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Abstract

In this thesis, we study several types of two-sided matching problems. Such
a problem involves two disjoint sets of participants, say U and W , each of
whom ranks a subset of the other set of participants in order of preference.
A matching in this context is a pairing of members of U with members of
W that satisfies certain problem-specific cardinality and ranking constraints.
Chapter 1 contains a brief introduction to two-sided matching problems, and
provides the necessary background for the remaining thesis.

In Chapter 2, we introduce the student-project allocation problem
(SPA), which generalizes the classical hospitals/residents problem (HR).
An instance of SPA consists of two sets of participants, namely students and
projects, where each project is offered by a unique lecturer. Each student
ranks a subset of the projects in order of preference, and similarly, each
lecturer ranks a subset of the students in order of preference. We present two
optimal linear-time algorithms for finding a stable matching of students to
projects, where the stability property generalizes the corresponding concept
in HR. The first algorithm finds a student-optimal stable matching, which is
simultaneously the best possible stable matching for all students. The second
algorithm finds a lecturer-optimal stable matching, which is simultaneously
the best possible stable matching for all lecturers.

In Chapter 3, we study the exchange-stable matching problem ESM.
An instance of ESM consists of a set of applicants and a set of posts, where
each applicant ranks a subset of the posts in order of preference. A match-
ing of applicants to posts is exchange-stable if no applicant can obtain a
better allocation without requiring some other applicant to obtain a worse
allocation. We give several properties of the set of all exchange-stable match-
ings for an arbitrary instance of ESM. For example, we present three differ-
ent algorithms to prove that the problem of finding a maximum cardinal-
ity exchange-stable matching is polynomial-time solvable. We also give a
polynomial-time checkable characterization of the set of ESM instances that
admit a unique exchange-stable matching. Finally, we introduce the concept
of an exchange-stable matching signature to show a relationship between
ESM and the classical stable marriage problem with incomplete lists.

In Chapter 4, we introduce the tutorial allocation problem (TA).
An instance of TA consists of a set of students, and a set of tutorials, where
each tutorial has a specified capacity, and each student may only be avail-
able for a subset of the tutorials. The TA problem is to allocate each student
to exactly one tutorial without exceeding the capacity of any tutorial. We
consider the minimum tutorial cover (MTC) variant of TA, in which we
seek a maximum cardinality allocation with the minimum number of non-
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empty tutorials. We present a polynomial-time solvable restriction of MTC,
but prove that, in general, MTC is NP-hard. Finally, we give a new algo-
rithm for finding a balanced allocation, which distributes students amongst
tutorials as evenly as possible.

In Chapter 5, we introduce half-strong stability, which is a new type of
stability for the stable marriage problem with ties and incomplete
lists (SMTI). We place half-strong stability in context with the three classi-
cal types of stability for SMTI, namely weak, strong and super-stability. We
then consider the problem of (i) determining if an instance of SMTI admits
a half-strongly stable matching, and (ii) finding such a matching, if one ex-
ists. We give two polynomial-time solvable special cases of this problem, but
prove that, in general, it is NP-hard.

In Chapter 6, we consider Gusfield and Irving’s ninth open problem [28],
which is to determine if there is a reduction from the stable roommates
problem (SR) to the stable marriage problem (SM), such that there is a
correspondence between the stable matchings in SR and the stable matchings
in SM. We give a reduction from SR to a variant of SMTI, which, although
not directly answering the open problem, should provide some intuition and
machinery to find the required reduction, or prove that no such reduction
exists.

In Chapter 7, we present results on two miscellaneous problems. Firstly,
we introduce the partner swapping problem (PSP), giving a character-
ization of the set of stable matchings admitted by an instance I of PSP.
Secondly, we consider the minimum maximal matching problem (MMM)
from graph theory, giving three new approximation algorithms. The last
two algorithms use a restricted brute force approach to improve on existing
approximation algorithms. These algorithms may be viewed weaker forms
of polynomial-time approximation schemes, where the approximation guar-
antee converges to some constant greater than 1. We extend this idea to
give improved approximation algorithms for minimum vertex cover and
maximum satisfiability.

iii



Contents

1 Introduction 1
1.1 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Decision Problems . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Optimization Problems . . . . . . . . . . . . . . . . . . 3

1.2 Graph Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Unweighted Graphs . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Weighted Graphs . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 b-matching . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Flow Networks . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Stable Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Practical Applications . . . . . . . . . . . . . . . . . . 9
1.3.2 Stable Marriage Problem . . . . . . . . . . . . . . . . . 9
1.3.3 Preference List Generalizations of SM . . . . . . . . . . 10
1.3.4 Hospitals/Residents Problem . . . . . . . . . . . . . . 13
1.3.5 Stable Roommates Problem . . . . . . . . . . . . . . . 14

2 Student-Project Allocation 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Simplified Model . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 One-sided preferences . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Two-sided Preferences . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Overview of Algorithm SPA-student . . . . . . . . . . . 22
2.4.2 Correctness of Algorithm SPA-student . . . . . . . . . 23
2.4.3 Analysis of Algorithm SPA-student . . . . . . . . . . . 26
2.4.4 Properties of the Student-Project Allocation Problem . 28
2.4.5 Overview of Algorithm SPA-lecturer . . . . . . . . . . 29
2.4.6 Correctness of algorithm SPA-lecturer . . . . . . . . . 30
2.4.7 Analysis of Algorithm SPA-lecturer . . . . . . . . . . . 35

2.5 Conclusions and Open Problems . . . . . . . . . . . . . . . . . 39

3 Exchange-Stability 41
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Preliminary Results and Observations . . . . . . . . . . . . . . 42

3.3.1 Checking Exchange-Stability . . . . . . . . . . . . . . . 42
3.3.2 Existence of Exchange-Stable Matchings . . . . . . . . 43
3.3.3 Sizes of Exchange-Stable Matchings . . . . . . . . . . . 44

3.4 Maximum Cardinality Exchange-Stable Matchings . . . . . . . 45
3.5 Uniqueness and Applicant-Optimality . . . . . . . . . . . . . . 51

iv



3.6 Generating all Exchange-Stable Matchings . . . . . . . . . . . 53
3.7 Relationship with Stable Marriage . . . . . . . . . . . . . . . . 54
3.8 Signature Results . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.9 Conclusion and Open Problems . . . . . . . . . . . . . . . . . 58

4 Tutorial Allocation 60
4.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Minimum Tutorial Cover . . . . . . . . . . . . . . . . . . . . . 60
4.3 Balanced Matchings . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Repairing Broken Matchings . . . . . . . . . . . . . . . . . . . 70
4.5 Conclusions and Open Problems . . . . . . . . . . . . . . . . . 70

5 Half-Strong Stability 72
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Preliminary Observations . . . . . . . . . . . . . . . . . . . . . 74
5.3 Complexity of Half-Strong Stability . . . . . . . . . . . . . . . 76
5.4 Conclusion and Open Problems . . . . . . . . . . . . . . . . . 78

6 Reducing Roommates to Stable Marriage 79
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Reduction from SR to MAX-SMRI . . . . . . . . . . . . . . . 80
6.3 Conclusion and Open Problems . . . . . . . . . . . . . . . . . 85

7 Minimum Maximal Matching in Graphs 86
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . 88
7.2.2 Reducing Paths . . . . . . . . . . . . . . . . . . . . . . 89
7.2.3 Restricted Brute Force . . . . . . . . . . . . . . . . . . 92
7.2.4 Conclusions and Open Problems . . . . . . . . . . . . . 97

v



List of Figures

1 Approximation Classes. . . . . . . . . . . . . . . . . . . . . . . 4
2 Augmenting path algorithm for finding a maximum matching. 6
3 Gale/Shapley Algorithm . . . . . . . . . . . . . . . . . . . . . 10
4 An instance of the Simplified Student-Project Allocation prob-

lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Network Flow Models for the simplified student-project

allocation problem. . . . . . . . . . . . . . . . . . . . . . 17
6 An instance of the Student-Project Allocation problem [1]. . . 19
7 An instance of the Student-Project Allocation problem. . . . . 20
8 Algorithm for finding a student-optimal stable matching. . . . 23
9 Instance I1 of the Student-Project Allocation problem. . . . . 29
10 Instance I2 of the Student-Project Allocation problem. . . . . 29
11 Algorithm for finding a lecturer-optimal stable matching. . . . 30
12 An instance of the Student-Project Allocation problem. . . . . 35
13 Implementation of algorithm SPA-lecturer. . . . . . . . . . . . 38
14 Algorithm Greedy-ESM. . . . . . . . . . . . . . . . . . . . . . 43
15 An instance of ESM. . . . . . . . . . . . . . . . . . . . . . . . 45
16 Algorithm Stabilize-ESM. . . . . . . . . . . . . . . . . . . . . 46
17 Algorithm for Lex-ESM. . . . . . . . . . . . . . . . . . . . . . 49
18 An instance of SMI which admits no stable matching which is

also man-exchange-stable. . . . . . . . . . . . . . . . . . . . . 55
19 An instance of TA. . . . . . . . . . . . . . . . . . . . . . . . . 61
20 G[I] for TA instance in Figure 19. . . . . . . . . . . . . . . . . 62
21 Constructing M ′ from M . . . . . . . . . . . . . . . . . . . . . 63
22 MinWMCM on G[I]. . . . . . . . . . . . . . . . . . . . . . . . 63
23 An algorithm for finding a balanced matching. . . . . . . . . . 67
24 Relationship between stability definitions . . . . . . . . . . . . 73
25 An instance of SMT/SMTI with no strongly stable matching . 73
26 An instance of SMTI with no half-strongly stable matching . . 74
27 Relationship between stability definitions, where no ties occur

on the women’s side . . . . . . . . . . . . . . . . . . . . . . . 75
28 Instance of SMTI admitting half-strongly stable matchings

with different cardinalities . . . . . . . . . . . . . . . . . . . . 75
29 Relationship between stability definitions, where no ties occur

on the men’s side . . . . . . . . . . . . . . . . . . . . . . . . . 76
30 Reduction preference lists . . . . . . . . . . . . . . . . . . . . 77
31 Instance of SR that admits no stable matchings [45]. . . . . . 80
32 Instance of SMTI/SMRI. . . . . . . . . . . . . . . . . . . . . . 81

vi



33 Instance of SR and two corresponding preference structures in
MAX-SMRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

34 Greedy algorithm for finding a maximal matching. . . . . . . . 86
35 Reducing path approximation algorithm for MMM. . . . . . . 90
36 ApproxMMM1 on a tree. . . . . . . . . . . . . . . . . . . . . . 91
37 A

(

2 − 4
n+2

)

-approximation algorithm for MMM. . . . . . . . 92

38
(

r − 2cr
n+2c(r−1)

)

-approximation algorithm for MMM. . . . . . . 94

39 Approximation Performance of ApproxMMM3 to 5 decimal
places. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

40 G[2, 1] - a worst case graph for ApproxMMM3, with r = 2. . . 96
41 Improved approximation algorithm for minimum vertex cover. 96

vii



Declarations

No part of this thesis has been previously submitted by the author for a
degree at any other university, and all results contained within, unless oth-
erwise stated, are claimed as original. The proof of Theorem 5.10 and the
reduction from SR to MAX-SMRI in Section 6.2 are due to David Manlove.
Algorithm SPA-student is due to Rob Irving and David Manlove, however
the correctness proof and run-time analysis are original.

Publications

D. Abraham, R. Irving and D. Manlove. The Student-Project Allocation
Problem. In the Proceedings of ISAAC 2003: the 14th Annual International
Symposium on Algorithms and Computation, volume 2906 of Lecture Notes
in Computer Science, pages 474-484, Springer-Verlag, 2003.
(This paper is based on Sections 2.4 - 2.4.4.)

viii



Acknowledgements

I would like to thank David Manlove for giving me the opportunity to study
two-sided matching. This was my first choice for graduate study, but without
David’s support it would not have been possible. David has been outstanding
supervisor. I have learnt much from his approach to research, his insightful
comments on my work, and his encyclopaedic knowledge of algorithmics.

I would also like to thank my second supervisor, Rob Irving. Rob’s
past work forms much of the basis of two-sided matching theory, and hence
strongly influences this thesis. My meetings with Rob were always interest-
ing, and our discussions inspired several ideas addressed in this work.

I am thankful to the following organizations, each of which provided fi-
nancial support for my research.

• Engineering and Physical Sciences Research Council (studentship as-
sociated with grant GR/R/84597/01)

• Universities UK (Overseas Research Student Award)

• University of Sydney (Barker Travelling Scholarship)

Finally, thanks go to my family and Liz for their love and support.

Dedicated to memory of Oscar and Phyllie.

ix



1 Introduction

A two-sided matching problem Π = (U, W ) consists of two disjoint sets of
participants, U and W , each of whom submits a list of acceptable participants
from the other set, which may be ranked in order of preference. We say that
two participants m ∈ U and w ∈ W find each other acceptable if both m and
w rank each other on their respective preference lists. A matching M of Π
is subset of U ×W , where (i) for each (m, w) ∈ M , m and w find each other
acceptable, and (ii) M satisfies certain problem-specific capacity constraints.

