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Abstract

Despite a number of similarities, vehicle routing problems
and scheduling problems are typically solved with different
techniques. In this paper, we undertake a systematic study
of problem characteristics that differ between vehicle routing
and scheduling problems in order to identify those that are
important for the performance of typical vehicle routing and
scheduling techniques. In particular, we find that the addi-
tion of temporal constraints among visits or the addition of
tight vehicle specialization constraints significantly improves
the performance of scheduling techniques relative to vehicle
routing techniques.

Introduction
It is a long standing belief in AI that finding the right prob-
lem representation is a key component of solving a prob-
lem (Fink 1995; 1998; Smirnov & Veloso 1996). Given the
growth in knowledge of combinatorial problems, a common
heuristic is to model a new problem as a known combina-
torial problem for which there exist strong solution meth-
ods (Walsh 2000). For example, if a problem can be mod-
eled as a graph colouring problem or even better a linear
program, there are existing techniques that are very likely to
solve the problem adequately.

The reality of real world problems is that it is likely that
in formulating a problem as an instance of an existing class,
some compromises must be made. There will be aspects of
the real problem that do not fit easily into a “pure” version
of a known combinatorial optimization problem. The deci-
sion must then be made to ignore the problem components
that cannot be modeled in a pure way or to add “impure” or
customized model components. The drawback of the former
approach is that it is not clear that solutions to the problem
model are solutions to the real problem. The latter approach
also presents challenges, due to the fact that we do not yet
understand combinatorial problem solving well enough to
be able to predict the effect of adding a customized model
component. It can be that what looks like a minor addition to
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the model significantly changes the performance of standard
problem solving techniques.

A case in point are real world scheduling problems. The
AI and Operations Research literature has delivered strong
problem solving techniques for a variety of pure problem
definitions (e.g., job shop scheduling problem (JSP), re-
source constraint project scheduling problem (RCPSP)). It
is rare for a pure JSP to be found in the wild. There are
typically additional constraints to deal with like transition
times between tasks, multiple (contradictory) optimization
criteria, and resource alternatives. In fact, when faced with
a real problem it is sometimes difficult to decide which
type of pure problem model to start with: though it may
look like a scheduling problem perhaps some characteristics
mean that vehicle routing technology may be a better choice.
For a complicated problem with some scheduling and some
vehicle routing characteristics, we do not yet understand
the problem models and problem solving techniques well
enough to know which pure model is a better fit.

This paper directly addresses the relationship between
problem characteristics and search performance. In previ-
ous work (Selensky 2001), it was shown that scheduling
technology performs poorly on reformulated vehicle routing
problems while vehicle routing technology performs poorly
on reformulated scheduling problems. Here, we investigate
the reasons behind these results. We perform an asymmet-
ric study by systematically mutating pure vehicle routing
problems (VRP) such that they become more like schedul-
ing problems. We then solve these problems with routing
and with scheduling technologies, to discover what problem
characteristics influence the problem solving technologies.1

This paper is organized as follows. We start by defin-
ing vehicle routing problems and scheduling problems, and
show how we can reformulate VRPs as scheduling prob-
lems, and vice versa. We then identify five characteristics
that we believe differentiate routing problems from schedul-
ing problems. We describe the design of our experiments, to
investigate the behaviour of these problem characteristics on
the relative performance of routing and scheduling technol-
ogy. The results of these experiments are reported, and we
close with a conclusion and plan of future work.

1In a future study we will start with jobshop scheduling prob-
lems and mutate these such that they become more VRP-like.



Problem Definitions: VRP & JSP
In the capacitated vehicle routing problems with time win-
dows (VRPTW), m identical vehicles initially located at a
depot are to deliver discrete quantities of goods to n cus-
tomers. Each customer has a demand for goods and each
vehicle has a capacity. A vehicle can make only one tour
starting at the depot, visiting a subset of customers and re-
turning to the depot. Time windows define an interval for
each customer within which the visit must be made. A so-
lution is a set of tours for a subset of vehicles such that all
customers are served only once and time window and capac-
ity constraints are respected. The objective is to minimize
distance traveled, and sometimes additionally to reduce the
number of vehicles used. The problem is NP-hard (Garey &
Johnson 1979).

An n×m job shop scheduling problem (JSP) consists of n
jobs and m resources. Each job is a set of m completely or-
dered activities, where each activity has a duration for which
it must execute and a resource which it must execute on.
The total ordering defines a set of precedence constraints,
meaning that no activity can begin execution until the ac-
tivity that immediately precedes it in the complete ordering
has finished execution. Each of the m activities in a sin-
gle job requires exclusive use of one of the m resources de-
fined in the problem. No activities that require the same
resource can overlap in their execution and once an activity
is started it must be executed for its entire duration (i.e. no
pre-emption is allowed). The job shop scheduling decision
problem is to decide if all activities can be scheduled, given
for each job a release date of 0 and a due date of the desired
makespan D, while respecting the resource and precedence
constraints. The job shop scheduling decision problem is
also NP-complete (Garey & Johnson 1979).

