer of clients, a layer of servers and a layer of data storage systems. This pattern is common in the e-business domain, where customers buy products or make bookings over the Internet. A set of servers at various geographical locations deal with customers’ (clients’) requests and communicate with a central (possibly replicated) database.

Our first model is of a simple three-tiered system consisting of three process types: client, server and database. Each client process is parameterised by its id and a channel name associated with a server process. The server processes are parameterised by two channel names. The first of these channels is used to
receive requests from client processes, and the second to send queries to the database. A client process loops continuously, sending a request message to the server to which it is connected, and waiting until a result message is received on its incoming channel. Similarly each server process continuously repeats the actions of receiving a request from a client, sending a query to the database and receiving data, then sending a result back to the client. The database process continuously receives queries from the servers and returns data. For each server process there is an array of channels—one channel for each client associated with that server. The database also uses an array of channels, one for each of the servers. All the channels in the model are synchronous. The channel diagram of a system with a database, three servers and eight clients is illustrated in Figure 1. Each channel is annotated with the type of messages it accepts. A message type consists of one or more field types enclosed in curly braces. The field types used here are byte, and mtype, which is an enumerated type used to represent control instructions. The type of a channel also depends on the length of the channel, i.e. the number of messages it can hold. Since all channels in the model are synchronous (and so have length 0), lengths are not indicated on the diagram. The code for this configuration of the three-tiered model is available on our website [3].

![Channel diagram of a three-tiered architecture model with one database (Db), three servers (Se) and eight clients (Cl).](image)

Fig. 1. Channel diagram of a three-tiered architecture model with one database (Db), three servers (Se) and eight clients (Cl).

Analysis of symmetry in the three-tiered model

In order to analyse the symmetry in the model of a three-tiered architecture we use the configuration shown in Figure 1 as a case-study. Let P denote a system with this configuration, with channel diagram C(P) and associated Kripke structure M. The configuration is suitable as it has multiple servers as well as multiple clients, and the tree of processes is not perfectly balanced, a feature
which we would expect to be reflected in the symmetry present in the Kripke structure. The resulting state-space of the configuration is small enough to allow comprehensive symmetry analysis using our automated setup.

Inputting the channel diagram of Figure 1 to GAP (specifying a colouring according to process types), and calling the GRAPE function \texttt{AutGroupGraph()} to find the group of channel diagram automorphisms shows that

\[
\text{Aut}(\mathcal{C}(P)) = \langle (5 \ 6)(20 \ 21), (6 \ 7)(21 \ 22), (8 \ 9)(23 \ 24), (9 \ 10)(24 \ 25), \\
(5 \ 8)(6 \ 9)(7 \ 10)(20 \ 23)(21 \ 24)(22 \ 25)(23)(17 \ 18)(14 \ 15), (11 \ 12)(26 \ 27) \rangle
\]

We can see from Figure 1 that the first generator of this group, the permutation \((5 \ 6)(20 \ 21)\) is an automorphism of the channel diagram since, clearly, swapping clients 5 and 6, and simultaneously swapping channels 20 and 21, leaves the structure of the channel diagram unchanged. Since clients 5 and 6 have the same process type, and channels 20 and 21 have the same channel type, the permutation preserves the colouring of the channel diagram. The other generators act on the channel diagram similarly. The elements of \text{Aut}(\mathcal{C}(P)) act on states of the Kripke structure \(\mathcal{M}\) as we described in the discussion preceding Lemma 1 in section 2.2. Since channels in the model are synchronous, no swapping of channel contents is necessary in this case. The three-tiered model focuses on control flow rather than data flow, so we would expect all symmetries of the Kripke structure \(\mathcal{M}\) to be structurally induced.

We prove that the automorphism groups of the Kripke structure and the channel diagram are isomorphic, and identify them as being in turn isomorphic to a product of symmetric groups:

Lemma 2. For the configuration of the three-tiered model described above,

\[
\text{Aut}(\mathcal{M}) \cong \text{Aut}(\mathcal{C}(P)) \cong (S_3 \wr S_2) \times S_2
\]

We have used our combination of SPIN, SPIN-to-GRAPE, GAP and GRAPE to prove this lemma. The SPIN-to-GRAPE tool was used to input to GAP the state-graph of the Kripke structure \(\mathcal{M}\). The automorphism group of this state-graph was then found using the \texttt{AutGroupGraph()} function.