For example, consider the following real-world two-sided matching prob-
lem. Let U be a set of high school graduates, and let W be a set of university
courses, where each course c ∈ C has a capacity cap(c), indicating the maxi-
mum number of graduates it may admit. Each graduate submits a preference
list ranking the subset of courses that he/she finds acceptable. Depending
on the problem, each course may or may not supply a preference list rank-
ing those students that find it acceptable. In this context, a matching must
satisfy the following two capacity constraints:

(i) Each graduate may be allocated to at most one course.

(ii) No course c may be allocated more than cap(c) students.

There are several other real-world examples of two-sided matching prob-
lems (see [64] and Section 1.3.1), each of which typically involves thousands
of participants. In many cases, organizations have established centralized
processes to solve these problems: preference lists are collected from par-
ticipants, and an algorithm is run to find an optimal matching, where the
definition of optimality is problem specific.

Because these problems can involve so many participants, we are con-
cerned with finding efficient matching algorithms. Section 1.1 contains a
review of complexity theory, which deals with the efficiency of algorithms.

There is a strong connection between two-sided matching problems and
graph matching (vertices correspond to participants, and edges correspond to
two participants finding each other acceptable). A review of graph matching
can be found in Section 1.2.

Finally, we remark that various two-sided matching problems have been
extensively studied. When preference lists are on both sides, the notion of
an optimal matching usually involves stability. A matching M of Π is stable
unless there is some pair of participants (m, w) ∈ U × W\M such that m
and w prefer each other to their assignment in M . A review of previous work
on finding stable matchings is contained in Section 1.3.
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1.1 Complexity Theory

In this section, we give a brief review of the complexity class hierarchy for
decision problems and optimization problems. This theory will subsequently
allow us to analyze the complexity of two-sided matching problems.

1.1.1 Decision Problems

A decision problem Π = (I, π) consists of a Turing-recognizable set I of
instances, and an (implicit) function π : I → {0, 1}. For any instance I ∈ I,
we say that I is a yes-instance of Π if π(I) = 1, and a no-instance of Π
otherwise. The decision problem Π for I is to determine if I is a yes-instance
of Π. An algorithm A solves Π if A maps I to {0, 1}, and A(I) = π(I) for
all I ∈ I.

Denote by |I| the length of a reasonable string encoding 1 of I. We
say that A runs in polynomial time if there is some non-negative integer
k, such that a deterministic Turing machine can compute A(I) in O(|I|k)
time, for all I ∈ I. Denote by P the class of all decision problems that are
solvable by some polynomial-time algorithm. Any problem (decision problem
or otherwise) that does not admit a polynomial-time algorithm is said to be
intractable. Garey and Johnson [26, pages 7-8] highlight the difference in
actual running times between algorithms with polynomial time and super-
polynomial time complexity functions.

A non-deterministic algorithm A′ solves Π if A′(I) = 1 if and only if I
is a yes-instance of Π. We say that A′ runs in non-deterministic polynomial
time if there is some non-negative integer k such that a non-deterministic
Turing machine can compute A′(I) = 1 in O(|I|k) time, for all yes-instances
I of Π. Denote by NP the class of all decision problems that are solvable
by some non-deterministic polynomial-time algorithm. We remark that P ⊆
NP.

Let Π1 = (I1, π1) and Π2 = (I2, π2) be any two decision problems. A
polynomial-time reduction from Π1 to Π2 is a polynomial-time computable
function f from I1 to I2 such that, for all I ∈ I1, I is a yes-instance of Π1 if
and only if f(I) is a yes-instance of Π2.

Suppose Π2 ∈ P. Then there is some polynomial-time algorithm A2 that
solves Π2. It is easy to see that A2(f(I)) = π1(I) for all I ∈ I1. So,
A1 = A2 ◦ f solves Π1, and since polynomials are closed under composition,
A1 runs in polynomial time. Therefore, if Π2 ∈ P, we have that Π1 ∈ P, and
contrapositively, if Π1 /∈ P, we have that Π2 /∈ P. For this reason, we say that
Π2 is at least as hard as Π1.

1For a discussion of the term reasonable, see [26, pages 17 - 22].

2



A Turing reduction generalizes the concept of a polynomial-time reduc-
tion: given any two problems Π1 and Π2, we say that Π1 Turing-reduces to
Π2 if, given a hypothetical polynomial-time algorithm for solving Π2, there
is a polynomial-time algorithm for solving Π1. A problem Π is NP-hard if,
for all Π′ ∈ NP, there is a Turing reduction from Π′ to Π. Furthermore, if
Π ∈ NP, we say that Π is NP-complete.

Cook [14] showed that the class of NP-complete problems is non-empty
by proving the membership of the satisfiability problem. Since then,
hundreds of problems have been shown to be NP-complete (see [26, 59] for
example). These problems, the hardest in NP, share the property that if
any one of them is solvable in polynomial time, then every problem in NP
is solvable in polynomial time (i.e. P = NP). However, no polynomial-time
algorithm has been published for an NP-complete problem, so it may be the
case that P 6= NP, meaning that every NP-complete problem is intractable.

1.1.2 Optimization Problems

Many NP-complete problems are decision versions of optimization problems
[10, Lemma 6.1]. In this section, we review complexity classes over optimiza-
tion problems.

An optimization problem Π = (I,F , m, g ∈ {minimize, maximize}) con-
sists of a set I of instances, each I of which has an associated set F(I) of
feasible solutions. Additionally, associated with each solution s ∈ F(I) is a
measure m(I, s) of the quality of s. The objective of Π, given by g, is to find
a s ∈ F(I) that either minimizes or maximizes m(I, s). Denote by NPO the
class of all optimization problems Π, where both I and the range of F are
recognizable in polynomial time, m is computable in polynomial time, and
there is some non-negative integer k such that for all I ∈ I and s ∈ F(I),
|s| ≤ |I|k.

An algorithm A solves Π if for all I ∈ I, the solution A(I) satisfies the
objective of Π. Denote by PO the class of all NPO problems that are solvable
in polynomial time.

For many NPO problems, no polynomial-time algorithm has been found.
In practice, we deal with such problems using approximation algorithms,
which are polynomial-time algorithms that simply return some feasible solu-
tion.

Let A be an approximation algorithm for Π and denote by OPT (I) the
measure of a minimum (respectively maximum) solution to some I ∈ I. The
performance ratio of A with respect to I for the minimization (respectively
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maximization) problem Π is:

RA(I) =
m(I, A(I))

OPT (I)

(

RA(I) =
OPT (I)

m(I, A(I))

)

Denote by RA the smallest constant c ≥ 1 such that RA(I) ≤ c for all
I ∈ I. If c < ∞, then we say that A is a c-approximation algorithm for Π,
and that Π is approximable within c. Denote by APX the class of all NPO
problems that are approximable within some finite constant.

An approximation scheme A for some problem Π ∈ APX is an algorithm
that accepts both (i) an instance I from Π, and (ii) an upper bound ε > 1,
and then outputs a feasible solution, where RA(I, ε) ≤ ε. We say that A is a
polynomial-time approximation scheme if for all I and ε, A(I, ε) is computable
in time polynomial in |I|. Denote by PTAS the class of NPO problems that
admit a polynomial-time approximation scheme. Additionally, if A runs in
time polynomial in 1/(ε−1), then A is a fully polynomial-time approximation
scheme. Denote by FPTAS the class of NPO problems that admit a fully
polynomial-time approximation scheme.

We summarize the relationships between these complexity classes in the
following figure.

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ NPO

Figure 1: Approximation Classes.

These approximation classes are non-empty (see Ausiello et al. [7]), and
the inclusions are strict if and only if P 6= NP (see Bovet and Crescenzi
[10]). Finally, we remark that a problem Π is APX-hard if for all Π′ ∈ APX,
there is an L-reduction 2 from Π′ to Π. Furthermore, if Π ∈ APX, then
Π is APX-complete. No APX-complete problem admits a polynomial-time
approximation scheme unless P = NP [15].

1.2 Graph Matching

In this section, we review important results from graph matching, which we
subsequently use to solve several two-sided matching problems.

1.2.1 Unweighted Graphs

Let G = (V, E) be any graph with n vertices and m edges. A matching M
of G is a subset of E such that no two edges in M are adjacent. We say

2See [7] for more details.
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that a vertex v is matched in M if there is some vertex M(v) ∈ V such that
{v, M(v)} ∈ M . Otherwise, v is unmatched in M .

The size or cardinality of a matching M , denoted by |M |, is just the
number of edges in M . Every graph admits the same minimum cardinality
matching, M = ∅, which has size 0. However, the size of a maximum cardi-
nality matching, denoted by β1(G), depends on the structure of G. For any
graph G, 0 ≤ β1(G) ≤ n/2, since no matching of G can match more than
n vertices. Any matching achieving this upper bound is called a perfect or
complete matching.

The following theorem, due to Hall [29], characterizes the set of all bipar-
tite graphs that admit a perfect matching.

Theorem 1.1 (Hall Marriage Theorem) Let G = (L, R, E) be any bi-
partite graph. G admits a perfect matching if and only if |L| = |R| and for
all L′ ⊆ L, |L′| ≤ |N(L′)|, where N(L′) is the set of all vertices in R adjacent
to some vertex in L′.

Tutte’s Theorem [67] generalizes Hall’s Marriage Theorem by character-
izing the set of all arbitrary graphs that admit a perfect matching. We
remark that neither characterization is stated in terms of a polynomial-time
checkable criterion, and neither characterization helps us find maximum car-
dinality matchings. The following work, due to Berge [9], solves these two
problems.

Let M be a matching of an arbitrary graph G = (V, E). A path P in G
is a sequence of vertices 〈v1, v2, . . . , vk〉 such that (i) vi 6= vj for all i 6= j,
and (ii) {vi, vi+1} ∈ E for 1 ≤ i ≤ k − 1. For exposition purposes, we
sometimes regard P as the edge set {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}}. An
M-alternating path in G is a path in which the edges alternately belong to
M and E\M . An M-augmenting path is an M -alternating path beginning
and ending with two vertices unmatched in M .

Theorem 1.2 (Berge) Let M be a matching of an arbitrary graph G =
(V, E). M is a maximum cardinality matching of G if and only if G admits
no M-augmenting path.

Suppose that G admits an M -augmenting path A. It is not too hard to
see that the symmetric difference M ′ = M ⊕ A is a matching of G with size
|M ′| = |M | + 1. This suggests the fundamental algorithm in Figure 2 for
finding a maximum matching of G.

It remains to show how to find an M -augmenting path, or prove that no
such path exists. Suppose G = (L, R, E) is a bipartite graph. Let

−→
G be
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MaximumMatching(G = (V,E))
M := ∅;
while (G admits an M -augmenting path A)

M = M ⊕ A;
return M ;

Figure 2: Augmenting path algorithm for finding a maximum matching.

the orientation of G in which all edges in E\M are directed from L to R,
and all edges in M are directed from R to L. It is easy to see that, starting
from the unmatched vertices in L, a depth-first search of

−→
G finds an M -

augmenting path if and only if one exists. This search takes O(n + m) time,
and since there are at most n/2 such searches, the overall time complexity of
the MaximumMatching algorithm for bipartite graphs is O(n(n + m)). The
problem of efficiently finding an M -augmenting path in an arbitrary graph
was first solved by Edmonds [16]. Gabow [20] then provided an O(n + m)
implementation of Edmonds’ algorithm, giving an overall time complexity of
O(n(n + m)).

Hopcroft and Karp [33] improved the MaximumMatching algorithm for
bipartite graphs by requiring that a maximal set of disjoint M -augmenting
paths be found during each loop iteration. This improvement leads to the
best known algorithm for maximum matching in bipartite graphs, with a time
complexity of O(

√
nm). Micali and Vazirani [54] generalized this improve-

ment, leading to a O(
√

nm) algorithm for maximum matching in arbitrary
graphs. We summarize these results in the following theorem.

Theorem 1.3 Let G be an arbitrary graph, with n vertices and m edges. A
maximum cardinality matching of G can be found in O(

√
nm) time.

1.2.2 Weighted Graphs

Let G = (V, E) be an arbitrary weighted graph (so that each edge e ∈ E has
an associated weight w(e) ∈ N). We define the weight of a matching M of
G as w(M) =

∑

e∈M w(e). Consider the problems of finding a (i) maximum
weight matching of G, and a (ii) maximum weight maximum cardinality
matching of G.

Both of these problems can be solved by the same variation of Maximum-
Matching. The basic idea is to repeatedly select an M -augmenting path A
that maximizes w(M ⊕ A). It is not too hard to show that after i iterations
of the loop, M has maximum weight among all matchings of size i. We can
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solve these weighted matching problems in O(n(m + n log n)) time for both
bipartite graphs [19] and arbitrary graphs [22].