While not part of the basic JSP definition, transition times
and resource alternatives have been reported in the schedul-
ing literature (Focacci, Laborie, & Nuijten 2000). In the case
of a transition time, there is a temporal constraint specifying
a minimum time that must expire between pairs of activities
executed on the same resource. When alternative resources
are represented, each activity has a set of resources that it
can be performed on (and this extension of the JSP is known
as the flexible job shop problem).

Mutual Reformulations
In (Beck, Prosser, & Selensky 2002) two reformulations are
presented: a reformulation of VRP as a flexible shop prob-
lem with transition time, and symmetrically a reformulation
of JSP as a VRP.

We reformulate the VRP into a scheduling problem as fol-
lows. Each vehicle is represented as a resource, and each
customer visit as an activity. The distance between a pair
of visits corresponds to a transition time between respective
activities. Each activity can be performed on any resource,
and is constrained to start execution within the time win-
dow defined in the original VRP. Each activity has a demand
for a secondary resource, corresponding to a visit’s demand
within a vehicle. For each resource R there are two special
activities StartR and EndR. Activities StartR and EndR must

be performed on resource R. StartR must be the first activ-
ity performed on R and EndR the last. The transition time
between StartR and any other activity Ai corresponds to the
distance between the depot and the ith visit. Similarly the
transition time between EndR and Ai corresponds to the dis-
tance between the depot and the ith visit. The processing
time of StartR and EndR is zero. We associate a consumable
secondary resource with every (primary) resource to model
the capacity of vehicles. Consequently a sequence of activi-
ties on a resource corresponds to a vehicle’s tour in the VRP.
In the resultant scheduling problem each job consists of only
one activity, each activity can be performed on any resource,
and there are transition times between each pair of activities.
The problem is then to minimize the sum of transition times
on all machines and maybe also to minimize the number of
resources used.

We reformulate a scheduling problem into a VRP as fol-
lows. We have for each resource, a vehicle, and for each ac-
tivity, a customer visit. The visits have a duration the same
as that of the corresponding activities. Each visit can be
made only by the vehicles corresponding to the set of re-
sources for the activity. Any ordering between activities in a
job results in precedence constraints between visits. Transi-
tion times between activities correspond to travel distances
between visits. The deadline D imposes time windows on
visits. Assuming we have m resources, and therefore m vehi-
cles, we have 2m dummy visits corresponding to the depart-
ing and returning visits to the depot. A vehicle’s tour corre-
sponds to a schedule on a resource. For the n×m JSP we
have a VRP with m(n+2) visits and m vehicles. Each visit
can be performed only by one vehicle. Since there are no
transition times in the pure JSP, there are no travel distances
between visits, but visits have durations corresponding to
those of the activities. There are precedence constraints be-
tween those visits corresponding to activities in a job. The
decision problem is then to find an ordering of visits on ve-
hicles that respects the precedence constraints and time win-
dows.

Problem Characteristics
The performance difference between VRP and scheduling
techniques must be due to the characteristics on which the
problems differ. In this section, we identify five characteris-
tics that we believe are sufficient to explain the performance
differences between the VRP and scheduling techniques.

Alternative Resources Perhaps the most obvious differ-
ence between standard VRP and scheduling problems is the
number of alternative resources that may be used for each
operation. In vehicle routing there are typically many ve-
hicles that can be used to perform a visit. For example, the
standard Solomon benchmarks (Solomon 1987) have twenty
five identical vehicles. In real problems, it is often the case
that vehicles are partitioned into classes and each visit can
only be performed by vehicles in one class. This technique
can be used to model different forms of transportation (e.g.,
truck vs. plane) or different characteristics of the vehi-
cle (e.g., a refrigerated vehicle must be used to deliver ice



cream). However, even with such partitions there are typi-
cally many vehicles that can perform each visit. This char-
acteristic of pure VRP problems is a reflection of the real
world problems in which delivery vehicles are not usually
specialized in the delivery of particular products: for most
visits any vehicle will suffice.

