
A Dual Graph Translation of a Problem in ‘Life’

Barbara M. Smith

University of Huddersfield
Huddersfield HD1 3DH, U.K.

b.m.smith@hud.ac.uk

Abstract. Conway’s game of Life provides interesting problems in
which modelling issues in constraint programming can be explored. The
problem of finding a maximum density stable pattern (‘still-life’) is dis-
cussed. A formulation of this problem as a constraint satisfaction problem
with 0-1 variables and non-binary constraints is compared with its dual
graph translation into a binary CSP. The success of the dual translation
is surprising, from previously-reported experience, since it has as many
variables as the non-binary CSP and very large domains. An important
factor is the identification of many redundant constraints: it is shown
that these can safely be removed from a dual graph translation if arc
consistency is maintained during search.

1 Introduction

The game of Life was invented by John Horton Conway in the 1960s and pop-
ularized by Martin Gardner in his Scientific American columns (e.g. [6]). Many
variants of the game and problems arising from it have been studied. Here, one
such problem is described and its solution using constraint programming is dis-
cussed.

Life is played on a squared board, considered to extend to infinity in all
directions. Each square of the board is a cell, which at any time during the game
is either alive or dead. A cell has eight neighbours, as shown in Figure 1. The
configuration of live and dead cells at time t leads to a new configuration at time
t + 1 according to the rules of the game:

– if a cell has exactly three living neighbours at time t, it is alive at time t +1
– if a cell has exactly two living neighbours at time t, it is in the same state

at time t + 1 as it was at time t
– otherwise, the cell is dead at time t + 1

A still-life is a pattern that is not changed by these rules: hence, every cell
that has exactly three live neighbours is alive, and every cell that has fewer than
two or more than three live neighbours is dead. An empty board is a still-life,
but so are more interesting patterns. The question addressed in this paper is: on
an n × n section of the board, with all the rest of the board dead, what is the
densest possible still-life pattern, i.e. the pattern with the largest number of live
cells? For instance, Figure 2 shows a maximum density 3 × 3 pattern.

P. Van Hentenryck (Ed.): CP 2002, LNCS 2470, pp. 402–414, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Dual Graph Translation of a Problem in ‘Life’ 403

Fig. 1. A cell and its 8 neighbours

Fig. 2. A maximum density 3 × 3 still-life

Bosch and Trick [4, 3] considered integer programming and constraint pro-
gramming formulations of the maximum density still-life problem. Their most
successful approach [3] used a hybrid of the two. In this paper, pure constraint
programming approaches are considered further.

2 A 0-1 Formulation

An obvious way to model the problem as a constraint satisfaction problem (CSP)
is to use a 0-1 variable xij for the cell in row i, column j of the n× n grid, such
that xij has the value 0 if the cell is dead and 1 if it is alive. Each cell is
constrained by its eight neighbouring cells: if the sum of the values assigned to
the neighbouring cells is 3, then the cell is alive, and if the sum is less than 2 or
more than 3 then the cell is dead. Since all the cells surrounding the n×n square
are dead, we cannot have a sequence of three live cells along the boundary: this
is also included as a constraint.

The density of a pattern is the sum of the values of the cell variables. It is
maximized by adding a constraint whenever a solution is found, that the density
must be greater in any new solution; when no more solutions exist, the last one
found is optimal.

The variables are assigned in lexicographic order, row by row and left to right
along each row. This may not be the best ordering, but several likely alternatives
have proved worse. To find dense solutions quickly, the value 1 is assigned before
the value 0.

This formulation has been implemented in ILOG Solver. It is very similar to
the basic constraint programming model described in [3].

The first improvement to this model is to deal with the symmetry of the
problem. Given any Life pattern, there are up to seven symmetrically equivalent
patterns resulting from rotating or reflecting the board. Hence, the search can
explore many partial solutions which are symmetrically equivalent to dead-ends
that have already been explored. This can be avoided on backtracking by adding

404 Barbara M. Smith

constraints to the new branch of the search tree to forbid the symmetric equiv-
alents of assignments already considered. Gent & Smith [7] have implemented
SBDS (Symmetry Breaking During Search) in Solver to do this. The symmetries
of Life are the same as the symmetries of the n-queens problem, an example dis-
cussed in [7]. In this case, all that the SBDS user need do is write seven functions,
each describing the effect of one of the symmetries on an assignment of a value
to a variable. Bosch & Trick added constraints to their constraint programming
formulation to remove some of the symmetry, but SBDS, which removes all of
it, gives a greater reduction in search.