Let G = (V, E) be a graph with weight function w, and consider the
problem of finding a minimum weight maximum cardinality matching. Let
G′ = (V, E) be a copy of G but with weight function w′, where, for all e ∈ E,
w′(e) = maxf∈E w(f) − w(e). It is easy to see that any maximum weight
maximum cardinality matching of G′ is a minimum weight maximum car-
dinality of G. So, we can solve the minimum weight maximum cardinality
matching problem using the algorithm described above. In subsequent chap-
ters, we refer to the algorithm for solving the minimum weight maximum
matching problem as MinWMCM.

1.2.3 b-matching

Let G = (V, E) be a graph in which each vertex v ∈ V has an associated
capacity b(v) ≥ 1. A b-matching 3 M of G is a subset of E such that for all
v ∈ V , |e ∈ M : v ∈ e| ≤ b(v).

In this thesis, we are concerned with (weighted) bipartite graphs G =
(L, R, E), in which only vertices in R may have a capacity greater than
1. The problem of finding a maximum cardinality b-matching is solvable in
O(

√
Bm) time, where m is the number of edges in G, and B is the total sum

of vertex capacities [21]. The problem of finding a minimum weight maximum
cardinality b-matching is solvable in O(

√

mα(m, m) log mm log (mN)) time,
where α is the inverse Ackerman function and N is the maximum edge weight
[23].

1.2.4 Flow Networks

A directed graph N = (V, E) is a flow network if (i) every edge e = (u, v) ∈ E
has non-negative capacity c(u, v) ≥ 0, (ii) V contains a source vertex s and
sink vertex t 6= s, where indegree(s) = outdegree(t) = 0, and (iii) every
vertex lies on some path from s to t.

For notational convenience, we assume that if e = (u, v) /∈ E, then
c(u, v) = 0. A flow in N is a function f : V × V −→ R

+
0 , where

Capacity Constraint For all u, v ∈ V , f(u, v) ≤ c(u, v).

Flow Conservation For all v ∈ V \{s, t}, ∑

u∈V f(u, v) =
∑

w∈V f(v, w).

We are concerned with integral flows, in which the range of f is N. The
size of a flow f , denoted by |f |, is

∑

v∈V f(s, v) (i.e the total flow out of the

3In subsequent chapters, we use the term matching to refer to a b-matching
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source vertex). Given a flow network N , the maximum flow problem is to
find a flow of maximum size in N . Ahuja et al. [2] describe several approaches
to solving this problem. The best known algorithm, due to Goldberg and Rao
[27], has worst-case time complexity O(min (n2/3, m1/2)m log (n2/m) log U),
where n and m are the numbers of vertices and edges in N respectively, and
U is the largest edge capacity.

We now show a relationship between network flows and b-matchings of
bipartite graphs.

Let G = (L, R, E) be a bipartite graph, where each vertex r ∈ R has an
associated capacity b(r) ≥ 1. Construct a flow network N with one vertex
for each l ∈ L and one vertex for each r ∈ R. Add an edge (l, r) to N with
unit capacity, whenever {l, r} ∈ G. Add an edge (s, l) with unit capacity
from the source vertex s of N to each vertex l. Finally, add an edge (r, t)
with capacity b(r) from each vertex r to the sink vertex t.

Let f be a flow in N . Consider the set M = {{l, r} : f(l, r) = 1}. It is
not too hard to see that the capacity constraints in N imply that M must
be a b-matching of G.

Now, let f be a maximum flow of N . We claim that f describes a maxi-
mum cardinality b-matching M of I. Suppose for a contradiction that there
is a b-matching M ′ of I such that |M ′| > |M |. Construct the following flow
f ′ of N . For each {l, r} ∈ M ′, push a unit of flow from s through l and r
to t. It follows that since M ′ is a b-matching, f ′ is a valid flow in N . But
then |f ′| > |f |, contradicting the assumption that f is a maximum flow of
N . Therefore, by finding a maximum flow of the associated flow network N ,
we can find a maximum b-matching of G in O(nm + n2 log n) time, where n
and m are the numbers of vertices and edges in G respectively.

Now, let N = (V, E) be a flow network in which each edge e = (u, v)
has an associated cost c(u, v) ≥ 0, and let f be a flow of N . The cost
of a flow is defined as

∑

(u,v)∈V ×V c(u, v)f(u, v), where if (u, v) /∈ E, then

c(u, v) = 0. Ahuja et al. [2] describe several approaches to finding a minimum
cost maximum flow of N . The best known algorithm, due to Orlin et al. [65],
has worst-case time complexity O(m log U(m + n log n)), where n and m are
the number of vertices and edges in N , and U is the largest edge capacity or
cost.

1.3 Stable Matching

Stable matching problems consist of a set of agents, each of whom submits
a preference list ranking a subset of the other agents in order of preference.
The problem is to form a matching M of the agents such that no two agents
would prefer each other to their assignment in M .
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1.3.1 Practical Applications

Many countries have centralized matching schemes that construct stable
matchings of graduating medical students to their first hospital post (based
on the preferences of students over hospitals, and hospitals over students)
[28]. America’s National Residents Matching Program (NRMP) is the largest
such scheme, involving over 20,000 medical students each year. The NRMP
was founded in 1952 in response to widespread unhappiness with the existing
scheme (which did not produce stable matchings). Roth [62] gives an expo-
sition of the situation leading up to the founding of the NRMP, convincingly
arguing that any successful two-sided matching scheme must be centralized
and produce stable matchings. Since 1952, many other professions have
adopted similar schemes to match graduating students to their first post 4.
In countries such as Spain [60] and Australia [68], stable matching schemes
are also used to assign high school students to universities. Finally, we re-
mark that stable matching schemes may operate on a much smaller scale,
such as the assignment of chess tournament pairings [47].

1.3.2 Stable Marriage Problem

An instance I of the stable marriage problem (SM) consists of a set U
of men and a set W of women, where |U | = |W | = n > 0. Each person
p ∈ U ∪W supplies a preference list, ranking all the members of the opposite
sex in strict order of preference.

A matching M of I is a subset of U × W such that M is bijection. If
(m, w) ∈ M , we say that m is matched to w and that w is matched to m.
Furthermore, we denote w by M(m) and m by M(w).

A matching M is stable unless it admits a blocking pair, that is, a (man,
woman) pair (m, w) such that

(i) (m, w) /∈ M .

(ii) m prefers w to M(m).

(iii) w prefers m to M(w).

Every instance of SM admits a stable matching [24], which may be found
in linear time [12] using the Gale/Shapley algorithm [24] given in Figure 3.

Let M be the stable matching returned by an execution of the Gale/Shapley
algorithm on some instance I of SM. Gale and Shapley [24] proved that ev-
ery man is matched in M with the best partner he could obtain in any

4See [57] for several examples.
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Gale/Shapley(I = (U,W ))
M := ∅;
assign each person to be free;
while some man m is free

w := first woman on m’s list to whom m has not yet proposed;
/* m proposes to w */
if w is free

M := M ∪ {(m,w)}; /* m and w become engaged */
else if w prefers m to m′, where m′ = M(w)

M := M\{(m′, w)}; /* break the engagement between m′ and w */
assign m′ to be free;
M := M ∪ {(m,w)}; /* m and w become engaged */

else
/* w rejects m’s proposal */

return M ;

Figure 3: Gale/Shapley Algorithm

stable matching of I. McVitie and Wilson [53] subsequently proved that
every woman is matched in M with the worst partner she could obtain in
any stable matching of I. M is therefore called the man-optimal/woman-
pessimal stable matching of I, and is denoted by MO. It is easy to see that
if we reverse the roles of men and women in the Gale/Shapley algorithm,
then the returned matching, denoted by MZ , is both woman-optimal and
man-pessimal.

In general, I may admit exponentially many stable matchings [45]. The
set of all stable matchings of I form a distributive lattice5, in which MO and
MZ are the minimal and maximal elements respectively.

Irving et al. [37] use this lattice structure to find fair stable matchings
that optimize the overall happiness of both men and women. In particular,
they give an algorithm for finding an egalitarian stable matching, which is a
stable matching that minimizes the sum of the ranks people have for their
partners.

1.3.3 Preference List Generalizations of SM

In this section, we consider three generalizations of SM, each of which relaxes
the definition of a preference list.

5[45] attributes this result to Conway.

10



Incomplete Lists
We say that a person pi finds a member of the opposite sex pj unacceptable

if pi would prefer to be unmatched than to be partnered with pj. An instance
I of SMI is an instance of SM in which preference lists may be incomplete
(i.e. preference lists only rank acceptable members of the opposite sex). A
matching M of I is defined as a subset of U × W , where

(i) for all (m, w) ∈ M , m and w find each other acceptable.

(ii) no person is matched in M to more than one member of the opposite
sex.

M is stable unless it admits a blocking pair (m, w) /∈ M , where m and
w find each other acceptable, m is either unmatched in M or prefers w to
M(m), and w is either unmatched in M or prefers m to M(w). Note that
people may be unmatched in such stable matchings; Theorem 2.1 shows that
such people are unmatched in all stable matchings.

Many SM results can be generalized for SMI. In particular, every instance
of SMI admits a stable matching which can be found in linear time using a
version of the Gale/Shapley algorithm. Also, for every instance of SMI, the
set of all stable matchings forms a distributive lattice (see [28, Section 1.4.2]
for more details).

Ties
An instance I of SMT is an instance of SM in which preference lists

may contain ties (i.e. two or more people may be ranked equally on some
preference list). A matching M of I is defined in the same way as a matching
in SM. However, Irving [36] gives three separate definitions of stability in this
context, namely weak, strong and super -stability.

M is weakly stable unless it admits a blocking pair (m, w) /∈ M such that
m and w prefer each other to their partners in M . I always admits at least
one weakly stable matching. Such a matching may be found by breaking
all ties arbitrarily, and then using the Gale/Shapley algorithm to return a
stable matching of the resulting SM instance. There is no known efficient
representation for the set of all weakly stable matchings of I. Indeed, I
may not even admit man-optimal and woman-optimal stable matchings [62].
Furthermore, the problem of finding an egalitarian weakly stable matching
of I is not approximable within O(n) [31].

M is strongly stable unless it admits a blocking pair (m, w) /∈ M such
that either

(i) m prefers w to M(m), and w either prefers m to M(w), or is indifferent
between them, or
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(ii) w prefers m to M(w), and m either prefers w to M(m), or is indifferent
between them.

Some instances of SMT admit no strongly stable matching (see Figure
25 for example). Irving [36] gives a quadratic-time algorithm to determine
if I admits a strongly stable matching, and to find one, if one exists. The
set of all strongly stable matchings of I forms a distributive lattice under a
suitable equivalence relation [49].

M is super-stable unless it admits a blocking pair (m, w) /∈ M , where m
either prefers w to M(m), or is indifferent between them, and w either prefers
m to M(w), or is indifferent between them. Irving [36] gives a linear-time
algorithm to determine if I admits a super-stable matching, and to find one,
if one exists. The set of all super-stable matchings of I forms a distributive
lattice [66].

Ties and Incomplete Lists
An instance I of SMTI is an instance of SM in which preference lists may

be incomplete and contain ties. A matching M of I is defined in the same
way as a matching in SMI. We can extend the definitions of weak, strong
and super-stability to apply in this context by replacing every occurence of
the clause, p prefers q to M(q) (for arbitrary p and q), with, p is unmatched
in M , or prefers q to M(q).

Manlove [48] extended Irving’s algorithms to determine if I admits a
strongly stable (respectively super-stable) matching, and to find such a match-
ing, if one exists. Kavitha et al. [44] have recently improved on the strong
stability algorithm, claiming a O(nL) time complexity, where n is the num-
ber of participants and L is the total length of the preference lists. A weakly
stable matching of I may be found using the same algorithm described for
the corresponding SMT problem (although, in this case, breaking the ties
leads to an instance of SMI).

Weakly stable matchings may have different sizes. The problem of finding
a maximum (respectively minimum) cardinality weakly stable matching is
APX-complete, even in various restricted instances [31, 30], such as when all
ties are on one side only, with at most one tie per list, and lists are of constant
length [30]. However, every weakly stable matching of I is at least half the
size of a maximum cardinality weakly stable matching [51], and there exist
weakly stable matchings of all sizes between the size of a minimum cardinality
and maximum cardinality weakly stable matching of I [50]. This last result
means that weak stability is an interpolating invariant.
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1.3.4 Hospitals/Residents Problem

An instance I of the hospitals/residents problem (HR) consists of a set
R of residents, and a set H of hospitals. Each resident ri supplies a preference
list ranking a subset of H in strict order of preference (note that preference
lists may be incomplete). Each hospital hj supplies a preference list ranking
in strict order all those residents that ranked hj on their own preference list.
If ri and hj rank each other in their preference lists, then we say they find
each other acceptable. Associated with each hospital hj is an integer capacity
cj indicating the maximum number of residents that may be assigned to hj.

A matching M of I is a subset of R × H, such that

(i) (ri, hj) ∈ M implies that ri and hj find each other acceptable.

(ii) For each resident ri ∈ R, |(ri, hj) ∈ M : hj ∈ H| ≤ 1.

(iii) For each hospital hj ∈ H, |(ri, hj) ∈ M : ri ∈ R| ≤ cj.