In contrast, scheduling problems tend to have very few al-
ternative resources. As noted, in the pure JSP there are no
resource alternatives. This has been reflected in the schedul-
ing literature. For example, Focacci et al. (Focacci, Laborie,
& Nuijten 2000) experiment on problems with up to three
alternatives while Davenport & Beck (Davenport & Beck
1999) use problem instances with at most eight alternatives.
As with VRPs, the reasons for this restriction in scheduling
problems stem from the real world situation. In a factory,
machines are often specialized for a particular task (or a par-
ticular set of related tasks). In an assembly line for example,
alternatives may arise based on selecting which line an order
should be produced on, but within a line there are typically
few resource alternatives. This characterization of schedul-
ing problems with few resource alternatives is of course a
generalization. There are scheduling problems with signifi-
cant resource alternatives. For example, with modern com-
puter controlled machines, one machine may be reconfig-
urable to perform many different activities. Indeed, the exis-
tence of such scheduling problems is one of the motivations
for this study since it is not clear in just such a case as to
whether traditional scheduling or VRP solution techniques
should be applied.

Temporal Constraints In pure VRPs each visit is inde-
pendent, i.e. there are no constraints requiring a visit to have
some temporal relation with other visits. In the pickup-and-
delivery variant (Toth & Vigo 2002) pairs of activities are
related such that they both must be on the same vehicle and
must occur in a prescribed order. This characteristic again
arises from real world problems where visits tend to be truly
independent. However, temporal relations between visits do
arise. In a study of workforce management for British Tele-
com (Brind, Muller, & Prosser 1995) service engineers are
routed to customers, to install and repair equipment. In this
domain, temporal constraints are ubiquitous: certain instal-
lation tasks must be done in different locations in sequence,
and sometimes simultaneously (such as end to end tests).

In contrast, scheduling problems typically have long
chains or complex directed acyclic graphs of temporal re-
lationships among activities. As a consequence temporal
reasoning has been widely explored in the literature (Cesta,
Oddi, & Smith 2000) and is an extremely important com-
ponent of many scheduling algorithms (Laborie 2001). This
prominence arises from the need to execute a set of tempo-
rally related steps in order to successfully generate a prod-
uct. For example, in the chemical or pharmaceutical indus-
tries the timing and sequencing of reactions is critical.

The Ratio of Operation Duration to Transition Time In
pure VRPs a visit has no duration. In contrast, in pure
JSPs the transition time between operations is zero. The

modeling abstraction for scheduling is obviously opposite
to VRP: the transition time between activities on the same
resource is so small that it can be ignored. These two
problem models are extremes. In both the literature and
in the real world there are VRPs with visit duration and
scheduling problems with transition times and costs. How-
ever, even then the ratio of operation duration to transi-
tion time tends to be different. In VRPs the ratio is very
small while in scheduling it is often very large. This dif-
ference is reflected in solution techniques. Many VRP tech-
niques (e.g., the savings heuristic (Clarke & Wright 1964))
look exclusively at transition times when searching, while
many of the strong constraint propagation (Nuijten 1994;
Le Pape 1994) and heuristic search techniques (Smith &
Cheng 1993; Beck & Fox 2000) in scheduling ignore transi-
tion time.

Optimization Criterion In a VRP the standard optimiza-
tion criterion is to minimize the total distance traveled by
each vehicle.2 In scheduling, a common criterion is the
minimization of makespan: the time between the start of
the first operation and the end of the last operation. While
many criteria have been studied (e.g., tardiness (Baptiste,
Le Pape, & Nuijten 2001), earliness and tardiness (Beck &
Refalo 2002), flow time, transition times (Focacci, Laborie,
& Nuijten 2000)) makespan has received a great deal of at-
tention in the literature even though its relevance has been
questioned in practical applications (Fox 1983).

Makespan arises as a criterion due to physical relationship
of the machines in a factory and the associated overhead
cost. Often a factory needs to be running from the begin-
ning of the first task to the end of the last, regardless of the
number of machines that are actually executing operations.
If the overhead cost is significant, the goal of minimizing
makespan is a reasonable representation of the goal of cost
minimization. In contrast, the vehicles in a VRP have no
such physical relationship: they are typically independent
and the overhead of the depot is much lower than the cost
of travel. Therefore, the overall cost can be calculated on
a per vehicle basis rather than based on the overhead of the
factory.

Temporal Slack Although it seems difficult to make spe-
cific predictions as to how temporal slack, i.e., the differ-
ence between the time window for an operation and the op-
eration’s duration, can affect the performance of the search
techniques in both routing and scheduling, we think it worth-
while to experiment with it as well. Slack can be impor-
tant while solving both routing or scheduling problems, e.g.,
there are state-of-the-art global constraint propagation al-
gorithms and efficient search heuristics based on temporal
slack (Smith & Cheng 1993).

Summary We have identified five problem characteristics
that we consider sufficient to explain the performance differ-

2It is also common to minimize the number of vehicles used
while minimizing the travel distance. For this paper, we focus on
minimization of travel time.



ence between VRP and scheduling technology. These char-
acteristics are:

1. Alternative resources – We expect few resource alterna-
tives to favour scheduling techniques while many should
improve the performance of VRP techniques.