The results of the 0-1 formulation are given in Table 1. Search effort is mea-
sured by the number of fails (backtracks) reported by Solver. The table shows
both the effort required to find the optimal solution and the total effort and
running time (on a 600MHz PC). The difference between the number of fails to
find the optimal solution and the total number of fails shows the effort required
to prove optimality, i.e. to prove that there is no solution with greater density.
Using SBDS reduces the number of fails by about a factor of 6, and the running
time by about a factor of 4.

These results are better than those reported by Bosch and Trick for a con-
straint programming formulation. However, they achieved much better results
from their hybrid approach. The constraint programming approach needs to be
much improved before it is competitive with the hybrid.

Table 1. Search effort and running time to find maximum density still-lifes using
a 0-1 formulation. Value = maximum density; F = number of fails (backtracks)
to find the optimal solution; P = number of fails to prove optimality; sec. =
running time in seconds

n Value No symmetry breaking With SBDS
F P sec. F P sec.

5 16 3 187 0.03 3 59 0.02
6 18 9 6030 0.88 9 1062 0.22
7 28 617 39561 6.74 607 8436 1.78
8 36 955 811542 135 450 146086 26.6
9 43 not attempted 259027 11065129 2140

3 Dual Graph Representation

There are several reasons for the poor performance of the 0-1 model. Firstly,
the constraints between a variable and its 8 neighbouring cell variables are not
helpful in guiding the search. The state of the cell can still be undetermined when
7 of its neighbours have been assigned (if it has exactly 2 or 3 live neighbours

A Dual Graph Translation of a Problem in ‘Life’ 405

at that point). At best, four of the neighbouring cells must be assigned before a
variable’s value is determined, and this is only sufficient if all four are live.

Secondly, 0-1 variables do not lend themselves to variable ordering heuristics
based on domain size: as soon as a value is removed from the domain of a variable,
the alternative value is assigned.

Thirdly, as pointed out in [3], it is difficult to discover whether a partial
assignment can be completed to give a higher density than in the incumbent
solution. The density is defined as the sum of the variables, and since any unas-
signed variable has the value 1 in its domain, the upper bound on the density in
the unassigned part of the grid is simply the number of cells it contains.

To begin to address these difficulties, we can consider different ways of rep-
resenting the problem as a CSP. The dual graph representation is a well-known
translation of a CSP with non-binary constraints into a binary CSP [5]. As de-
scribed in [1], for instance, the constraints of the original problem become the
variables of the dual representation: the domain of a dual variable is the set of
tuples that satisfy the original constraint. There is a binary constraint between
two dual variables iff the corresponding constraints in the original problem share
at least one variable: the constraint ensures that the dual variables assign the
same value to each of the original variables that they share.

In this problem there are two kinds of non-binary constraint: the constraints
between each cell and its neighbours, of arity 9, and the objective constraint,
ensuring that the number of live cells in any solution is greater than in the
incumbent solution. The objective constraint cannot be replaced by a dual vari-
able, since this would require listing all the satisfying tuples and so would entail
solving the problem. The dual encoding will only replace the arity 9 constraints,
and so will not result in a pure binary CSP.

The variables of the dual encoding correspond to ‘supercells’ in the grid, i.e.
3 × 3 squares consisting of a cell and its eight neighbours, as in Figure 1. The
supercell variable yij corresponds to the cell variables xi,j , xi,j+1, xi,j+2, xi+1,j ,
xi+1,j+1, xi+1,j+2, xi+2,j , xi+2,j+1 and xi+2,j+2.

A possible value of yij can be represented as a 9-bit number, rather than a
9-tuple, by writing the following constraint between a supercell variable and the
variables of its constituent cells:

yij = xi,j + 2xi,j+1 + 4xi,j+2 + 8xi+1,j + 16xi+1,j+1

+ 32xi+1,j+2 + 64xi+2,j + 128xi+2,j+1 + 256xi+2,j+2

(1)

A supercell variable is therefore an integer variable, with values between 0
and 511.