If (ri, hj) ∈ M , then we say that ri is matched with hj, and hj is matched
with ri. A resident ri is either unmatched in M , or matched to some hospi-
tal, denoted by M(ri). Denote by M(hj) the set of residents matched with
hospital hj. We say hj is under-subscribed, full or over-subscribed according
as |M(hj)| is less than, equal to, or greater than cj, respectively.

M is stable unless it admits a blocking pair (ri, hj) /∈ M such that ri and
hj find each other acceptable, ri is unmatched in M or prefers hj to M(ri),
and hj is under-subscribed or prefers ri to the worst resident in M(hj).

HR is a many-one generalization of SMI. We can extend the defini-
tion of a man-optimal/woman-optimal stable matching in SMI to resident-
optimal/hospital-optimal stable matching in HR. For a given instance I of
HR, there exist linear-time algorithms to find such stable matchings of I (see
[28, Section 1.6] for example). The set of stable matchings M of I form
a distributive lattice, which is the basis of several algorithms (see [28, Sec-
tion 1.6] for further details). M has several properties, which we outline in
Theorem 2.1.

An instance I of HRT is an instance of HR in which ties are permitted in
the preference lists. The definitions of stability in this context are analogous
to the definitions for stability in SMTI. There exist linear-time algorithms to
determine if an instance of HRT admits a strong (respectively super) stable
matching, and to find such a matching, if one exists [40, 39]. Finally, we
remark that the problem of finding a maximum cardinality weakly stable
matching is NP-hard by restriction to SMTI.
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1.3.5 Stable Roommates Problem

An instance I of the stable roommates problem (SR) consists of a set of
people P , where |P | = 2n, for some n > 0. Each person p ∈ P supplies a
preference list, ranking all the members of P\{p} in strict order of preference.

A matching M of I is a partition of P into disjoint unordered pairs. If
{pi, pj} ∈ M , we say that pi is matched to pj and that pj is matched to pi.
Furthermore, we denote pj by M(pi) and pi by M(pj).

A matching M is stable unless it admits a blocking pair {pi, pj} such that

(i) {pi, pj} /∈ M .

(ii) pi prefers pj to M(pi).

(iii) pj prefers pi to M(pj).

SR generalizes SM [28] (see Theorem 6.1), however, unlike SM, some
instances of SR admit no stable matching [24] (see Figure 31 for an example).
Irving [35] gives a polynomial-time algorithm that decides if an instance of SR
admits a stable matching, and finds one, if one exists. The three preference
list generalizations of SM (incomplete lists, ties, and both ties and incomplete
lists) have been considered for for SR [28, 61, 38].
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2 Student-Project Allocation

2.1 Introduction

Many university departments run project courses that require students to
independently undertake one of a number of projects, each of which is su-
pervised by a (possibly different) lecturer. In this chapter, we investigate
the problem of matching students to projects. There are several ways of
modelling this problem. For each model, we define an optimal matching and
present an algorithm that finds such a matching.

2.2 Simplified Model

An instance of the simplified student-project allocation (SSPA)
problem involves a set S = {s1, s2, . . . sn} of n students, a set P = {p1, p2, . . . , pm}
of m projects, and a set L = {l1, l2, . . . lq} of q lecturers. If student si is will-
ing to undertake project pj, then we say si finds pj acceptable. Denote by Ai

the set of all projects that si finds acceptable.
Each lecturer lk offers a non-empty set of projects Pk, where P1, P2, . . . Pk

partitions P . We denote by Bk the set of all students that find some project
in Pk acceptable. Associated with each lecturer lk is a capacity constraint
dk, indicating the maximum number of students lk is willing to supervise.
Similarly, each project pj has a capacity constraint cj, indicating the max-
imum number of students that may be assigned to pj. We assume that
max{cj : pj ∈ Pk} ≤ dk.

An assignment M is a subset of S × P such that:

1. (si, pj) ∈ M implies that pj ∈ Ai.

2. For each si ∈ S, |(si, pj) ∈ M : pj ∈ P | ≤ 1.

If (si, pj) ∈ M , we say that si is assigned to pj, and pj is assigned to
si. Hence, M ⊆ S × P is an assignment if and only if each student si

is assigned to at most one project pj, where si finds pj acceptable. For
notational convenience, if si is assigned to pj, we may also say that si is
assigned to lk or lk is assigned to si, where lk is the lecturer offering pj.

For each student si ∈ S, if si is assigned to some project pj in M , then we
let M(si) denote pj; otherwise, we say that si is unmatched in M . For each
project pj ∈ P , M(pj) denotes the set of students assigned to pj in M . We
say that pj is under-subscribed, full, or over-subscribed according as |M(pj)|
is less than, equal to, or greater than cj, respectively. Similarly, for each
lecturer lk ∈ L, M(lk) denotes the set of students assigned to lk in M , and lk
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is under-subscribed, full, or over-subscribed according as |M(lk)| is less than,
equal to, or greater than dk, respectively.

A matching M is an assignment satisfying the following two conditions:

1. For each pj ∈ P , |M(pj)| ≤ cj.

2. For each lk ∈ L, |M(lk)| ≤ dk.

In this context, we say that a matching M is optimal if for all matchings
M ′, |M | ≥ |M ′|. The SSPA problem then is to find an optimal matching.
An example instance of SSPA, with student set S = {s1, s2, s3, s4}, project
set P = {p1, p2, p3} and lecturer set L = {l1, l2}, is given in Figure 4.

Acceptable Projects Lecturer Offerings
A1 : {p1, p3} P1 : {p1, p2}
A2 : {p1, p2} P2 : {p3}
A3 : {p1}
A4 : {p2, p3}

Project capacities: c1 = 2, c2 = 1, c3 = 2
Lecturer capacities: d1 = d2 = 2

Figure 4: An instance of the Simplified Student-Project Allocation problem.

We can solve the SSPA problem using the following network flow model.
Construct one vertex for each student, project and lecturer, in addition to a
special source vertex and sink vertex. Add a directed edge with unit capacity
from the source vertex to every student vertex. For each student si, add a
directed edge with unit capacity from si to every project in Ai. For each
project pj, add a directed edge with capacity cj from pj to lk, where lk is the
lecturer offering pj. Finally, for each lecturer lk, add a directed edge with
capacity dk from lk to the sink vertex.

Let f be an integral flow in such a network. We can construct an assign-
ment M for the SSPA by assigning si to pj if and only if f(si, pj) = 1. It is
not too hard to see that the additional capacity constraints force M to also
be a matching.

Now, let f be a maximum flow of N . We claim that f describes a maxi-
mum matching M of I. Suppose for a contradiction that there is a matching
M ′ of I such that |M ′| > |M |. Construct the following flow f ′ of N . For
each student si assigned to some project pj in M ′, push a unit of flow from
the source through si, pj, the lecturer offering pj, and finally on to the sink.
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It follows that since M ′ is a matching, f ′ is a valid flow in N . But then
|f ′| > |f |, contradicting the assumption that f is a maximum flow of N .

Figure 5 gives two different flows for the instance described in Figure 4.
The first network flow corresponds to the matching {(s1, p1), (s4, p2)}. Lec-
turer l1 is full in this matching and there are no unmatched students that
find a project offered by l2 acceptable. However, there is a larger matching,
{(s1, p3), (s2, p1), (s3, p1), (s4, p3)}, which is described by the flow in the sec-
ond model. This is clearly a maximum matching, since every edge from the
source is saturated.

source
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s2

s3

s4

p1

p2

p3

l1

l2

sink

1/2

1/1

0/2

2/2
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s4

p1

p2

p3

l1

l2
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2/2

0/1

2/2

2/2

2/2

Figure 5: Network Flow Models for the simplified student-project al-
location problem.

For a given instance I of SSPA, the associated network N of I has O(n+
m + q) vertices, O(λ) edges, where λ =

∑n
i=1 |Ai|, and largest edge capacity

O(n + m). Using the best known algorithm for finding a maximum flow (see
Section 1.2.4), the running time of this approach is therefore o(λ2).
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2.3 One-sided preferences

We can generalize the SSPA problem model by allowing each student si to
rank the projects of Ai in order of preference (possibly involving ties). In this
context, we still seek a maximum matching, but subject to this cardinality
constraint, we want to satisfy an additional criterion, which involves optimiz-
ing some function of the student preferences. There are several acceptable
criteria, for example, we could

• Maximize the number of students matched with their first-choice project,
and subject to this, maximize the number of students matched to their
second-choice project, and so on.

• Minimize the number of students matched with their mth choice project,
and subject to this, minimize the number of students matched to their
(m − 1)th choice project, and so on.

However, here we choose the following criterion. Let M be any assignment
of students to projects. For each (student, project) pair (si, pj) in M , we
associate with M a penalty of rsi

(pj), where rsi
(pj) is the rank of pj in si’s

preference list. An optimal matching is then defined as a maximum matching
that minimizes the sum of these penalties.

We can find such a matching by using another network flow algorithm.
Given an instance I of the SSPA problem, augmented with the list of student
preferences, construct the flow network N for I. Now, using the student pref-
erence information, associate a cost of rsi

(pj) with each directed edge from
a student si to a project pj in N , where pj ∈ Ai. All other edges in N
have a zero cost. It is not too hard to see that a minimum cost maximum
flow of N describes an optimum matching, since the maximum flow require-
ment guarantees the associated matching has maximum cardinality, whilst
the minimum cost requirement exactly corresponds to the secondary aim of
minimizing the penalty sum. Using the minimum cost maximum flow algo-
rithm described in Section 1.2.4, the worst-case running time of this approach
is O(λ2 log n), where λ is the total length of the applicant preference lists and
n is the number of students.

2.4 Two-sided Preferences

In this section, we consider the two-sided student-project allocation
(SPA) problem, in which students express preferences over projects, and
lecturers express preferences over students. As in the one-sided model, each
student si supplies a preference list, ranking a subset of P in strict order
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of preference. Additionally, each lecturer lk supplies a preference list Lk,
ranking all members of Bk in strict order of preference, where Bk is the set
of all students that find some project in Pk acceptable. For each project
pj ∈ Pk, we define the projected preference list of lk for pj, denoted by Lj

k,
which is the preference list obtained from Lk by removing students in Bk

that do not find pj acceptable.
An instance of SPA with student set S = {s1, s2, . . . , s7}, project set

P = {p1, p2, . . . , p8}, and lecturer set L = {l1, l2, l3} is given in Figure 6. As
an example, the projected preference list of l1 for p1 consists of s1, s3, s2, s5,
ranked in the order given.

Student preferences Lecturer preferences
s1 : p1 p7 l1 : s7 s4 s1 s3 s2 s5 s6 l1 offers p1, p2, p3

s2 : p1 p2 p3 p4 p5 p6 l2 : s3 s2 s6 s7 s5 l2 offers p4, p5, p6

s3 : p2 p1 p4 l3 : s1 s7 l3 offers p7, p8

s4 : p2

s5 : p1 p2 p3 p4

s6 : p2 p3 p4 p5 p6 Project capacities: c1 = 2, ci = 1 (2 ≤ i ≤ 8)
s7 : p5 p3 p8 Lecturer capacities: d1 = 3, d2 = 2, d3 = 2

Figure 6: An instance of the Student-Project Allocation problem [1].

Let I be any instance of SPA. Given a matching M of I, we say that a
(student, project) pair (si, pj) ∈ (S × P )\M blocks M if:

1. pj ∈ Ai (i.e. si finds pj acceptable).

2. Either si is unmatched in M , or si prefers pj to M(si).

3. Either

(a) pj is under-subscribed and lk is under-subscribed, or

(b) pj is under-subscribed, lk is full, and either lk prefers si to the
worst student s′ in M(lk) or si = s′, or

(c) pj is full and lk prefers si to the worst student in M(pj),

where lk is the lecturer who offers pj.

We call (si, pj) a blocking pair of M . A matching is stable if it admits no
blocking pair. For a given instance I of SPA, the SPA problem is to find a
stable matching M of I. We also consider two variants of this basic problem,
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in which we require M to have the additional property that, among all stable
matchings of I, M is simultaneously best for (i) every student, and (ii) every
lecturer. Any such stable matching is referred to as a (i) student-optimal,
and (ii) lecturer-optimal.

Our definition of a blocking pair attempts to encapsulate all the scenarios
in which si and lk could both simultaneously improve, relative to M , by
permitting an assignment between si and pj. For this to occur, si must find
pj acceptable (Condition 1), and either be unmatched in M or prefer pj to
M(si) (Condition 2). From lk’s perspective, there must be a free place for
si (Condition 3(a)), or alternatively, lk must be able to make a free place in
pj by rejecting an existing student s′ already assigned to lk (Condition 3(b)
and (c)). Of course, lk would reject such a student s′ only if lk prefers si to
s′. There are two small subtleties.

Firstly, if si is already assigned to lk (so M(si) ∈ Pk) and pj is under-
subscribed, then we assume that since lk is indifferent about switching si

from M(si) to pj, he/she would not prevent such a switch from happening
(Hence, in Condition 3(b), si may equal s′.) However, and secondly, if pj

is full in M , then the only way such a switch could occur is if lk rejects a
student s′ from pj. But, since si was already assigned to lk, and now lk has
rejected s′, the number of students assigned to lk has decreased by 1.