We used GAP to construct a group \(G = (S_3 \wr S_2) \times S_2\) (GAP provides functions to compute the direct product and wreath product of two groups). The \texttt{IsomorphismGroups()} function was used to show that \(\text{Aut}(\mathcal{C}(P)) \cong \text{Aut}(\mathcal{M})\), and again to show that \(\text{Aut}(\mathcal{M}) \cong G\).

The original Kripke structure has 4,393 states. We have used our \texttt{QuotientKripke()} function to compute the quotient structure with respect to the group \(\text{Aut}(\mathcal{M})\), finding it to have 281 states. This is a significant factor of reduction which, for realistic sizes of model, could prove extremely effective in combatting the problem of state-space explosion.

Generalisation: Intuitively, the group \(\text{Aut}(\mathcal{C}(P))\) is isomorphic to the group \((S_3 \wr S_2) \times S_2\) since there are two blocks of three \textit{client} processes (giving rise to the subgroup \(S_3 \wr S_2\)), and a single block of two \textit{client} processes (giving rise
to the subgroup S_2). Consider an arbitrary configuration \mathcal{P} of the three-tiered model. Let \mathcal{M} be the Kripke structure associated with \mathcal{P} and let K be the maximum number of clients that any server in the configuration is connected to. Let m_i denote the number of servers which are connected to i clients for each $i, 1 \leq i \leq K$. The above discussion and result clearly generalises to give:

$$\text{Aut}(\mathcal{M}) \cong \text{Aut}(\mathcal{G}(\mathcal{P})) \cong \prod_{1 \leq i \leq K \atop m_i \neq 0} (S_i \wr S_{m_i}),$$

where \prod denotes the direct product over i. In [15], Jha shows how the automorphism group of an arbitrary rooted tree can be found. His approach could be used to generalise the above argument to systems with more than three tiers.

5 Model of message routing in a hypercube

A popular topology used in the implementation of switch-based multicomputers is the hypercube [23]. The following definition is adapted from [24]:

Definition 7. The n-dimensional hypercube is a graph $G = (V, E)$ where

$$V = \{(b_1, \ldots, b_n) : b_i = 0, 1\}$$

and

$$E = \{((b_1, \ldots, b_n), (c_1, \ldots, c_n)) : b \text{ and } c \text{ differ in one bit}\}$$

In a switch-based multicomputer using a hypercube topology, messages are routed between the processors. As our second example we model the routing of messages in a hypercube network using Algorithm 1 (below), which is a simplified version of an algorithm described in [8].

Our model defines a parameterised node process. To ensure that the state-space of the model is small enough to analyse we only consider one message being passed through the network at a time. Global variables record the destination and current position of the message. Communication is achieved through an array of channels, one for each node in the hypercube, and the init process (the process in which initial values of arrays, channels etc. are set) sends the first message to a non-deterministically chosen node.

To decide which neighbours are suitable to forward a given message on to, a node process first computes the bitwise exclusive-or of its own position and the message destination. Each bit of this result is then considered. If there is a 1 in position m of the result then the neighbour of the current node whose co-ordinates differ in only position m is closer to the message destination than the current node. The node process non-deterministically chooses one such suitable neighbour. Again, Promela code for the model is available on our website [3].

Analysis of symmetry in the hypercube model

The automorphism group of an n-dimensional hypercube is well understood, and is derived in [10]. The nodes of a hypercube can be represented by binary

Algorithm 1 Basic algorithm for message routing in a hypercube network

while true do
 receive message destined for node x
 if id = x then
 choose a new destination x
 end if
 determine neighbours which are closer than current node to node x
 forward message to one of these neighbours
end while

vectors of the form \((x_1, x_2, \ldots, x_n)\). For any permutation \(\alpha\) in \(S_n\), define the action of \(\alpha\) on \((x_1, \ldots, x_n)\) by \(\alpha((x_1, \ldots, x_n)) = (x_{\alpha(1)}, \ldots, x_{\alpha(n)})\). For each \(i\) define the \(i\)-th complementation permutation \(c_i\) by \(c_i((x_1, \ldots, x_i, \ldots, x_n)) = (x_1, \ldots, -x_i, \ldots, x_n)\). Let \(K_n = \langle c_1, \ldots, c_n \rangle\), the group generated by all combinations of the \(c_i\). The automorphism group of the \(n\)-dimensional hypercube is the semi-direct product of \(S_n\) and \(K_n\), denoted \(S_n \rtimes K_n\).