2. Temporal constraints – Many and more complex tempo-
ral constraints are characteristic of scheduling problems
therefore we predict that scheduling technology should
improve on problems where there are complex temporal
constraints.

3. Operation duration vs. transition time – Transition time
can be vanishingly small in scheduling problems while
task duration can be similarly insignificant in VRPs.
Therefore, the smaller the ratio of operation duration to
transition time, the better the VRP techniques should per-
form relative to the scheduling techniques.

4. Optimization criterion – When the optimization crite-
rion is the minimization of makespan as opposed to the
minimization of total transition time, we predict that
the performance of the scheduling techniques should be
favoured.

5. Temporal Slack – slack tends to be large in VRPs, if only
because the duration of visits are small. Scheduling tech-
nology has developed special purpose propagators and
heuristics to cope with slack. How will variations in slack
effect technology performance?

These characteristics may be sufficient to explain the per-
formance differences between VRP and scheduling tech-
niques, because they are sufficient to transform one problem
model to the other. Starting with a pure VRP, if we reduce
the alternative resources to a singleton for each task, add
chains of temporal constraints, reduce the transition time
to zero while increasing task duration, and change the op-
timization criterion to makespan minimization, we have a
pure JSP problem.

Experimental Design

Our goal is to empirically determine which of the above
five problem characteristics actually have an effect on the
relative performance of scheduling techniques compared to
VRP techniques. In our study we take pure VRP instances
and examine the effect of varying one problem characteris-
tic at a time. We generate instances of VRPs. We then solve
each problem twice: first we model the problem as a VRP
and solve it using routing technology; second, we model the
VRP as a scheduling problem (as described in the earlier
section Mutual Reformulations) and solve it with scheduling
technology. We then measure the relative performance of the
technologies. For each problem characteristic, therefore, we
begin with a set (or ensemble) of pure VRP instances. We
then generate additional problem sets by varying the param-
eter in question. Intuitively, as the parameter value deviates
more from the VRP, the ensemble should look increasingly
like scheduling problems.

Problems and Their Parameters
The initial set of pure VRP instances contains 100 prob-
lems. The geographic coordinates of each visit are randomly
drawn with replacement from a data file containing all postal
codes of locations in the city of Glasgow, within a 5 km ra-
dius of the city centre. These postal codes can be directly
translated to coordinates with an accuracy of ten meters. Be-
cause we are using city coordinates, all distances are Man-
hattan distance.

The other parameters for our problem generator are as fol-
lows:

n Number of customers. In all our problems n = 100.

m Number of vehicles in the fleet. In all problems m = 25.

p Vehicle specialization. The parameter p represents the
proportion of the fleet that can perform each visit. For
visit i, the number of possible vehicles mi is calculated as:

mi = dpme (1)

Small values of p correspond to few resource alternatives
and therefore correspond more to scheduling problems.
The default value is p = 1.0

pc The (integer) number of precedence constraints. This
parameter specifies the number of pairs of visits whose
sequence is constrained such that visit i must end before
the start of visit j. Note that i and j are not necessarily
on the same vehicle. Large values of pc correspond to
many precedence constraints characteristic of scheduling
problems. The default value is pc = 0, i.e. no precedence
constraints.

ρ The ratio of operation duration to travel time. This pa-
rameter is used to set V , the speed of the vehicles.

V =
ρ.d
τ

(2)

where τ is the average duration of visits, and d is the av-
erage distance between visits. Large ρ values are typical
of scheduling problems while small ρ values correspond
to VRPs. The default value is ρ = 1.0.

σ Normalized slack.

σ =
lei − τi − esi

lei − esi
, (3)

where τi is the duration of operation i, and lei and esi are
the latest end and earliest start of operation i. It follows
from this definition that σ ∈ (0,1) and that the larger σ
becomes, the wider the time window is for the same τi.
The default value is σ = 0.9

c The optimization criterion. There are only two possible
values for c: ‘minimize makespan’ and ‘minimize total
travel time’. The default criterion is ‘minimize total travel
time’.

Pure VRP problems are generated with the default param-
eters, specified above. Problems are tested for solubility, and
are rejected if not found to be soluble within 5 minutes of
CPU time.



Solution Technology
In our experiments we use the ILOG optimization suite.
The scheduling library (ILOG Scheduler 5.2) has global
constraint propagation (Baptiste, Le Pape, & Nuijten 2001;
Laborie 2001; Nuijten 1994) within constructive tree search
as its core technology, while the vehicle routing library
(ILOG Dispatcher 3.2) focuses on local search (DeBacker
et al. 2000).