Each possible value for a supercell variable indicates which of the 0-1 variables
in (1) have the value 1, and hence which of the 9 cells are alive. In a still-life
many of these values are not allowed: any 3 × 3 area can contain at most 6 live
cells, for instance. The possible values of a supercell variable in the interior of
the square just correspond to the 259 tuples satisfying the 9-ary constraint. For
supercells on the boundary, the domain has to allow for the neighbouring dead
cells. The domains are constructed by finding all the feasible configurations for

406 Barbara M. Smith

a 3 × 3 square which is within the n × n square but at the edge. If a value
in the range 0 to 511 represents a feasible assignment for 3 × 3 square, it will
be consistent with the dead cells beyond the edge, and the value is included in
the domain of the variable; otherwise, this is not a possible value for a supercell
in that position. The supercells in the corners of the grid have fewest possible
values (74), since they must be consistent with the dead cells neighbouring them
on two sides. Supercells along the edges of the grid, but not in a corner, have
148 possible values.

4 Binary Constraints

Following the standard account of the dual encoding given earlier, a constraint
is required between any pair of supercell variables which share a cell variable.
Figure 3 shows the supercell variable y33 and the supercells above and to the
left of it that it shares a cell with. y33 also shares cells with 18 other supercells,
unless n is small and it is too close to the bottom right corner of the square for
all of these to exist: only one quarter of the possibilities are shown, for space
reasons. In the standard dual encoding, we therefore need binary constraints
between y33 and up to 24 other variables.

It was pointed out by Dechter & Pearl [5] that some of the constraints in
the dual graph may be redundant, in the sense that eliminating them does not
change the set of solutions of the problem. A constraint is redundant if there
is an alternative path between the two dual variables involved such that the
variables which they share are also shared by every variable along the path.
The constraints along the alternative path are sufficient to ensure that, in any
solution, the shared variables have the same value in every dual variable along
the path, in particular in the two dual variables at the ends of the redundant
constraint.

y = x , x , x ,
11 11 12 13

(
x , x , x ,

22 2321

y = x , x , x ,
21 21 22 23

(y = x , x , x ,
22 22 23 24

(

y = x , x , x ,
12 12 13 14

(
x , x , x ,

23 2422

y = x , x , x ,
13 13 14 15

(
x , x , x ,

24 2523

y = x , x , x ,
23 23 24 25

(

33
(

x , x , x
53 54 55

)

)
32

42
)

3231

41 42
)

31 32
)

32
))xx , x ,

x , x ,
x , x ,

,
,

x ,
x ,

x , ,

x x

x x

, ,x
x

, ,

, ,

, ,

x x x

x x x

, ,

33 34 35

43 44 45

33 34 35

43 44 45

33 34

4443

33

33 33 34

33 34 35,

,
,, ,x x x

43
x x x x x

x x x

y =

Fig. 3. Supercell variable y33 and some of the supercell variables which share at
least one cell variable with it

A Dual Graph Translation of a Problem in ‘Life’ 407

y = x , x , x(
4 2 5 6

)

y = x , x , x
3

(
4 5 6

)

y = x , x , x
1 1 2 6)(

x , x
62

x , x
5 6

6
x

Fig. 4. Binary constraints between three dual variables

All the constraints involving y33 shown in Figure 3 are redundant, except for
the constraint with y23, which shares 6 cells with y33. The other variables shown
share a subset of these 6 cells with y33. If there is a constraint only between
pairs of variables that share 6 cells, there will always be a path between pairs
of variables sharing at least one cell. For instance, y11 and y33 have just x33 in
common: each variable along the path y33 → y23 → y13 → y12 → y11 shares 6
cells with its predecessor and with its successor, and x33 is a common cell in them
all. If y33 is assigned a value, then any consistent assignment to the variables
along this path must have each variable assigning the same value to x33, as
required.

Although deleting redundant constraints will not change the solutions, it may
increase the search effort to find a solution, which is why descriptions of the dual
encoding include them. Figure 4 is based on part of a diagram in [1]. There,
Bacchus and van Beek discuss using the dual encoding with the forward checking
algorithm. Assigning a value to the dual variable y1 then reduces the domains
only of those variables which are constrained by y1, so that if the redundant
constraint between y1 and y3 is deleted, the domain of y3 will not be reduced by
an assignment to y1 and the search may take longer.