When analysing the nature of the symmetry in our hypercube model we would have liked to have used a configuration with at least four dimensions as a case study. However, the state-space of even the 4-dimensional configuration proved too large to analyse using our setup—\(1.6 \times 10^7\) states—so we restrict ourselves to the 3-dimensional configuration (a cube). This problem demonstrates the rapid explosion of a state-space, and hence the need for techniques such as symmetry reduction.

Let \(\mathcal{P}\) denote the 3-dimensional configuration of the hypercube message-routing system, with channel diagram \(C(\mathcal{P})\) and associated Kripke structure \(\mathcal{M}\). The topology of the system is a cube, so we have \(Aut(C(\mathcal{P})) = S_3.K_3\). Since the node processes in \(\mathcal{P}\) are all identical, we expect any automorphism of the cube topology to correspond to an automorphism of the underlying Kripke structure. Again, all symmetry is likely to be structurally induced.

Lemma 3. For the 3-dimensional configuration of the hypercube model described above,

\[Aut(\mathcal{M}) \cong Aut(C(\mathcal{P})) = S_3.K_3\]

We have proved this lemma using SPIN-to-GRAPE, GAP and GRAPE as we did for Lemma 2.

The original Kripke structure has 15,409 states. Using our QuotientKripke() function as for the three-tiered model, we find that the resulting quotient structure has 411 states. Again the factor of reduction gained is encouraging.

Lemma 3 is interesting since our model of message routing in a hypercube does not satisfy the restrictions we discussed following Lemma 1: process ids are used as operands in bitwise exclusive-or operations in order to determine how the packet should be routed. This shows that the restrictions associated with Lemma 1 are sufficient, but not necessary for the Lemma to hold. It would be interesting to try to identify general cases where process ids can be used as operands to arithmetic expressions without breaking symmetry.
Generalisation: Let \mathcal{P} be a configuration of the hypercube model with n dimensions for some $n \geq 1$. Let \mathcal{M} be the Kripke structure associated with \mathcal{P}, and let $\mathcal{C}(\mathcal{P})$ be the channel diagram corresponding to \mathcal{P}. It would seem likely, from the previous discussion, that the above result generalises to give

$$\text{Aut}(\mathcal{M}) \cong \text{Aut}(\mathcal{C}(\mathcal{P})) = S_n \cdot K_n$$

We would intuitively expect this generalised result to hold for any model of a distributed algorithm on an n-dimensional hypercube of identical processes.

6 **Applying SPIN-to-GRAPE to less symmetric models**

In our analysis so far we have used SPIN-to-GRAPE, together with GAP and GRAPE, to prove for certain model configurations that the automorphism group of the Kripke structure associated with the model is isomorphic to the automorphism group of the channel diagram corresponding to the model. In this section we make slight alterations to each of the models to make them less symmetric, and use SPIN-to-GRAPE to detect the changes in symmetry which these alterations cause.

Mixed modes of communication in the three-tiered model:

In our model of the three-tiered architecture illustrated by Figure 1, all communication is modelled using synchronous channels, so that messages are passed via a handshake between sender and recipient, with no buffering. We modify our model by making one of the channels a one place buffer (i.e. an asynchronous channel with length 1)—the channel which clients with process ids 5, 6 and 7 use to send requests to the server with process id 2. The rest of the model is unchanged.

For the Kripke structure \mathcal{M} of the original model we have $\text{Aut}(\mathcal{M}) \cong (S_3 \wr S_2) \times S_2$. Let \mathcal{M}' be the Kripke structure of the altered model. Analysis using SPIN-to-GRAPE reveals that $\text{Aut}(\mathcal{M}') \cong S_3 \times S_3 \times S_2$, which is a smaller group than $(S_3 \wr S_2) \times S_2$. Clearly this is because the altered communication channel means that it is no longer possible to permute the servers with process ids 2 and 3. This shows that it is not only the behaviour of processes and the presence of connections between processes that affects the structural symmetry of a model; the exact nature of the communication links is also crucial. Our approach to finding symmetry by looking at the channel diagram of a system handles this kind of asymmetry well, since changing the length of a channel changes the type of that channel. This is reflected in the symmetry of the channel diagram, and thus the corresponding change in the symmetry of the Kripke structure is also detected.

