Computing at Glasgow University
Paper ID: 8280

Vertex and Edge Covers with Clustering Properties: Complexity and Algorithms
Fernau,H. Manlove,D.F.

Publication Type: Conference Proceedings
Appeared in: Proceedings of ACiD 2006: the 2nd Algorithms and Complexity in Durham workshop, volume 7 of Texts in Algorithmics, College Publications
Page Numbers : 69-84
Publisher: N/A
Year: 2006

We consider the concepts of a t-total vertex cover and a t-total edge cover (t>=1), which generalize the notions of a vertex cover and an edge cover, respectively. A t-total vertex (respectively edge) cover of a connected graph G is a vertex (edge) cover S of G such that each connected component of the subgraph of G induced by S has least t vertices (edges). These definitions are motivated by combining the concepts of clustering and covering in graphs. Moreover they yield a spectrum of parameters that essentially range from a vertex cover to a connected vertex cover (in the vertex case) and from an edge cover to a spanning tree (in the edge case). For various values of t, we present NP-completeness and approximability results (both upper and lower bounds) and FPT algorithms for problems concerned with finding the minimum size of a t-total vertex cover, t-total edge cover and connected vertex cover, in particular improving on a previous FPT algorithm for the latter problem.

Keywords: Algorithm; NP-completeness; approximability; t-total vertex cover; connected vertex cover; t-total edge cover

PDF Bibtex entry Endnote XML