However, if arc consistency is maintained after assignments are made, this
constraint can safely be deleted: assigning a value to y1 will still reduce the
domain of y3 appropriately via the other two constraints, because there is an
alternative pathway y1 → y4 → y3 with x6 shared between all three variables. In
general, if the search algorithm maintains arc consistency, redundant constraints
between dual variables can, and should, be deleted. This has not previously been
recognised.

Constraint programming tools such as ILOG Solver can maintain the arc
consistency of the binary constraints of the dual encoding during search. The
binary constraints for the still-life problem are expressed in Solver using table
constraints: these implement the general arc consistency schema introduced by
Bessière and Régin [2]. A predicate is supplied to the table constraint to evaluate,
given a pair of variables and a value for each of them, whether or not the pair
of values satisfy the required constraint between the variables.

In the dual representation of the still-life problem, a supercell variable yij

need only be involved in four binary constraints, with yi−1,j , yi,j−1, yi+1,j

and yi,j+1. The 20 redundant constraints involving yij can be omitted. In total,
approximately 2n2 binary constraints are needed, compared to approximately

408 Barbara M. Smith

12n2 for large n if constraints between all variables sharing a cell are included
(precisely, 2(n − 2)(n − 3) compared to 6(n − 3)(2n − 7), e.g. for n = 8, 60
constraints compared to a total of 270).

If the redundant constraints were added to the model, it could make no
difference to the search, but would greatly increase the running time. Adding
just the constraints between each supercell variable yij and its ‘diagonal neigh-
bours’ yi+1,j+1, yi−1,j−1, yi−1,j+1 and yi+1,j−1 approximately doubles the num-
ber of constraints: for the range of problem sizes being considered, the running
time increases by roughly 50%. Using all the constraints would more than double
their number again, for n = 8. Hence, it is essential to remove the redundant
constraints in order to achieve good performance.

5 Solving the Dual Model

So far, the dual model has approximately n2 dual variables, mostly corresponding
to interior supercells and so with 259 possible values, and approximately 2n2

binary constraints. In principle, in a dual encoding, the original variables are
no longer needed. However, the objective constraint still has to be modelled,
and the xij variables are kept for this purpose. The density of a pattern, as
before, is the sum of the xij variables. The constraints (1) ensure that whenever
a variable yij is assigned a value, its constituent xij variables are bound at the
same time. Only the yij variables are used as search variables.

It is now possible to use the smallest domain variable ordering heuristic,
which was not possible in the 0-1 model. This heuristic gives significantly better
results than lexicographic ordering; the results given below use this heuristic. As
in the 0-1 model, the value ordering used favours dense patterns, by choosing
the value for a supercell variable giving the largest number of live cells.

Table 2 shows a comparison between the results of running the 0-1 encoding
(repeated from Table 1) and the dual encoding. The dual encoding is doing
much less search, but the running time, even without the redundant constraints,
is much longer. The much higher ratio of running time to number of fails in the
dual representation is because the domains of the dual variables are very large,
so that maintaining arc consistency is time-consuming. Further improvements
are discussed in the next section.

6 Improved Bounds

One reason for the poor performance of both models is that proving optimality
takes a long time. As already noted, given a partial solution, the upper bound
on the density of an extension to the rest of the grid assumes that all remaining
cells can be alive. Hence, it can appear that even a sparsely populated partial
grid can lead to a better solution, and it can take a long time to prove otherwise.

Since a 3 × 3 square can have at most 6 live cells in a still life, rather than
9, a much better bound on the cost of completing a partial solution can be
found by covering the grid with such squares. Bosch & Trick [3] found that this

A Dual Graph Translation of a Problem in ‘Life’ 409

Table 2. Finding maximum density still-lifes with either the 0-1 encoding or
the dual encoding

n 0-1 encoding Dual encoding
P sec. F P sec.