The Kripke structure \mathcal{M}' has 14,995 states, and using the QuotientKripke() function we find that the resulting quotient structure has 1115 states. The factor of reduction is smaller than the factor of reduction before alterations to the model were made. This is clearly due to the change in symmetry of the model.
Message routing in a hypercube with a fixed initiator:

In the hypercube model described in section 5, the packet is first sent non-deterministically by the \textit{init} process on one of the channels in the system. Such non-determinism in a model can often lead to a blow up of states, and a common approach when attempting to write an efficient verification model would be to remove such non-determinism. We alter the model so that the packet is always first sent on the channel associated with the node with an id of 0. A state-space search using SPIN reveals that the altered model has 8,866 states, in comparison to 15,409 states of the original model.

SPIN-to-GRAPe shows that the resulting automorphism group of the altered model is isomorphic to a \textit{subgroup} of the automorphism group of a cube. Let $G = S_3, K_3$ be the automorphism group of a cube, and let \mathcal{M}' be the Kripke structure for the altered model. Then we have $Aut(\mathcal{M}') \cong stab_G(0) = \{\alpha \in G : \alpha(0) = 0\}$, the subgroup of G which fixes node 0 (the stabiliser of node 0 in G). This shows that for a model consisting of identical processes connected as a given topology, symmetries of the underlying Kripke structure which correspond to symmetries of the topology will not necessarily be present if the \textit{init} process does not behave \textit{symmetrically} with respect to all processes. Again, our approach would detect such a change in symmetry; in the original model there would be an edge in the channel diagram from the \textit{init} process to \textit{every} channel in the system. In the altered model there would only be an edge from the \textit{init} process to the channel associated with node 0. This would cause a change in symmetry in the channel diagram, and the corresponding change in symmetry of the underlying Kripke structure would be detected.

Interestingly, the \textit{QuotientKripke()} function shows that the quotient structure corresponding to the altered model has size 1,669. The quotient structure corresponding to the model with no alterations has size 411. In this case, although removing non-determinism from the model results in a reduction of size in the Kripke structure, the corresponding reduction in symmetry means that the quotient structure of the altered model is actually larger than the quotient structure of the model with no alterations.

7 Extending symmetry reduction in SPIN

In [14], Ip and Dill proposed a special \textit{scalarset} data type which could be added to a system description language to make it easy to detect and exploit symmetries of the system. A scalarset is an integer subrange with restricted operations which ensure that consistent permutations of scalarset values throughout a Kripke structure result in automorphisms of the Kripke structure. The restrictions prevent scalarset values being compared with each other by ordering relations, or used as operands in arithmetic expressions. The ids of equivalent processes in a system could be modelled using scalarsets, indicating that applying a permutation of the ids throughout the Kripke structure would lead to a valid automorphism of the structure.
Though in many cases it has been shown to be effective [2,6,11], in general symmetry reduction using scalarsets is limited as it only allows the specification and exploitation of total symmetries. It can certainly not be applied to our examples. Our analysis of the three-tiered model shows that automorphisms of a Kripke structure may not always correspond to the permutation of the ids of just one process type: in a model with a tree-like structure they may be due to combining permutations of the ids of many process types. Similarly our analysis of the hypercube model shows that in networks of identical processes the presence of symmetry is dependent on the network topology. The application of scalarsets is currently limited to very simple topologies such as stars and cliques.

We propose two ways in which the scalarset data type could be extended to the kinds of models that we have described. We extend the notation used in [14] in which scalarsets are declared thus:

\[
\text{type (name) : Scalarset[size]}\]

Associated scalarsets: An associated scalarset would allow the symmetry of tree-structures to be described in a model specification. An associated scalarset is declared as usual with a specified size \(N\). The declaration also requires that a list of \(N\) scalarset types is specified. This list associates each of the \(N\) elements of the associated scalarset with another scalarset. It is safe to permute process ids \(i\) and \(j\) of an associated scalarset type if the scalarset types associated with both \(i\) and \(j\) are the same (and are permuted). For example:

\[
\text{type server_id : AssocScalarset(3, [Scalarset(3), Scalarset(3), Scalarset(2)]);}\]

specifies an associated scalarset type of size 3, where elements 1 and 2 are associated with ‘standard’ scalarsets of size 3, and element 3 is associated with a ‘standard’ scalarset of size 2. This associated scalarset type could be applied to the configuration of the three-tiered system shown in Figure 1, assuming that the client processes were declared using appropriate scalarset ids. The idea of association could be applied recursively to describe tree-structures with greater depth.