As part of the routing technique, we apply the guided lo-
cal search (GLS) metaheuristic (Voudouris & Tsang 1998)
with a penalty factor of 0.4. To construct a neighbourhood
of a solution, we use the standard move operators (TwoOpt,
OrOpt, Relocate, Cross and Exchange). Search starts from
the first solution constructed by the savings heuristic. Local
search then descends to a local optimum. The GLS meta-
heuristic is then applied to drive the search out of that local
optima. The scheduling technique uses constructive depth
first search with standard slack based heuristics (Smith &
Cheng 1993), global constraint propagation, and edge find-
ing (Baptiste, Le Pape, & Nuijten 2001).

Evaluation Criteria
Our primary evaluation criteria is λ, the ratio of the cost
of the best solution found by the scheduling technique to
that found by the VRP technique in a given CPU time limit.
Specifically:

λ =
Csched

Crout
, (4)

where Csched and Crout are the cost of the best solutions
found by the scheduling and routing techniques in the given
amount of CPU time. When λ is larger than 1, routing
technology is outperforming scheduling technology, when
λ is less than 1 scheduling technology dominates, and when
λ = 1 the technologies perform equally.

The CPU time bound is chosen to be 10 minutes. Our
preliminary experiments showed that there is no significant
improvement in solutions for either solving technology after
10 minutes. Fig. 1 plots the mean value of λ against CPU
time for different values of ρ, and shows a point of dimin-
ishing return at about 10 CPU minutes.

The Empirical Results
We now study the influence of the following: variation in
the number of alternative resources, the number of prece-
dence constraints, the influence of operation duration versus
transition times, optimization criteria, and finally slack.

Alternative Resources (p)
To investigate the influence of the number of re-
source alternatives we create a series of problem sets
by varying the vehicle specialization p, such that p ∈
{0.05,0.1,0.25,0.5,1.0}. With m = 25 this corresponds to
VRPs with 1, 3, 6, 13, and 25 possible vehicles per visit
respectively. All other parameters take their default values
(i.e. pc = 0, ρ = 1.0, σ = 0.9, and c minimizing total travel
time).

Figure 1: Influence of CPU time on λ for different values of
ρ. Each value of λ is an average of 20 VRPs with p = 1.0
and σ = 0.9.

In Fig. 2 we present λ with respect to p, expressed as a
percentage. Two contours are presented, one for λ for first
solution found (λ f irst) by both techniques, and λ for the best
solution found (λbest) by both techniques. We see that as
specialization of the fleet increases (i.e. p decreasing) the
performance of the routing technology degrades, and ulti-
mately when we have one vehicle per visit the technologies
perform approximately equally. Both contours exclude any
instance that could not be solved by the routing technology
in 10 minutes.

Fig. 3 shows how many instances per ensemble could not
be solved by the routing technology. We observe an insolu-
bility peak at p = 0.1. We conjecture that at p = 0.1 prob-
lems are critically constrained such that there are very few
feasible vehicle assignments. Since savings is a single pass
heuristic, it does no search for such assignments and there-
fore fails when they are difficult to construct. With p < 0.1,
no vehicle choices are necessary since only one vehicle can
perform each visit. At p > 0.1, many vehicles are possible,
increasing the number of feasible vehicle assignments.

To test if the variation in λ is entirely due to the behavior
of the initial construction using the savings heuristic, we al-
low the routing technique to start from a solution obtained
by the scheduling technique. Fig. 4 plots a scatter of λ for
best solutions, where both techniques have a common start-
ing point, i.e. the first scheduler solution. In all cases the
GLS component of the routing technology was able to im-
prove the initial solution. However, we see a marked degra-
dation in the overall performance of the VRP technology:
the values of λ are significantly lower than in our previous
experiment.



Figure 2: What happens when we specialize the fleet? p
varies, ρ = 1.0, σ = 0.9.

Figure 3: Percentage of instances unsolved by the routing
technique vs p, ρ = 1.0, σ = 0.9.

Precedence Constraints (pc)

To study the influence of precedence constraints we vary pc,
such that pc ∈ {0,50,450,1200}. Each precedence con-
straint imposes an ordering for two given visits, without
forcing these two visits to use the same vehicle. This cor-
responds to varying numbers and lengths of totally ordered
precedence chains such that 5 chains each involving 5 visits
are equivalent to a pc of 50, 10 chains with 10 visits each to
a pc of 450, 4 chains with 25 visits each to a pc of 1200.

The routing technology turns out to be incapable of con-
structing first solutions when precedence constraints are in-
troduced. In fact, even for a small number of precedences
between visits (pc = 50), almost all instances in an ensem-
ble could not be solved by this technique. Therefore we al-
low both technologies to share initial solutions, i.e. the VRP
technology starts with the scheduling first solution, conse-
quently all problems are again soluble. In Fig. 5 we see
that as we increase the number of precedence constraints the
scheduling technology marginally improves relative to the
VRP technology (i.e. λ falls), although the VRP technology
continues to dominate.