5 59 0.02 15 51 0.41
6 1062 0.22 0 181 2.23
7 8436 1.78 1321 3510 16.2
8 146086 26.6 18084 53262 264
9 11065129 2140 250401 2091386 10300

gave some improvement in conjunction with their 0-1 model, although not as
much as using bounds from the IP formulation. Bounds based on 3 × 3 squares
(supercells) are relatively easy to incorporate into the dual representation, so the
cost of completing a partial solution can be calculated from a set of supercell
variables forming a partition of the unassigned part of the grid.

When n is a multiple of 3, the n × n grid can be partitioned into disjoint
supercells and the density of the grid expressed as the sum of their densities.
This defines the objective in terms of a subset of the dual variables. A side-effect
is that the original variables are no longer needed; they were kept in the dual
encoding only to define the objective. Hence for this special case it is possible
to model the problem using just the dual variables, with all binary constraints
apart from the objective constraint. However, a comparison of the running time
with and without the cell variables shows that having them in the model carries
a negligible overhead, when they are used only to access the states of individual
cells and not as search variables.

Extending this model to the general case can be done by ‘padding’ the n×n
grid with dead cells to the right and below it, so that the number of cells on
each side is a multiple of 3, as shown in Figure 5. This again allows the density
to be defined in terms of a partition of the extended grid into supercells.

Fig. 5. An 8 × 8 grid, increased to 9 × 9 by adding dead cells

410 Barbara M. Smith

Calculating the density in this way has a dramatic effect on the search effort
and the solution time: the 9 × 9 problem, which previously took over 2 million
fails and over 10,000 sec. to solve with the dual encoding, now takes 1555 fails
and 73 sec. to solve. This change makes the dual model much faster than the
0-1 model, for problems of this size.

7 Search Strategies & Results

Since the density is now defined in terms of a set of disjoint contiguous supercells,
these variables can also be used as the search variables: propagation of the table
constraints would assign consistent values to the remaining variables. (A simple
way to implement this is to define all the supercell variables as search variables,
but allow the variable ordering to select just from those that form a partition
of the grid.) This reduces the number of variables to be assigned values from
(n− 2)2 to (n/3)2, e.g. from 49 to 9 in the 9 × 9 case. It would be simplistic to
expect a similar reduction in search: the domain of each search variable, when it
is selected for assignments, is likely to have been much less reduced by previous
assignments than before.

With a choice of variable ordering heuristic, we have four possible search
strategies: we can use all the supercell variables as the search variables or just a
subset that together partition the grid, and we can assign them in lexicographic
order, or choose the smallest domain.

The results of these four strategies are compared in Table 3. With lexico-
graphic ordering, using the smaller set of search variables does reduce search,

Table 3. Comparison of four search strategies for the dual encoding

All variables
Lex. ordering Smallest domain

n F P sec. F P sec.

5 11 12 1.11 0 2 0.66
6 0 13 0.79 0 13 0.78
7 75 216 7.27 5 54 3.52
8 200 530 33.4 49 206 13.9
9 592 1554 79.4 598 1555 73.4
10 150406 577258 29322 1471 225179 10900

Partition
Lex. ordering Smallest domain

n F P sec. F P sec.

5 11 13 0.74 0 2 0.64
6 0 13 0.79 0 13 0.95
7 77 126 7.06 4 45 3.55
8 196 517 32.5 0 125 11.1
9 454 1171 66.7 340 893 56.8
10 102141 369332 21900 89 128905 7780

A Dual Graph Translation of a Problem in ‘Life’ 411

Fig. 6. The maximum density 7 × 7 and 8 × 8 still-lifes

especially for the larger problems. Using the partitioning variables in combina-
tion with the smallest domain ordering has a much greater effect, however. This
ordering strategy will behave very differently depending on the set of search
variables. If all the supercell variables are search variables, then after the first
variable has been assigned, there will always be at least one variable having at
least 6 cells in common with one already assigned, and hence a reduced domain
size of at most 8: one of these variables will have the smallest domain. The im-
proved performance of the heuristic when the search variables partition the grid
may be because it then has more freedom to choose the variables in different
parts of the grid.