This situation is demonstrated by the instance in Figure 7. Consider the
matching M1 = {(s1, p2), (s2, p1)}. According to the definition of a blocking
pair given above, (s1, p1) blocks M1. Hence, both s1 and l1 permit the assign-
ment between s1 and p1, resulting in the matching M2 = {(s1, p1)}, which is
the only stable matching. However, it is clear that in going from M1 to M2,
l1 has lost a student, and hence l1 may not agree to such a switch.

Student preferences Lecturer preferences
s1 : p1 p2 l1 : s1 s2 l1 offers p1 and p2

s2 : p1

Project capacities: c1 = c2 = 1
Lecturer capacities: l1 = 2

Figure 7: An instance of the Student-Project Allocation problem.

Given that l1 loses a student under this definition, one could alter Condi-
tion 3(c) to prevent such a switch occuring. However, we make two counter-
arguments to such an alteration.

Firstly, by allowing M1 to be stable, we introduce an element of strategy
into the problem; rather than submit his/her true preference list, a student
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could submit a shorter preference list in order to obtain a more preferred
assignment. In the instance above, for example, if s1’s preference list only
consisted of p1, then s1 would be matched to p1 under either definition of
Condition 3(c). On the other hand, by not listing every project he/she finds
acceptable, a student assumes an increased risk of being unmatched in the
final matching.

Secondly, from a practical perspective, allowing both M1 and M2 to be
stable implies that stable matchings may have different sizes. Under such a
definition, we would want to find a maximum cardinality stable matching of
I, for otherwise we would not be matching as many of the participants as
possible. However, several other stable matching problems admit solutions
of different sizes, such as SMTI under weak stability, and in each case, the
problem of finding a maximum cardinality stable matching is NP-hard. We
conjecture that by altering Condition 3(c), SPA would also be NP-hard.
Furthermore, using the current definition of Condition 3(c), we have been
able to prove several desirable properties of SPA in Theorems 2.6, 2.13 and
2.8. These properties, including the existence of a stable matching that
is simultaneously optimal for every student, do not hold under a revised
Condition 3(c). For example, in Figure 7, student s1 prefers matching M2 to
M1, while student s2 prefers matching M1 to M2.

We remark that HR (Section 1.3.4) is a special case of SPA in which
projects and lecturers are indistinguishable. More formally, each lecturer
lk offers exactly one project pj, where dk = cj. In the HR restriction,
projects/lecturers are referred to as hospitals, while students are referred
to as residents. At least two linear-time algorithms are known for finding a
stable matching in an instance I of HR. The resident-oriented algorithm [28,
Section 1.6.3] finds the resident optimal stable matching of I, in which each
student is assigned the best hospital that he/she could have in any stable
matching. On the other hand, the hospital-oriented algorithm [28, Section
1.6.2] finds the hospital optimal stable matching M of I. Each hospital is
assigned the same number of students in all stable matchings, but M has
the additional property that there is no stable matching M ′ of I in which
M ′(h)\M(h) contains a student preferable to the worst student in M(h).

HR also has several interesting properties, that together form the Rural
Hospitals Theorem. For a full exposition of this theorem, see [28, Section
1.6.4].

Theorem 2.1 (Rural Hospitals) For a given instance of HR,

(i) each hospital is assigned the same number of residents in all stable
matchings [25].
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(ii) exactly the same set of residents are unassigned in all stable matchings
[25].

(iii) any hospital that is under-subscribed in one stable matching is matched
with precisely the same set of residents in all stable matchings [63].

In this chapter, we extend some of these results from HR to SPA. Firstly,
we generalize the resident-oriented algorithm for HR to form algorithm SPA-
student. For any instance I of SPA, this algorithm finds the student-optimal
stable matching of I, in which each student is assigned to the best project
he/she can have in any stable matching. Secondly, we generalize the hospital-
oriented algorithm for HR to form algorithm SPA-lecturer. This algorithm
finds the lecturer-optimal stable matching M of I. In this matching, each
lecturer lk is assigned the maximum number of students he/she obtains in
any stable matching. Also, there is no stable matching M ′ of I in which
M ′(lk)\M(lk) contains a student preferable to the worst student in M(lk).
Both algorithms have linear time complexity and are therefore asymptotically
optimal, since SM, a special case of HR, has a linear-time lower bound [56].
Finally, we generalize the Rural Hospitals Theorem, although some of the
properties we discussed above do not hold for SPA.

2.4.1 Overview of Algorithm SPA-student

Algorithm SPA-student begins with the empty assignment, in which all stu-
dents are free, and every project and lecturer is totally under-subscribed. As
long as there is a free student si with a non-empty preference list, si applies
to the first project pj on his/her preference list. The result of this applica-
tion is that si is provisionally assigned to pj and lk, where lk is the lecturer
offering pj.

Now, if pj is over-subscribed, then lk breaks the provisional assignment
between pj and the worst student sr assigned to pj. Similarly, if lk is over-
subscribed, then lk rejects the worst student sr assigned to lk under any
project pt.

Each iteration of the algorithm finishes with a number of delete opera-
tions. We use the phrase delete the pair (s, p) to refer to the operation of
deleting p from the preference list of s, and deleting s from the projected pref-
erence list of p. These deletions occur in two (possibly non-disjoint) cases.
Firstly, if pj is full, we let sr be the worst student assigned to pj, and delete
any pair (st, pj), where lk prefers sr to st. Secondly, if lk is full, we let sr be
the worst student assigned to lk, and delete any pair (st, pu), where lk prefers
sr to st, and pu ∈ Pk.
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Figure 8 gives a more precise description of algorithm SPA-student. We
will now prove that, once the main loop terminates, the assigned pairs con-
stitute a matching, which is both stable and student-optimal.

SPA-student(I)
assign each student to be free;
assign each project and lecturer to be totally unsubscribed;
while (some student si is free) and (si has a non-empty list)

pj := first project on si’s list;
lk := lecturer who offers pj;
/* si applies to pj */
provisionally assign si to pj ; /* and to lk */
if (pj is over-subscribed)

sr := worst student assigned to pj ; /* according to Lj
k */

break provisional assignment between sr and pj;
else if (lk is over-subscribed)

sr := worst student assigned to lk;
pt := project assigned to sr;
break provisional assignment between sr and pt;

if (pj is full)

sr := worst student assigned to pj ; /* according to Lj
k */

for (each successor st of sr on Lj
k)

delete the pair (st, pj);
if (lk is full)

sr := worst student assigned to lk;
for (each successor st of sr on Lk)

for (each project pu ∈ Pk ∩ At)
delete the pair (st, pu);

return {(si, pj) ∈ S × P : si is provisionally assigned to pj};

Figure 8: Algorithm for finding a student-optimal stable matching.

2.4.2 Correctness of Algorithm SPA-student

The correctness of the algorithm, together with the optimality property of
the constructed matching, may be established by the following sequence of
lemmas.

Lemma 2.2 Algorithm SPA-student terminates with a matching.

Proof: Each iteration involves a free student si applying to the first project
pj on his/her preference list. No student can apply to the same project twice,
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since, for example, once si is freed from pj, the pair (si, pj) is deleted. The
total number of iterations is therefore bounded by the overall length of stu-
dent preference lists. Finally, it is clear that, once the main loop terminates,
the assigned pairs constitute a matching.

Lemma 2.3 No pair deleted during an execution of algorithm SPA-student
can block the constructed matching.

Proof: Let E be an arbitrary execution of the algorithm in which some pair
(si, pj) is deleted. Suppose for a contradiction that (si, pj) blocks M , the
matching generated by E. Now, (si, pj) is deleted in E because either (i) pj

becomes full, or (ii) lk becomes full, where lk is the lecturer offering pj. We
will show that in Case (i), (si, pj) fails (a), (b) and (c) of Condition 3 of a
blocking pair. Case (ii) is easier: (si, pj) cannot block M , since once full,
a lecturer never becomes under-subscribed, and is only ever assigned more
preferable students. We now deal with Case (i), and further consider the
three sub-cases of Condition 3 of a blocking pair.

(a) pj is under-subscribed and lk is under-subscribed.
Condition (a) requires that pj subsequently becomes under-subscribed
– something that can only happen if lk becomes over-subscribed and
one of his/her assignments involving pj is broken. However, it is not
possible for lk to subsequently become under-subscribed, contradicting
the first clause of Condition (a).

(b) pj is under-subscribed, lk is full, and either lk prefers si to the worst
student s′ in M(lk), or si = s′.
Condition (b) requires that pj becomes under-subscribed at some point
after the deletion of (si, pj). Let (s, pj) be the pair, whose deletion by
the over-subscribed lk results in pj becoming under-subscribed. Now,
lk prefers s to si, and by Condition (b), lk either prefers si to s′, or
si = s′. It follows then that lk prefers s to s′, and so, immediately
after (s, pj) is deleted, the algorithm will ensure that (s′, M(s′)) is also
deleted. This is a contradiction, since M is a matching of undeleted
pairs.

(c) pj is full and lk prefers si to the worst student s′ in M(pj).
Condition (c) gives us that lk prefers si to s′, and since (si, pj) is deleted,
(s′, pj) must also be deleted. This is a contradiction, since M is a
matching of undeleted pairs.
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Lemma 2.4 A matching generated by algorithm SPA-student is stable.

Proof: Let M be the matching generated by an arbitrary execution E of
the algorithm, and let (si, pj) be any pair blocking M . We will show that
(si, pj) must be deleted in E, thereby contradicting Lemma 2.3. Suppose not.
Then si must be matched to some project M(si) 6= pj, for otherwise si is
free with a non-empty preference list (containing pj), thereby contradicting
the termination property established in Lemma 2.2. Now, when si applies
to M(si), M(si) is the first undeleted project on his/her list. Hence, (si, pj)
must be deleted, since for (si, pj) to block M , si must prefer pj to M(si).

For a given instance I of SPA, we say that a (student, project) pair (si, pj)
is stable, if si is matched with pj in some stable matching of I. The next
lemma concerns the deletion of stable pairs in algorithm SPA-student.

Lemma 2.5 No stable pair is deleted during an execution of algorithm SPA-
student.

Proof: Suppose for a contradiction that (si, pj) is the first stable pair deleted
during an arbitrary execution E of the algorithm. Let M be the matching
immediately after the deletion in E, and let M ′ be any stable matching
containing (si, pj). Now, (si, pj) is deleted in E because either (i) pj becomes
full, or (ii) lk becomes full, where lk is the lecturer offering pj. We consider
each case in turn.

(i) Suppose (si, pj) is deleted because pj becomes full during E. Immedi-
ately after the deletion, pj is full, and lk prefers all students in M(pj)
to si. Now, si ∈ M ′(pj)\M(pj), and since pj is full in M , there must
be some s ∈ M(pj)\M ′(pj). We will show that (s, pj) forms a blocking
pair, contradicting the stability of M ′.

Firstly, since (si, pj) is the first stable pair deleted in E, s prefers pj to
any of his/her stable partners (except possibly for pj itself). Addition-
ally, since (si, pj) ∈ M ′ and lk prefers s to si, it follows that lk prefers s
to both the worst student in M ′(pj) and M ′(lk). Clearly then, for any
combination of lk and pj being full or under-subscribed, (s, pj) satisfies
all the conditions to block M ′.

(ii) Suppose that (si, pj) is deleted because lk becomes full during E. Imme-
diately after the deletion, lk is full, and lk prefers all students in M(lk) to
si. We consider two cases: |M ′(pj)| > |M(pj)| and |M ′(pj)| ≤ |M(pj)|.
Suppose firstly that |M ′(pj)| > |M(pj)|. Since lk is full in M , and
(si, pj) /∈ M , there must be some project p ∈ Pk\{pj} such that
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|M ′(p)| < |M(p)|. We remark that p is therefore under-subscribed in
M ′. Now, let s be any student in M(p)\M ′(p). Since (si, pj) is the first
stable pair deleted, s prefers p to any of his/her stable partners (except
possibly for p itself). Also, lk prefers s to si, and hence to the worst
student in M ′(lk). So, in either case that lk is full or under-subscribed,
(s, p) blocks M ′.

Now suppose that |M ′(pj)| ≤ |M(pj)|. Then there is some s 6= si ∈
M(pj)\M ′(pj). Now, pj is under-subscribed in M , for otherwise (si, pj)
is deleted because pj becomes full, contradicting the assumption that
deletion occurs because lk becomes full. Therefore, pj is under-subscribed
in M ′. As above, s prefers pj to any of his/her stable partners (except
possibly for pj itself), since (si, pj) is the first stable pair deleted. Also,
lk prefers s to si, and hence to the worst pair in M ′(lk). So, in either
case that lk is full or under-subscribed, (s, pj) blocks M ′.

The following theorem collects together Lemmas 2.2-2.5.

Theorem 2.6 For a given instance of SPA, any execution of algorithm SPA-
student constructs the student-optimal stable matching.