In Fig. 6 we plot the percentage reduction in cost of the fi-
nal solution with respect to the initial scheduling solution for

Figure 4: λ against p with a common initial (scheduling)
solution. ρ = 1.0, σ = 0.9. All problems now have solutions.

Figure 5: λ against pc the number of precedence constraints.
ρ = 1.0, σ = 0.9, p = 1.0. First solutions were obtained by
the scheduling technique and used by both the scheduling
and routing techniques.

the VRP technology. We observe a decrease in improvement
as we increase precedence constraints.

In conclusion, as we introduce precedence constraints the
VRP technology fails to produce initial solutions, but the
scheduling technology appears to be robust. If both tech-
niques start with a scheduling solution, the VRP technology
dominates the scheduling technology, but this becomes less
significant as we increase the number of precedence con-
straints.

Operation Duration vs Transition Time (ρ)
VRP instances were generated with values of
ρ (visit duration to transition times) as follows:
ρ ∈ {0.25,0.5,1.0,2.0,2.25,3.0}. All visit durations
were set at 20 minutes, consequently problems have a
vehicle speed ranging from 12km/h to 72km/h. Fig. 7 shows
scatters of λ computed for the first (λ f irst) and for the best
solutions (λbest) for each particular instance in an ensemble.

In (Beck, Prosser, & Selensky 2002) it was argued that
higher ρ’s will tend to favour scheduling techniques because



Figure 6: Improvement of the first solution by the routing
technique against the number of precedence constraints be-
tween activities, ρ = 1.0, σ = 0.9, p = 1.0. First solutions
were obtained by the scheduling technique.

Figure 7: λbest and λ f irst against ρ, visit duration to transition
time. All other parameters take default values: p = 1.0, σ =
0.9.

large values of ρ correspond to small transition times com-
pared to operation durations, typical of scheduling prob-
lems. Our results demonstrate, however, that in isolation
this parameter does not bring about such a performance dif-
ference and routing technology continues to outperform the
scheduling technique. In fact, we see that even from a first
solution the routing technology is typically twice as good
as the scheduling technology, and subsequent search allows
the routing technology to dominate scheduling by a factor of
three. This is not what we expected; we expected large ρ to
correspond to short setup costs, typical of scheduling, and
thus more suitable to scheduling technology.

Optimization Criterion (c)

We now solve 100 pure VRPs using two different optimiza-
tion criteria: minimize total travel (i.e. from a schedul-
ing perspective, minimize the sum of setups), and minimize
makespan (in VRP parlance, complete all the visits as early
as possible). In Figure 8 we have a scatter plot, on the

Figure 8: Scatter of λbest and λ f irst for 100 pure VRPs. On
the left, minimize travel time, and on the right minimize
makespan.

left λbest and λ f irst using the minimization of travel, and on
the right λbest and λ f irst where the criterion is minimizing
makespan. We see a large difference in behaviour. When
minimizing travel (scatter on the left) the routing technology
is consistently 2 to 3 times better than the scheduling tech-
nology. When we switch to minimizing makespan (scatter
on the right) the technologies compete, i.e. λbest and λ f irst
are always about 1. These results are particularly dramatic
given that all the other parameters are that of a standard
VRP: the only difference is the optimization criterion.

Why is there such a difference when we change optimiza-
tion criterion? One answer might be the underlying tech-
niques used in the scheduling technology. When minimizing
a maximum function (such as makespan), the upper bound
can be directly propagated on the completion time of each
operation/visit, and the domains of possible start times can
be effectively tightened. However, when a sum function
(e.g., sum of transition times) is being optimized, the respec-
tive constraint has to be considered at each stage of search
simultaneously with resource constraints (Baptiste, Le Pape,
& Nuijten 2001) thus making it harder to achieve large do-
main reductions. The scheduling technology we used is built
to exploit the powerful constraint propagation that is possi-
ble using such criterion as makespan, whereas the routing
technology is not. We might therefore expect when we have
a VRP, and the goal is to complete all visits as soon as pos-
sible, we might as well solve the VRP as a scheduling prob-
lem.

Slack (σ)

To experiment with slack, we generate VRPs with normal-
ized slack σ ∈ {0.5,0.6,0.7,0.8,0.9}. All other parameters
take default values. As σ increase the amount of slack in-
creases, i.e. time windows get larger with respect to visit
durations.

Fig. 9 shows λbest and λ f irst against increasing normal-
ized slack σ. As slack increases we see that routing technol-
ogy improves relative to scheduling technology. Conversely,



Figure 9: λ = λ(σ), ρ = 1.0, p = 1.0. First solutions were
obtained by the scheduling and routing technique indepen-
dently.

when slack decreases it appears that scheduling technology
is improving, yet continues to be dominated by the rout-
ing technology. We might conclude from this that as time
slack decreases, and problems become more temporally con-
strained, we might incorporate scheduling technology into
the routing technology.