Topology-based scalarsets: When specifying a network of identical processes, symmetry between processes may be exploited if the network topology is known. A topology-based scalarset is declared with a given size, and a specified topology which must also be described in some standardised way. For example:

\[
\text{type node_id : TopologyScalarset(8, cube) where cube :=}
\]
\[
1 \rightarrow \{2,3,5\}, 2 \rightarrow \{1,4,6\}, 3 \rightarrow \{1,4,7\}, 4 \rightarrow \{2,3,8\},
5 \rightarrow \{1,6,7\}, 6 \rightarrow \{2,5,8\}, 7 \rightarrow \{3,5,8\}, 8 \rightarrow \{4,6,7\};
\]

specifies a topology-based scalarset type for nodes in a cube network, such as the one we considered in section 5. The definition of the cube topology indicates, for each node, which other nodes that node is connected to. Any automorphism of the specified topology could be safely applied to a topology-based scalarset, and GRAPE could be used to find the group of all such automorphisms.
The application of symmetry reduction to model checking using SPIN could be enhanced by extending the SymmSpin package to support these new types. In order to do this it would be necessary to define symmetry preserving operations on elements of these types, i.e. operations which ensure that symmetry can safely be exploited. It would also be necessary to devise algorithms to make efficient use of the new scalar set type symmetries during model checking. The SPIN-to-GRAPe tool and the automated setup presented here would prove useful during the development of these extensions, to test the validity of symmetry reductions on specific models.

8 Related work

The SymmSpin package [2] has been shown to give very large factors of reduction when applied to models with many replicated components which are fully symmetric. SymmSpin uses the scalarset type introduced by Ip and Dill in [14]; scalarsets have also been used recently to add symmetry reduction techniques to the real-time model checking tool UPPAAL [11].

Emerson et al. have investigated the role of symmetry reduction in partially symmetric systems, including systems which involve priority levels which vary between otherwise identical processes [7]. Some of the techniques introduced have also been implemented in the SMC tool [21], a symmetry-based model checker which allows safety and liveness properties to be verified.

In [16] the use of GAP to the problem of identifying symmetries in digital circuits is considered. No other paper on symmetry and model checking attempts to exploit GAP, or indeed any computational algebra package. Aloul et al. [1] use GAP, and in particular the nauty algorithm [17], to implement efficient symmetry breaking techniques for boolean satisfiability. In [15], the symmetries of various common architectures, including hypercubes and rooted trees are discussed. However, no concrete examples of models which use these architectures are provided and the problem of finding these automorphisms automatically is not investigated.

9 Conclusions and Further work

We have presented a result indicating that automorphisms of a Kripke structure associated with a concurrent system \mathcal{P} can be determined by finding the automorphisms of the associated channel diagram $\mathcal{C}(\mathcal{P})$. Additionally, we have presented a software tool, SPIN-to-GRAPe, which allows us to analyse the symmetry present in simple Promela models of concurrent, distributed systems using the group theoretic package GAP and its graph theoretic add-on, GRAPE. We have described two Promela models, used SPIN-to-GRAPe to analyse the symmetry present in the Kripke structures of certain configurations of these models, and suggested generalisations of our results to arbitrary configurations. Our analysis has shown that symmetry in the channel diagrams of our models corresponds to symmetry in the associated Kripke structures. Further, our analysis
has identified kinds of symmetry which cannot currently be exploited by the SPIN symmetry reduction package SymmSpin. We have proposed some extensions to the scalar set data type which could be used to extend the capabilities of SymmSpin.

We aim to develop the SymmSpin package by implementing the extensions to the scalar set data type which we have proposed. In particular, this will involve the identification of symmetry preserving operations for each new type, as well as algorithms to make efficient use of such symmetries during model checking. We are currently investigating how the SPIN-to-GRAPPE tool could be incorporated into SPIN, to avoid having to generate verbose output in order to investigate the associated state-graph.

In this paper we have not searched for symmetries when a temporal logic property is present in the model, nor have we attempted any sort of symmetry reduction. Our purpose here was to create a tool that could identify symmetries in simple models and to investigate ways in which the SymmSpin approach could be extended. However, we intend to extend our approach to address both of the issues above.

References