Proof: By Lemma 2.2, let M be a matching generated by an arbitrary exe-
cution E of the algorithm. In M , each student is assigned to the first project
on his/her reduced preference list, if any. By Lemma 2.4, M is stable, and
so each of these (student, project) pairs is stable. Also, by Lemma 2.5, no
stable pair is deleted during E. It follows then that in M , each student is
assigned to the best project that he/she can obtain in any stable matching.

For example, in the SPA instance given by Figure 6, the student-optimal
stable matching is {(s1, p1), (s2, p5), (s3, p4), (s4, p2), (s7, p3)}.

We now show how to implement algorithm-SPA efficiently.

2.4.3 Analysis of Algorithm SPA-student

The algorithm’s time complexity depends on how efficiently we can execute
‘apply’ operations and deletions, each of which occur at most once for any
(student, project) pair. It turns out that both operations can be implemented
to run in constant time, giving an overall time complexity of Θ(λ), where λ is
the total length of all the preference lists. We briefly outline the non-trivial
aspects of such an implementation.

For each student si, build an array, rank si
, where rank si

(pj) is the index
of project pj in si’s preference list. Represent si’s preference list by embed-
ding doubly linked lists in an array, preferencesi

. For each project pj ∈ Ai,
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preferencesi
(rank si

(pj)) stores the list node containing pj. This node con-
tains two next pointers (and two previous pointers) – one to the next project
in si’s list (after deletions, this project may not be located at the next array
position), and another pointer to the next project p′ in si’s list, where p′ and
pj are both offered by the same lecturer. Construct this list by traversing
through si’s preference list, using a temporary array to record the last project
in the list offered by each lecturer. Use virtual initialization (described in
[11, p.149]) for these arrays, since the overall Θ(nq) initialization cost may
be super-linear in λ. Clearly, using these data structures, we can find and
delete a project from a given student in constant time, as well as efficiently
delete all projects offered by a given lecturer.

Represent each lecturer lk’s preference list Lk by an array preference lk ,
with an additional pointer, last lk . Initially, last lk stores the index of the last
position in preference lk. However, once lk is full, make last lk equivalent to lk’s
worst assigned student through the following method. Perform a backwards
linear traversal through preference lk , starting at last lk , and continuing until
lk’s worst assigned student is encountered (each student stores a pointer to
their assigned project, or a special null value if unassigned). All but the last
student on this traversal must be deleted, and so the cost of the traversal
may be attributed to the cost of the deletions in the student preference lists.

For each project pj offered by lk, construct a preference array correspond-
ing to Lj

k. These project preference arrays are used in much the same way
as the lecturer preference array, with one exception. When a lecturer lk be-
comes over-subscribed, the algorithm frees lk’s worst assigned student si and
breaks the assignment of si to some project pj. If pj was full, then it is now
under-subscribed, and lastpj

is no longer equivalent to pj’s worst assigned
student. Rather than update lastpj

immediately, which could be expensive,
wait until pj is full again. The update then involves the same backwards
linear traversal described above for lk, although we must be careful not to
delete pairs already deleted in one of lk’s traversals. Since we only visit a
student at most twice during these backwards traversals, once for the lecturer
and once for the project, the asymptotic running time remains linear.

The implementation issues discussed above lead to the following conclu-
sion.

Theorem 2.7 Algorithm SPA-student may be implemented to run in Θ(λ)
time and Θ(mn) space, where λ is the total length of the preference lists, m
is the number of projects, and n is the number of students.
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2.4.4 Properties of the Student-Project Allocation Problem

We now prove a result similar to Theorem 2.1, the Rural Hospitals result for
HR.

Theorem 2.8 For a given SPA instance:

(i) each lecturer has the same number of students in all stable matchings;

(ii) exactly the same students are unmatched in all stable matchings;

(iii) a project offered by an under-subscribed lecturer has the same number
of students in all stable matchings.

Proof: Let M be the student-optimal stable matching, and let M ′ be any
other stable matching.

(i) Suppose |M ′(lk)| < |M(lk)| for some lecturer lk. There must be some
project pj ∈ Pk such that |M ′(pj)| < |M(pj)|. So, lk and pj are both
under-subscribed in M ′. Also, there exists si ∈ M(pj)\M ′(pj) who is
unmatched in M ′ or prefers pj to M ′(si), since M is student-optimal.
Hence, (si, pj) blocks M ′, and, therefore, |M ′(lk)| ≥ |M(lk)| for all lk.
It follows that |M ′| ≥ |M |. However, |M ′| ≤ |M |, since M is student-
optimal and therefore matches the maximum number of students of
any stable matching. Therefore, |M ′| = |M |, and for all lk, |M ′(lk)| =
|M(lk)|.

(ii) Let U and U ′ be the sets of students unmatched in M and M ′ respec-
tively. By Theorem 2.6, U ⊆ U ′, since no student unmatched in M
can be matched in M ′. But |U | = |U ′|, by (i), and so it follows that
U = U ′.

(iii) Let lk be any lecturer under-subscribed in M ′. Suppose there is some
project pj ∈ Pk such that |M ′(pj)| < |M(pj)|. So pj is under-subscribed
in M ′, and there exists si ∈ M(pj)\M ′(pj) who is unmatched in M ′

or prefers pj to M ′(si). Hence, (si, pj) blocks M ′, and, therefore,
|M ′(pj)| ≥ |M(pj)|. Now, by (i) above, |M ′(lk)| = |M(lk)|, and so
|M ′(pj)| = |M(pj)| for all pj ∈ Pk.

However, it turns out that two key properties of the Rural Hospitals
Theorem have no analogue for SPA.

Figure 9 gives a SPA instance, I1, in which a lecturer who is undersub-
scribed in one stable matching need not obtain the same set of students in
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Student preferences Lecturer preferences
s1 : p3 p1 p2 p4 l1 : s1 s2 l1 offers p1, p2

s2 : p1 p3 p2 p4 l2 : s2 s1 l2 offers p3, p4

Project capacities: c1 = 1, c2 = 1, c3 = 1, c4 = 1
Lecturer capacities: d1 = 2, d2 = 2

Figure 9: Instance I1 of the Student-Project Allocation problem.

all stable matchings. This contrasts with HR, in which an undersubscribed
hospital obtains the same set of residents in all stable matchings.

Instance I1 admits the stable matchings M = {(s1, p3), (s2, p1)} and M ′ =
{(s1, p1), (s2, p3)}. Lecturer l1 is under-subscribed in M (and hence in M ′ by
Part (i) of Theorem 2.8). However M(l1) = {s2} whilst M ′(l1) = {s1}.

Figure 10 gives a SPA instance, I2, in which a project offered by a lec-
turer who is full in one stable matching need not obtain the same number
of students in all stable matchings. This contrasts with HR, in which each
hospital obtains the same number of residents in all stable matchings.

Student preferences Lecturer preferences
s1 : p1 p3 p2 p4 l1 : s3 s4 s1 s2 l1 offers p1, p2

s2 : p1 p4 p3 p2 l2 : s1 s2 s3 s4 l2 offers p3, p4

s3 : p3 p1 p2 p4

s4 : p3 p2 p1 p4

Project capacities: c1 = 2, c2 = 1, c3 = 2, c4 = 1
Lecturer capacities: d1 = 2, d2 = 2

Figure 10: Instance I2 of the Student-Project Allocation problem.

Instance I2 admits the stable matchings M = {(s1, p1), (s2, p1), (s3, p3), (s4, p3)}
and M ′ = {(s1, p3), (s2, p4), (s3, p1), (s4, p2)}. Lecturer l1 is full in M (and
hence in M ′ by Part (i) of Theorem 2.8). However M(p1) = {s1, s2} whilst
M ′(p1) = {s3}.

2.4.5 Overview of Algorithm SPA-lecturer

Algorithm SPA-lecturer begins with the empty assignment, in which all stu-
dents are free, and every project and lecturer is totally under-subscribed.
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The algorithm then enters a loop, each iteration of which involves an under-
subscribed lecturer lk offering a project pj ∈ Pk to a student si. This student
must be the first student on lk’s list that prefers an under-subscribed project
in Pk to his/her current provisional assignment. Additionally, pj must be the
first such under-subscribed project from Pk on si’s preference list. This offer
is always accepted, and after breaking any existing assignment involving si,
si is provisionally assigned to pj and lk. Following this assignment, any pair
(si, p), where si prefers pj to p is deleted, which means that p is removed from
si’s preference list, and si is removed from the projected preference list of lk
for p. The algorithm continues in this loop until no such lk, pj and si can be
found.

Figure 11 gives a more precise description of algorithm SPA-lecturer.
We will then prove that, once the main loop terminates, the assigned pairs
constitute a matching, which is both stable and lecturer-optimal.

SPA-lecturer(I)
assign each student, project and lecturer to be free;
while (some lecturer lk is under-subscribed) and

(there is some (student, project) pair (si, pj) where
si is not provisionally assigned to pj and

pj ∈ Pk is under-subscribed and si ∈ Lj
k){

si := first such student on lk’s list;
pj := first such project on si’s list;
if (si is provisionally assigned to some project p)

break the provisional assignment between si and p;
// lk offers pj to si

provisionally assign si to pj; /* and to lk*/
for each successor p of pj on si’s list

delete (si, p);
}
return {(si, pj) ∈ S × P : si is provisionally assigned to pj};

Figure 11: Algorithm for finding a lecturer-optimal stable matching.

2.4.6 Correctness of algorithm SPA-lecturer

Lemma 2.9 Algorithm SPA-lecturer terminates with a matching.

Proof: Each iteration involves a provisional assignment: either the first as-
signment for a student, or an assignment the student prefers to his/her pre-
vious assignment. Therefore, the maximum number of iterations is bounded
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by the total length of the student preference lists, which is linear in the size
of the input. Finally, it is clear that, once the main loop terminates, the
assigned pairs constitute a matching.

Lemma 2.10 No pair deleted during an execution of algorithm SPA-lecturer
can block the constructed matching.

Proof: Let E be an arbitrary execution of the algorithm in which some pair
(si, pj) is deleted. Suppose for a contradiction that (si, pj) blocks M , the
matching generated by E. Now, (si, pj) is deleted because si is provisionally
assigned to some project p, where si prefers p to pj. On subsequent iterations,
si can only improve his/her assignment, and so, by transitivity, si prefers
his/her final assignment to pj. Therefore, (si, pj) cannot form a blocking
pair.

Lemma 2.11 A matching generated by algorithm SPA-lecturer is stable.

Proof: Let M be the matching generated by an arbitrary execution E of
the algorithm. Suppose for a contradiction that M is blocked by the pair
(si, pj), where lk is the lecturer offering pj. Now, by Lemma 2.10, we have
that (si, pj) is not deleted, and so, after termination, si ∈ Lj

k. Also, we have
that (si, pj) must satisfy (a), (b) or (c) of Condition 3 for a blocking pair.
We show a contradiction in each case.

(a) pj is under-subscribed and lk is under-subscribed.
Student si, project pj and lecturer lk satisfy the loop condition, con-
tradicting the termination property established in Lemma 2.9.

(b) pj is under-subscribed, lk is full, and either lk prefers si to the worst
student s′ in M(lk), or si = s′.
Let T1 be the point in the execution immediately after s′ obtains his/her
final assignment p′ ∈ Pk, and all subsequent deletions involving s′ have
occurred. Let M ′ be the matching at T1, and let B = {s′} ∪ {s : lk
prefers s to s′}. Define also the following set.

F =

{

p ∈ Pk :
there exists a student sl ∈ B such that p ∈ Al,
(sl, p) /∈ M ′ and (sl, p) is not deleted before T1

}

The following properties of F must hold.
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1. Any assignment to lk after T1 must involve a project from F , since
s′ is the worst student in M(lk).

2. Every p ∈ F is full at T1, otherwise lk would not have offered p′

to s′.

3. pj ∈ F , since lk either prefers si to s′, or si = s′ by Condition (b),
and (si, pj) is not deleted by Lemma 2.10.

Now since pj ∈ F , the number of students assigned to lk in M ′ is given
by

|M ′(lk)| =
∑

pf∈F\{pj}

|M ′(pf )| + |M ′(pj)| +
∑

pg∈Pk\F

|M ′(pg)| ≤ dk (1)

The number of students assigned to lk in M is given by

|M(lk)| =
∑

pf∈F\{pj}

|M(pf)| + |M(pj)| +
∑

pg∈Pk\F

|M(pg)|

Now, since all assignments to lk after T1 only involve projects from F
(Property 1) and all projects in F are full in M ′ (Property 2), we have
that

|M(lk)| ≤
∑

pf∈F\{pj}

|M ′(pf)| + |M(pj)| +
∑

pg∈Pk\F

|M ′(pg)|

Finally, we are given that pj is under-subscribed at the termination of
E (Condition (b)). Therefore

|M(lk)| <
∑

pf∈F\{pj}

|M ′(pf )| + |M ′(pj)| +
∑

pg∈Pk\F

|M ′(pg)|

= |M ′(lk)| ≤ dk

So, lk is under-subscribed at the termination of E, contradicting Con-
dition (b).