Although the 9 × 9 problem is now easily solved, larger problems are still
very difficult, as shown in Table 3 for the 10 × 10 problem. The optimal solution
to this problem and to the 11 × 11 problem can be found very quickly, and it
is proving optimality that is time-consuming. The time to solve the 10 × 10
problem has been improved to some extent by adding tighter bounds on the cost
of completing a partial solution. Problems representing the corner of a larger grid,
rather than a complete grid, of sizes 6 × 6, 6 × 9, 9 × 6 and 9 × 9, were solved
optimally. For each corner size, the density of the whole grid is then constrained
to be at most the maximum density of the corner plus the maximum densities of
supercells covering the rest of the grid. These constraints provide tighter bounds:
for instance, a 9 × 9 corner has maximum density 46, whereas the bound based
on supercells suggests that a 9 × 9 square can hold 54 live cells. With these
bounds, the 10 × 10 problem can be solved optimally in 55550 fails, 3300 sec.
The 11 × 11 problem is still intractable for this approach, however: although
the optimal solution (given by Bosch & Trick) is found immediately, with no
backtracking, it has not been proved optimal in more than 10 hours running
time.

An advantage of using SBDS to eliminate symmetrically-equivalent solutions
is that non-isomorphic solutions can be enumerated. There is a unique optimal
solution for n = 3, 5, 7 and 8; Figure 6 shows two of these. There are 2, 9 and
10 solutions for n = 4, 6 and 9 respectively, but many more for n = 10 and 12.

When n is too large to solve optimally with current methods, Bosch & Trick
proposed finding symmetric solutions, and found optimal horizontally symmetric
solutions for n = 14 and 15. Restricting solutions to those with 90◦ rotational
symmetry, the dual encoding has found the optimal solution for n =18, which I

412 Barbara M. Smith

Fig. 7. A maximum density rotationally-symmetric 18 × 18 still-life

believe is new. This solution took 295 fails to find, and 76527 fails, 19900 sec. to
prove optimal. It has value 168 and is shown in Figure 7.

8 Discussion & Conclusions

The final version of the dual representation outperforms the 0-1 formulation by
two orders of magnitude in running time, and still more in the number of fails.
The improvement over the first dual representation is partly due to the better
bounding information given by expressing the density in terms of a partition into
3 × 3 squares, corresponding to supercell variables. This could be done by using
supercell variables as an adjunct to the 0-1 formulation: Bosch & Trick reported
trying this, although it appears that the improvement then was not as dramatic
as in the dual encoding. The fact that the dual variables can be identified with 3
× 3 supercells also helps in devising good search strategies for the dual encoding,
and the remaining improvement comes from basing the search itself on a subset
of the dual variables representing a partition of the n × n square.

An important factor in the success of the dual representation is that redun-
dant constraints have been removed. They have no pruning effect if arc consis-
tency is maintained during search, and would slow down the search several times
over. I believe that it has not previously been noted that redundant constraints
in the dual representation should be removed if arc consistency is maintained.
Redundant constraints may occur in the dual translations of other problems:
a necessary condition is that three dual variables should share a common vari-
able. A problem where this does not occur is the crossword puzzle example
considered by Bacchus and van Beek [1]. The original variables correspond to
the letter squares in the crossword puzzle grid, and the constraints (and so the

A Dual Graph Translation of a Problem in ‘Life’ 413

dual variables) to sets of consecutive letter squares forming a word. Since any
letter square in a crossword grid is the intersection of at most two words, three
dual variables cannot have a letter variable in common, and so there are no
redundant constraints. An example where they do occur is the Golomb rulers
problem, discussed by Stergiou and Walsh [8]: the original CSP has ternary con-
straints xji = xj − xi for 1 ≤ i < j ≤ n, defining the distance between the ith
and jth marks on the ruler. The dual variables corresponding to the constraints
defining xji, for 1 ≤ j ≤ n, j �= i, would then all have the variable xi in common,
giving many redundant binary constraints in the dual representation. This shows
that redundant constraints can occur in the dual representation of other prob-
lems. However, as Bacchus and van Beek noted, there has been little experience
reported of the effectiveness of translations into binary representations, so it is
hard to say how common redundant constraints are likely to be.