Summary of Results

We have varied five different parameters, each in isolation.
When we increased the specialization of the fleet, we discov-
ered that the routing technology failed to produce a solution.
However, the scheduling technology did find a solution, and
this solution could then be improved by the routing technol-
ogy. Again, routing technology failed when presented with
problems with only a modest number of precedence con-
straints. Scheduling technology came to the rescue, produc-
ing an initial solution that could again be improved by rout-
ing technology. In both of these scenarios, we might think of
the scheduling technology as giving us a “smart start”. How-
ever, as we increased the number of precedence constraints
the scope for improvement diminished.

When we increase the speed of vehicles, essentially com-
pressing the routing problem into a smaller space, we ex-
pected the VRP to become more like a scheduling problem
with short transition times. This didn’t happen. The VRP
appeared to continue to behave as a VRP. Therefore short
travel distances, do not appear to detract from VRP’s essen-
tial features. We might take this as good news, and expect
that the technology will perform well in urban as well as
suburban routing problems.

The optimization criterion had a profound effect. When
we want to minimize travel, VRP technology was our
choice, but when we want to do all our visits as soon as pos-
sible (i.e. minimize makespan) the scheduling technology
was a clear winner. One explanation for this is how the spe-
cialized propagation within scheduling technology exploits
the optimization criterion.

Slack is a property of both VRPs and scheduling problems

alike. Nevertheless, as we reduced slack scheduling technol-
ogy appeared to improve relative to routing technology, but
was still dominated by the routing technology.

We can also view these results from the perspective of the
solving technology. We observe that the savings heuristic
used to find a first solution for VRP solving seems partic-
ularly sensitive to impurities in a VRP. Reducing the num-
ber of resource alternatives or adding precedence constraints
resulted in many problems for which the savings heuris-
tic could not generate a feasible solution. This is consis-
tent with previous findings in adding side constraints to
VRPs (Kilby, Prosser, & Shaw 2000). In contrast, GLS
is able to improve solutions even under parameter settings
where the savings heuristic failed. None of our problem
sets represented pure scheduling problems and, therefore,
we cannot make strong claims about the robustness of the
scheduling technology used. This remains for future work.

Conclusions and Future Work
In the paper, we considered the vehicle routing and shop
scheduling problems and carried out an empirical study to
develop an understanding of the problem characteristics that
contribute to the performance of standard solving technolo-
gies. We identified five such parameters: vehicle specializa-
tion, operation duration to travel time ratio, the presence or
absence of complex temporal relationships between opera-
tions, the optimization criterion, and slack.3

Our experiments show that the most important charac-
teristics that make the routing technology superior to the
scheduling technology when applied to the vehicle routing
problem are the optimization criterion (minimize total travel
time), the openness of the problem (i.e., the precedence con-
straints among operations) and low resource specialization.
Based on this analysis, we might expect routing technology
to perform well on open shop scheduling problems. Con-
versely, as our routing problems become richer, by adding
precedence constraints, reducing slack, and specializing the
fleet, scheduling technology becomes more useful.

In our study we use existing VRP and scheduling technol-
ogy found in commercially available tools. This may appear
naive. However, we believe that this is a critical feature of
our study. The current research literature boasts a number of
powerful approaches for solving combinatorial optimization
problems (e.g., constraint programming, mixed integer pro-
gramming, SAT solvers, etc.). These approaches, however,
require significant skill and experience to apply to their full
potential. We believe that this skill and experience is a ma-
jor barrier to the more widespread use of this technology
and therefore are researching ways to reduce it. As argued
in the introduction, one such approach is to attempt to reuse
available solution technology “out of the box”. In this study,
we are not interested in the algorithmic customizations we
could make to scheduling or VRP technology to allow it to
solve “impure” problems better. Rather we are interested
in the problem characteristics and their on impact existing

3We do not claim that these are the only parameters. For exam-
ple, one of our reviewers suggested that resource capacity might
also be considered as parameter.



solution techniques. One of our long term goals is to au-
tomate the process of problem analysis to be able to sug-
gest appropriate solution technology. The identification of
the relationship between problem characteristics and search
performance is an important step in this direction.

To this point, the study has been one-sided, asymmetri-
cal. We have started with VRPs and mutated these, modeled
them as VRPs and as scheduling problems, and then solved
these problems with the technology appropriate for that rep-
resentation. There should be another side to this study. We
should generate scheduling problems, most probably job-
shop scheduling problems (JSPs). These could then be rep-
resented and solved as JSPs, and represented and solved as
VRPs. We might take JSPs and increase the number of re-
sources available to each operation, vary transition times,
relax precedence constraints, vary slack, and again change
the optimization criterion. Such a study will naturally com-
plement the work reported here.