(c) pj is full and lk prefers si to the worst student s′ assigned to pj.
We have that lk prefers si to s′, and so at the time lk offered pj to s′,
(si, pj) must have been deleted (otherwise lk would haved offered pj to
si). This is a contradiction, since by Lemma 2.10, (si, pj) blocks M
only if it is not deleted.
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Lemma 2.12 No stable pair is deleted during an execution of algorithm
SPA-lecturer.

Proof: Suppose, for a contradiction, that (si, pj) is the first stable pair deleted
during an arbitrary execution E of the algorithm. This deletion occurs be-
cause si is provisionally assigned to a project p′, where si prefers p′ to pj.
Let l′ be the lecturer offering p′, and let c′ and d′ be the capacities of p′ and
l′ respectively.

Now, the number of stable pairs (s′, p′) in which l′ prefers s′ to si must
be less than c′, for otherwise, one of these pairs must be deleted before si is
assigned to p′, contradicting the assumption that (si, pj) is the first stable
pair deleted in E. Therefore, in any stable matching without (si, p

′), either
(i) p′ is under-subscribed, or (ii) p′ is full and assigned a student inferior to
si.

Let M be any stable matching containing (si, pj). We will prove that
(si, p

′) blocks any such matching M , contradicting the stability of (si, pj).
Firstly, we have that si prefers p′ to pj, and so (si, p

′) satisfies Condition
1 and 2 of a blocking pair. It remains to show that (si, p

′) satisfies Condition
3(a), (b) or (c) of a blocking pair.

Now, since (si, pj) ∈ M , it must be the case that (si, p
′) /∈ M , and so,

by the argument above, either (i) or (ii) holds for M . If (ii) holds, then p′

is full and assigned a student inferior to si in M . Therefore, (si, p
′) satisfies

Condition 3(c). Otherwise, (i) holds, and p′ is under-subscribed in M .
If l′ is under-subscribed in M , then (si, p

′) satisfies Condition 3(a). Oth-
erwise l′ is full in M , and the only way (si, p

′) cannot satisfy Condition 3(b)
is if l′ is assigned d′ students in M , each of whom he/she prefers to si. We
will show a contradiction for this case.

Since M is a stable matching, each of these d′ assignments form stable
pairs. Now, for l′ to offer p′ to si in E, only 0 ≤ z < d′ of these stable pairs
are assigned (since l′ must be under-subscribed to make an offer). However,
none of the d′ stable pairs is deleted before the offer to si in E, for otherwise
(si, pj) is not the first stable pair deleted. So, it must be the case that for the
d′ − z unassigned stable pairs in E, each of the projects in these pairs is full
(otherwise, the next offer from l′ in E would involve one of the unassigned
stable pairs, not si and p′). But then l′ is full when the offer of p′ is made to
si in E, giving the required contradiction.

The following theorem collects together Lemmas 2.9-2.12.
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Theorem 2.13 For a given instance of SPA, any execution of algorithm
SPA-lecturer constructs the stable matching in which (i) every lecturer is
assigned the best set of students he/she has in any stable matching, (ii) each
project pj, for some integer h, is assigned the first h students not deleted
from the projected preference list for pj, and (iii) each student is unmatched
or assigned the worst project he/she has in any stable matching.

Proof: By Lemma 2.11, let M be the stable matching constructed by an
arbitrary execution E of the algorithm. We will prove each statement in
turn.

(i) Firstly, we remark that, by Theorem 2.8(i), every lecturer lk is assigned
in M the maximum number of students he/she has in any stable match-
ing.

Now, let s′ be the worst student in M(lk), and let s1 be any student
not in M(lk), where lk prefers s1 to s′. We will show that s1 cannot be
assigned to any project offered by lk in any stable matching.

Suppose for a contradiction that (s1, p1) belongs to some stable match-
ing M ′, where p1 ∈ Pk. Then, by Lemma 2.12, p1 is in s1’s preference
list at the termination of E, and s1 is either unmatched in M , or prefers
p1 to M(s1).

Now, p1 is full in M , for otherwise (s1, p1) forms a blocking pair of
M . Therefore, since s1 /∈ M(p1) and s1 ∈ M ′(p1), there must be some
student s2 ∈ M(p1)\M ′(p1), where, by the stability of M , lk prefers s2

to s1. Now, since M ′ is stable, s2 must be assigned to a project p2 in
M ′, where s2 prefers p2 to p1.

Project p2 must be full in M , for otherwise (s2, p2) forms a blocking
pair of M . Therefore, since s2 /∈ M(p2) and s2 ∈ M ′(p2), there must
be some student s3 ∈ M(p2)\M ′(p2), where, by the stability of M , the
lecturer offering p2 prefers s3 to s2. Now, since M ′ is stable, s3 must
be assigned to a project p3 in M ′, where s3 prefers p3 to p2.

This process forms an infinite chain, where in each step, we prove that
some student si prefers M ′(si) to M(si). We remark that it is possible
to select a different student for each step. For example, if p3 = p1 above,
then |M ′(p1)| ≥ 2, and since p1 is full in M , |M(p1)| ≥ 2. Therefore,
there must be some student s4 6= s2 in M(p1), where lk prefers s4

to s3. Otherwise, if p3 6= p1, we can select s4 to be any student in
M(p3)\M ′(p3).

This gives the required contradiction, since the number of students is
finite.
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(ii) Suppose there is some (student, project) pair (si, pj) /∈ M , where si is
not deleted from the projected preference list of pj, and lk, the lecturer
offering pj, prefers si to the worst student s′ in M(pj). Since (si, pj) is
not deleted in E, si is either unmatched in M , or prefers pj to M(si).
So, (si, pj) is a blocking pair, contradicting the stability of M .

(iii) Let si be any student matched in M . Algorithm SPA-lecturer deletes
all successors of M(si) from si’s preference list. Now, by Lemma 2.12,
no stable pair is deleted, and so si can have no worse partner than M(si)
in any stable matching. Hence, each student is either unmatched in M ,
and therefore in any stable matching (Theorem 2.8), or assigned to the
worst project he/she has in any stable matching.

For example, in the SPA instance given by Figure 6, the lecturer-optimal
stable matching is {(s1, p1), (s2, p5), (s3, p4), (s4, p2), (s7, p3)}, which, in this
case, is the same as the student-optimal stable matching. We now show how
to implement algorithm SPA-lecturer efficiently.

2.4.7 Analysis of Algorithm SPA-lecturer

Even with the specialized data structures discussed for algorithm SPA-student
(Section 2.4.3), it is not immediately obvious that algorithm SPA-lecturer can
be implemented in linear time. For example, consider the instance in Figure
12, and the execution trace below.

Student preferences Lecturer preferences
s1 : p1 p2 l1 : s2 s1 s3 s4 s5 l1 offers p1, p2 and p3

s2 : p4 p1 l2 : s2 l2 offers p4

s3 : p2

s4 : p3

s5 : p1 p2 p3

Project capacities: c1 = c2 = c3 = c4 = 1
Lecturer capacities: d1 = 3, d2 = 1

Figure 12: An instance of the Student-Project Allocation problem.

(i) l1 offers p1 to s2; p1 becomes full;
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(ii) l1 offers p2 to s1; p2 becomes full;

(iii) l1 offers p3 to s4; l1 and p3 become full;

(iv) l2 offers p4 to s2; s2 is freed from p1; p1 becomes under-subscribed; l2
and p4 become full; (s2, p1) is deleted;

(v) l1 offers p1 to s1; s1 is freed from p2; p2 becomes under-subscribed; p1

becomes full; (s1, p2) is deleted;

(vi) l1 offers p2 to s3; p2 becomes full;

The sequence of offers made by l1, 〈 (s2, p1), (s1, p2), (s4, p3), (s1, p1),
(s3, p2) 〉, reveals two important behaviours of algorithm SPA-lecturer not
seen in the hospital-oriented algorithm for HR. Firstly, a lecturer can make
more than one offer to the same student (l1 offers both p2 and p1 to s1).
Secondly, a lecturer’s sequence of offers may not agree with his/her order of
preference (l1 offers p3 to s4 before s3 is made an offer).

Of course, the main reason for both these behaviours is that a given
project may be full at one step in the execution, but subsequently may be-
come under-subscribed. For example, at step (ii) in the execution above, p1

is full, and so s1 is assigned to his/her second preference, p2. This means
that p2 is now full, and so s3 misses out on any assignment at all. However,
s2 subsequently accepts a more preferable project in step (iv), freeing p1 for
s1 in step (v), which then frees p2 for s3 in step (vi).

In general, after a partial execution of algorithm SPA-lecturer, Pk may
contain several under-subscribed projects that were previously full, where lk
is an under-subscribed lecturer. Consider the set of students Ok that have
an under-subscribed project from Pk in their preference list at this point of
the execution, and let s be the student to whom lk last made an offer. Now,
Ok may contain several students, some of whom lk may rank at least as high
as s, and some of whom lk may rank lower than s. For example, immediately
after step (iv) of the execution above, p1 has just become under-subscribed,
and so O1 consists of both s1 and s5. The main implementation problem is
that, subject to our overall linear time goal, we need to be able to efficiently
determine which student lk ranks highest from Ok.

It turns out that we can overcome this problem by restricting the non-
determinisic choice of lk in the main loop. Before outlining this restriction,
we define two variables, which will help in the discussion. Also, throughout
this discussion, the projected preference list variables are assumed to reflect
any deletions made in the execution.
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For a given project pj, nextpj
is the first student in Lj

k not assigned to

pj. Note that nextpj
must be the first student in Lj

k after the worst student
assigned to pj. For a given lecturer lk, next lk is the first student si ∈ Ok after
the poorest student to whom lk has offered a project so far.

Initially, nextpj
and next lk refer to the first student in Lj

k and Lk respec-
tively. During an execution of algorithm SPA-lecturer, both variables take on
a sequence of values, or students. Importantly, these sequences are ordered
according to the original ordering in Lj

k and Lk respectively. And, if either of
these variables becomes undefined, the variable remains undefined until the
end of the execution. It is not too hard to see that, since these variables only
traverse their respective preference lists once, we can maintain them within
the linear time bound.

Initially, all lecturers lk make offers to next lk . However, whenever a
project pj ∈ Pk goes from being full to under-subscribed, lk may prefer nextpj

to next lk , and hence lk’s next offer must be made to nextpj
. Such an offer

results in pj becoming full, and so, at this point, lk reverts to making offers
to next lk . Alternatively, if lk prefers next lk to nextpj

, then student nextpj
is

in the scope of variable next lk , and so lk can revert to simply making offers
to next lk .

Our implementation of SPA-lecturer allows a non-deterministic choice of
lk in the main loop, with one exception. Suppose a project pj ∈ Pk goes from
being full to under-subscribed. At this point of the execution, lk’s next offer
can only involve one of two students, nextpj

or next lk , a decision that can be
made in constant time. If nextpj

is defined and either next lk is undefined or
lk prefers nextpj

to next lk , then we require that lk makes an offer to nextpj

in the next loop iteration. This requirement avoids the problem of deciding
between several students for lk’s next offer, which might involve a priority
queue, or additional linear search. Figure 13 gives the pseudocode for this
implementation of SPA-lecturer.

We briefly outline the data structures used in the linear time implementa-
tion. For each student si, construct a linked list, preferencesi

, where the ith
node in preferencesi

stores the ith ranked project in si’s preference list. As
for algorithm SPA-student, each node has two next pointers (and two pre-
vious pointers) - one to the next project in si’s preference list, and another
pointer to the next project on si’s list offered by the same lecturer.

Using preferencesi
, we can efficiently find the first under-subscribed project

pj offered by a given lecturer lk, and then delete all successors of pj on si’s
preference list.

For each lecturer lk, build an array, rank lk, where rank lk(si) is the index of
student si in lk’s preference list. We represent lk’s preference list by an array,
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SPA-lecturer(I)
assign each student, project and lecturer to be free;
assign p to be undefined;
while (some lecturer lk is under-subscribed) and

(there is some (student, project) pair (si, pj) where
si is not provisionally assigned to pj and

pj ∈ Pk is under-subscribed and si ∈ Lj
k){

if (p is defined)
pj := p;
lk := lecturer who offers pj;
si := nextpj

;
assign p to be undefined;

else
/* next lk is defined since while loop has not terminated */
si := next lk ;
pj := first under-subscribed project from Pk in si’s list;

if (si is provisionally assigned to some project p′ and lecturer l′)
if (p′ is full) and (nextp′ is defined) and

(next l′ is undefined or l′ prefers nextp′ to next l′)
p := p′;

break the provisional assignment between si and p′;
provisionally assign si to pj; /* and to lk*/
update nextpj

and nextlk ; /* see commentary for details*/
for each successor p′ of pj on si’s list

delete (si, p
′);

}
return {(si, pj) ∈ S × P : si is provisionally assigned to pj};

Figure 13: Implementation of algorithm SPA-lecturer.

preference lk , where preference lk(rank lk(si)) stores student si. Each lecturer lk
also stores a count of the number of students to which they are provisionally
assigned, and a pointer next lk into preference lk , which we described earlier.