It is surprising that the dual representation of the still-life problem is prac-
ticable, since it does not fit the guidelines given by Bacchus and van Beek to
indicate when the dual graph representation of a problem might be successful.
They suggest that the number of constraints in the original CSP should be small,
and the constraints should be tight, i.e. with few of the possible tuples allowed.
Hence, the dual CSP will have a small number of variables with small domains.
Here the dual representation has about the same number of variables as the
non-binary CSP, and the domains are very large, especially in comparison with
the original 0-1 variables.

A factor not mentioned by Bacchus and van Beek is the tightness of the
binary constraints in the dual translation. Once the redundant constraints have
been removed, any constraint of the dual encoding links two dual variables that
share 6 cell variables. These are tight constraints: once a dual variable has been
assigned a value, any variable it constrains has only three unassigned cells; at
most 8 values, out of possibly 259, are still left in the domain. Hence although the
domains are initially large, the branching factor of the search tree is manageable.
This may be a reason why the dual translation is successful in this case; the
tightness of the resulting binary constraints should perhaps be a factor to take
into account when considering using the dual translation of a problem.

Compared to Bosch & Trick’s results [3], the dual representation solves prob-
lems up to 9 × 9 with much less search: their hybrid of constraint and integer
programming takes 46000 choice points (slightly more than the number of fails,
in optimization problems) to solve the 9 × 9 problem, compared with 893 for
the dual encoding. On the other hand, the hybrid solves the 11 × 11 problem
with about 10 times the effort required for the 9 × 9 problem, whereas it is out
of reach, so far, for the dual encoding, This suggests that the dual CSP is doing
better locally than the hybrid: the effects of an assignment to a supercell variable
are quickly propagated to the neighbouring cells. For the smaller problems, local
effects are predominant, and so the dual encoding does well. As problems get
larger, local information becomes inadequate. The dual encoding does not have
good enough bounds to determine the effects of assignments made in one part
of the square on the overall density, and the better bounds given by the linear

414 Barbara M. Smith

constraints in the CP/IP hybrid become more significant. The two approaches
seem to offer complementary advantages, and combining the two could lead to
still better results.

The dual representation has so far enabled some new results to be found
in the maximum density still-life problem, for instance the 18 × 18 pattern in
Figure 7 and the enumeration of non-isomorphic solutions. It offers the hope of
solving further problems in combination with the CP/IP hybrid. It also gives
rare practical experience of the successful reformulation of a non-binary CSP
using the dual graph translation.

Acknowledgments

I should like to thank Mike Trick for his helpful comments on this work. Thanks
are also due to the other members of the APES group for their support: Peter
van Beek in particular made encouraging comments on an early version of the
paper. I am especially grateful to Ian Gent: the paper has been much improved
as a result of his input.

References

[1] F. Bacchus and P. van Beek. On the Conversion Between Non-Binary and Binary
Constraint Satisfaction Problems. In Proceedings AAAI’98, pages 311–318, 1998.
405, 407, 412

[2] C. Bessière and J.-C. Régin. Arc consistency for general constraint networks:
preliminary results. In Proceedings IJCAI’97, volume 1, pages 398–404, 1997.
407

[3] R. Bosch and M. Trick. Constraint programming and hybrid formulations for
three life designs. In N. Jussien and F. Laburthe, editors, Proceedings of the Fourth
International Workshop on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems (CP-AI-OR’02), pages
77–91, 2002. 403, 405, 408, 413

[4] R.A. Bosch. Maximum density stable patterns in variants of Conway’s game of
Life. Operations Research Letters, 27:7–11, 2000. 403

[5] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intel-
ligence, 38:353–366, 1989. 405, 406

[6] M. Gardner. The fantastic combinations of John Conway’s new solitaire game.
Scientific American, 223:120–123, 1970. 402

[7] I. P. Gent and B.M. Smith. Symmetry Breaking During Search in Constraint
Programming. In W. Horn, editor, Proceedings ECAI’2000, pages 599–603, 2000.
404

[8] K. Stergiou and T. Walsh. Encodings of Non-Binary Constraint Satisfaction
Problems. In Proceedings AAAI’99, pages 163–168, 1999. 413

	A Dual Graph Translation of a Problem in `Life'
	Introduction
	A 0-1 Formulation
	Dual Graph Representation
	Binary Constraints
	Solving the Dual Model
	Improved Bounds
	Search Strategies & Results
	Discussion & Conclusions