References
Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001. Constraint-
Based Scheduling: Applying Constraint Programming to
Scheduling Problems. Kluwer Academic Publishers.
Beck, J. C., and Fox, M. S. 2000. Dynamic problem struc-
ture analysis as a basis for constraint-directed scheduling
heuristics. Artificial Intelligence 117(1):31–81.
Beck, J. C., and Refalo, P. 2002. A hybrid approach to
scheduling with earliness and tardiness costs. Annals of
Operations Research. in press.
Beck, J.; Davenport, A.; and Fox, M. 1997. Five pit-
falls of empirical scheduling research. In 3rd Int. Confer-
ence on Principles and Practice of Constraint Program-
ming (CP’97).
Beck, J.; Prosser, P.; and Selensky, E. 2002. On the refor-
mulation of vehicle routing probelms and scheduling prob-
lems. In LNAI 2371, Proceedings of the Symposium on Ab-
straction, Reformulation and Approximation (SARA 2002),
282–289.
Brind, C.; Muller, C.; and Prosser, P. 1995. Stochastic tech-
niques for resource management. BT Technology Journal
13(1):55–65.
Cesta, A.; Oddi, A.; and Smith, S. 2000. A constraint-
based method for project scheduling with time windows.
Journal of Heuristics 8(1):109–136.
Clarke, G., and Wright, J. 1964. Scheduling of Vehicles
from a Central Depot to a Number of Delivery Points. Op-
erations Research 46:93–100.
Davenport, A., and Beck, J. 1999. An investigation into
two approaches for constraint directed resource allocation
and scheduling. In INFORMS.
DeBacker, B.; Furnon, V.; Shaw, P.; Kilby, P.; and Prosser,
P. 2000. Solving vehicle routing problems using con-
straint programming and metaheuritics. Journal of Heuris-
tics 6:5001–523.
Fink, E. 1995. Systematic approach to the design of
representation-changing algorithms. In Symposium on Ab-
straction, Reformulation and Approximation (SARA).

Fink, E. 1998. How to solve it automatically: Selection
among problem-solving methods. In 4th Int. Conference
on Artificial Intelligence Planning Systems.
Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving
scheduling problems with setup times and alternative re-
sources. In Proceedings of the Fifth International Confer-
ence on Artificial Intelligence Planning and Scheduling.
Fox, M. 1983. Constraint-Directed Search: A Case
Study of Job Shop Scheduling. Ph.D. Dissertation, Carnegy
Mellon University, Intelligent Systems Laboratory, The
Robotics Institute, Pittsburgh, PA.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York.
Kilby, P.; Prosser, P.; and Shaw, P. 2000. A comparison
of traditional and constraint-based heuristics methods for
vehicle routing problems with side constraints. Constraints
5(4):389–414.
Laborie, P. 2001. Algorithms for propagating resource
constraints in AI planning and scheduling: Existing ap-
proaches and new results. In Proceedings of the 6th Eu-
ropean Conference on Planning (ECP01).
Le Pape, C. 1994. Implementation of Resource Constraints
in ILOG SCHEDULE: A Library for the Development of
Constraint-Based Scheduling Systems. Intelligent Systems
Engineering 3(2):55–66.
Nuijten, W. P. M. 1994. Time and resource constrained
scheduling: a constraint satisfaction approach. Ph.D. Dis-
sertation, Department of Mathematics and Computing Sci-
ence, Eindhoven University of Technology.
Selensky, E. 2001. On mutual reformulation of shop
scheduling and vehicle routing. In Proceedings of the 20th
UK PLANSIG.
Smirnov, Y., and Veloso, M. 1996. Efficiency competition
through representation changes: Pigeonhole principle ver-
sus linear programming relaxation. In 5th Int. Conference
on Principles of Knowledge Representation and Reasoning
(KR’96).
Smith, S., and Cheng, C. 1993. Slack based heuristics
for constraint satisfaction scheduling. In Proceedings of
the Eleventh National Conference on Artificial Intelligence
(AAAI-93), 139–144.
Solomon, M. 1987. Algorithms for the Vehicle Routing
and Scheduling Problem with Time Window Constraints.
Operations Research 35:254–365.
Toth, P., and Vigo, D. 2002. The Vehicle Routing Problem.
SIAM Monographs on Discrete Mathematics and Applica-
tions.
Voudouris, C., and Tsang, E. 1998. Guided Local Search.
European Journal of Operational Research 113(2):80–
110.
Walsh, T. 2000. Reformulating propositional satisfiability
as constraint satisfaction. In Symposium on Abstraction,
Reformulation and Approximation (SARA).