For each project pj offered by lk, build an array rank pj
, where rank pj

(si)

is the index of student si in Lj
k. We represent Lj

k by embedding a dou-
bly linked list in an array, preferencepj

. For each student si ∈ Lj
k, prefer-

encepj
(rank pj

(si)) stores the list node containing si. This node has a pointer
to the next student in preferencepj

and one to the previous student in pref-
erencepj

. Each project also stores a count of the number of students to
which it is provisionally assigned, and a pointer, nextpj

, to the first student
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in preferencepj
not assigned to pj.

Using these data structures, we can find and delete a student from a
project’s preference list in constant time. For each preference list, we can
also compare the ranks of any two students, and efficiently traverse through
the sequence of students, missing out any students that have been deleted.

The implementation issues discussed above lead to the following conclu-
sion.

Theorem 2.14 Algorithm SPA-lecturer may be implemented to run in Θ(λ)
time and Θ(mn) space, where λ is the total length of the preference lists, m
is the number of projects, and n is the number of students.

2.5 Conclusions and Open Problems

In this chapter, we introduced SPA, which is a generalization of HR. We
then presented student-oriented and lecturer-oriented algorithms for solving
SPA. For any instance I of SPA, these algorithms return the student optimal
and lecturer optimal stable matchings of I respectively. We also proved an
analogue of the Rural Hospitals Theorem for SPA.

A number of open problems remain. For example,

• We can extend the SPA model so that the preference lists of students
and lecturers may contain ties. In this context, as with SMT and
HRT, there are several possible definitions of stability. It remains open
to determine if we can efficiently find stable matchings under these
definitions.

• We can extend the SPA model so that lecturers have preferences over
(student, project) pairs. In this context, it is an open problem to for-
mulate a definition of stability that avoids the strategic issues described
in Section 2.4.

• We can transform an instance I of HR to an instance J of SMI such that
there is bijection between stable matchings of J and stable matchings
of I. This transformation essentially involves constructing ck clones of
each hospital hk, where each clone has capacity 1, and ck is the capacity
of hk (see [1] for more details). So, we can find a stable matching of I by
first transforming I into J , and then using the Gale/Shapley algorithm
to find a stable matching of J . It turns out, however, that it is more
efficient to simply use the direct stable matching algorithm for HR,
since the cloning transformation may result in a much larger instance
of SMI. Here, we ask if there is a similar transformation from SPA to
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HR. If there is such a transformation, then we conjecture that using
the direct algorithms, SPA-student and SPA-lecturer, will be asymp-
totically faster than first transforming SPA into HR and then using a
direct algorithm for HR. Certainly, this transformation method could
never be asymptotically faster, since SPA-student and SPA-lecturer are
both asymptotically optimal.
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3 Exchange-Stability

3.1 Problem Definition

An instance I of the exchange-stable matching (ESM) problem involves
a set A = {a1, a2, . . . , am} of applicants, and a set P = {p1, p2, . . . , pn} of
posts. If an applicant ai is willing to take a post pj, then we say that ai finds
pj acceptable, and we denote by Ai the set of all posts that ai finds acceptable.
Each applicant ai supplies a preference list for I ranking Ai in strict order of
preference. Denote by L the total length of all applicant preference lists.

A matching M of I is a subset of A × P such that

1. (ai, pj) ∈ M implies that pj ∈ Ai.

2. For each ai ∈ A, |(ai, pj) ∈ M : pj ∈ P | ≤ 1.

3. For each pj ∈ P , |(ai, pj) ∈ M : ai ∈ A| ≤ 1.

If (ai, pj) ∈ M , then we say that ai is matched to pj, and pj is matched
to ai. So, an applicant ai is either unmatched in M , or matched to some
post, which we denote by M(ai). Similarly, a post pj is either unmatched in
M , or matched to some applicant M(pj). For exposition purposes, whenever
we write M(ai) (respectively M(pj)), we assume that ai (respectively pj) is
matched in M .

Informally, a matching M of I is exchange-stable unless some applicant
can be matched to a more preferable post, without requiring some other
applicant to be matched to a less preferable post. Formally, a matching M
is exchange-stable unless M satisfies at least one of the following blocking
conditions.

1. There is some (applicant, post) pair (ai, pj) such that ai and pj are
both unmatched in M , and pj ∈ Ai.

2. There is some (applicant, post) pair (ai, pj) such that ai is matched in
M , pj is unmatched in M , and ai prefers pj to M(ai).

3. For q > 1, there is some applicant sequence 〈a1, a2, . . . , aq〉 ∈ Aq such
that ai prefers M(ai+1) to M(ai), where 1 ≤ i < q, and aq prefers
M(a1) to M(aq). We say that such a sequence 〈a1, a2, . . . , aq〉 forms a
coalition.

A matching said to be (i) maximal if blocking condition 1 does not hold,
(ii) trade-in-free if blocking condition 2 does not hold, and (iii) coalition-free
if blocking condition 3 does not hold. So, a matching is exchange-stable if
and only if it is maximal, trade-in-free and coalition-free.
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3.2 Background

Alcalde [3] introduced exchange-stability to deal with situations in which
participants have property rights. For example, consider the problem of as-
signing 2n students to n two-bed rooms. Let M be a matching that pairs
the students, and assigns the pairs to rooms and beds. Now, suppose that
two students, si and sj, prefer each other to their partners in M . Although
M is not stable in the classical sense (see Section 1.3.5), there is no separate
room for si and sj to occupy, and, if both M(si) and M(sj) exercise their
property rights by refusing to swap rooms, then si and sj cannot change
their allocation. However, we can certainly say that M is not stable against
changes if si prefers M(sj) and sj prefers M(si), since in this case, si and sj

may swap beds. Clearly, si and sj form a coalition for M .
More recently, Cechlárová and Manlove [13] have studied exchange-stability

in the context of SM. In their work, (i) matchings are complete (so every
matching is necessarily maximal and trade-in-free), (ii) coalitions have size
2, and (iii) both the set of men and the set of women must be exchange-
stable. Under this definition, they prove that determining if an instance of
SM admits an exchange-stable matching is NP-complete. Furthermore, they
restrict their definition of stability to apply only to men, and prove that every
instance of SM admits a man-exchange-stable matching. Additionally, they
give an algorithm for finding a maximum cardinality man-exchange-stable
matching when the instance has incomplete preference lists.

3.3 Preliminary Results and Observations

3.3.1 Checking Exchange-Stability

Let I be an instance of ESM. We can determine if a matching M of I is
exchange-stable by determining in turn if M is maximal, trade-in-free and
coalition-free. It is trivial to test the first two blocking conditions; we only
remark that both tests can be performed in O(L) time, where L is the length
of the applicant preference lists. Determining if M is coalition-free is less
trivial.

The preference graph G of M in I consists of one vertex for each applicant,
with a directed edge (ai, aj) between any two applicants ai and aj, where
either ai is unmatched in M and M(aj) ∈ Ai, or ai prefers M(aj) to M(ai).
It is not too hard to see that there is a bijective correspondence between
coalitions in M and cycles in G. Therefore, M is coalition-free if and only
if G is acyclic. We can test if G is acyclic by using any cycle detection
algorithm, such as depth-first search. This test takes O(L) time.

We summarize the preceding discussion in the following theorem.
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Theorem 3.1 Let M be a matching of some instance I of ESM. We can
determine if M is exchange-stable in O(L) time, where L is the length of the
applicant preference lists.

3.3.2 Existence of Exchange-Stable Matchings

In this section, we show that it possible to find an exchange-stable matching
for any instance of ESM in linear time.

Theorem 3.2 Every instance of ESM admits an exchange-stable matching,
which can be found in O(L) time, where L is the length of the applicant
preference lists.

Proof: Let I be any instance of ESM, and let M be the set returned by an
arbitrary execution E of algorithm Greedy-ESM (see Figure 14) on I. We
will show that M is an exchange-stable matching.

Greedy-ESM(I = (A,P ))
assign each applicant and post to be unmatched;
M := ∅;
for each applicant ai ∈ A

if Ai contains an unmatched post
pj := first unmatched post in Ai;
/* match ai with pj */
M := M ∪ (ai, pj);

return M ;

Figure 14: Algorithm Greedy-ESM.

It is clear from the algorithm description that the set M is a matching of
I. M must be maximal, since if an applicant ai is unmatched in M , then Ai

contains no unmatched posts. Furthermore, M must be trade-in-free, since
whenever an applicant ai is matched with M(ai) in E, every post pj that ai

prefers to M(ai) has already been matched. We will now show that M is
coalition-free.

Suppose for a contradiction that M admits the coalition C = 〈a1, a2, ..., aq〉.
Without loss of generality, assume that C has been cyclically rotated so that
a1 is the first applicant in C to be matched during E. Now, since C is a coali-
tion, a1 prefers M(a2) to M(a1). But, at the time a1 is matched to M(a1) in
E, M(a2) is unmatched. This contradicts the fact that Greedy-ESM matches
each applicant with the first unmatched post on his/her preference list, if
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any. Hence, M is coalition-free, and therefore, M is also an exchange-stable
matching of I.

Finally, it is not too hard to see that Greedy-ESM runs in O(L) time,
since the algorithm makes at most one complete traversal of the applicant
preference lists.

Roth and Sotomayor [64, Example 4.3] prove that if Greedy-ESM is
used as a centralized matching mechanism, then no applicant can improve
his/her final allocation by strategically misrepresenting his/her preferences.
Cechlárová and Manlove [13] were the first to prove that Greedy-ESM returns
an exchange-stable matching, although in their work, coalitions must contain
exactly two applicants, and all preference lists are complete (see below).

Roth and Sotomayor [64, Example 4.3] also remark that a variant of
Greedy-ESM is used by the United States Naval Academy to assign gradu-
ating students to their first post as a Naval officer. This variant differs from
Greedy-ESM in that the main loop is deterministic - students are given the
opportunity to select a post in non-decreasing order of graduation results.
We briefly revisit a generalization of this variant in Theorem 3.22, where we
prove that, given any exchange-stable matching M , there exists an execution
of Greedy-ESM that will return M .

3.3.3 Sizes of Exchange-Stable Matchings

We say that an applicant ai has a complete preference list if Ai = P . If every
applicant in some instance I of ESM has a complete preference list, then we
say that I is an instance of ESM with complete lists. The next proposition
proves that, for such an instance I, all exchange-stable matchings of I have
the same size.

Proposition 3.3 Let I be an instance of ESM with complete lists, where
A and P are the sets of applicants and posts of I respectively. Then the
cardinality of every exchange-stable matching of I is min (|A|, |P |).

Proof: Let M be any exchange-stable matching of I, and suppose for a
contradiction that |M | < min (|A|, |P |). Since fewer than |A| applicants
are matched in M , there must be some applicant ai who is unmatched in M .
Similarly, there must be some post pj that is unmatched in M . Now, Ai = P ,
and so pj is a member of Ai. Therefore M is not maximal, contradicting the
exchange-stability of M .
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Let I be an instance of ESM in which some applicant ai has an incom-
plete preference list (i.e. Ai ⊂ P ). It turns out that I may admit exchange-
stable matchings of different cardinalities, and that Algorithm Greedy-ESM
may not find the largest such matching. Consider, for example, the in-
stance in Figure 15, with applicant set A = {a1, a2, a3}, and post set P =
{p1, p2, p3}. It is not too hard to see that the only exchange-stable match-
ings of this instance are M1 = {(a1, p1)}, M2 = {(a1, p2), (a2, p1)} and
M3 = {(a1, p2), (a3, p1)}. We remark that M1 has smaller cardinality than M2

and M3, and that |M2| = |M3| < min (|A|, |P |). Also, note that if Greedy-
ESM selects a1 as the first applicant in the main loop, then the returned
matching will be M1, which is not the largest exchange-stable matching.

a1 : p1 p2

a2 : p1

a3 : p1

Figure 15: An instance of ESM.

We summarize the preceding discussion in the following proposition.

Proposition 3.4 An instance I of ESM may admit exchange-stable match-
ings of different cardinalities.

Corollary 3.5 The set of applicants unmatched in one exchange-stable match-
ing may not be the same as the set of applicants unmatched in another
exchange-stable matching.

3.4 Maximum Cardinality Exchange-Stable Matchings

In this section, we present three different algorithms for finding a maximum
cardinality exchange-stable matching. We then prove that such a matching
has maximum cardinality among all matchings, even those which are not
exchange-stable. Finally, we prove an interpolation result on the cardinalities
of exchange-stable matchings.

Firstly, we introduce some new terminology. Let I be an instance of ESM
with applicant set A and post set P . The underlying graph G = (A ∪ P, E)
of I is the bipartite graph with left vertex set A, right vertex set P , and edge
set E = {(ai, pj) ⊆ A × P : pj ∈ Ai}. Additionally, associated with each
edge (ai, pj) ∈ E is a weight, which is the rank of pj in ai’s preference list.
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The first algorithm we present, Stabilize-ESM, is based on the exchange-
stability checking algorithm informally described in Section 3.3.1. This algo-
rithm begins by finding a maximum cardinality matching M of I, which may
not be exchange-stable. The algorithm then proceeds through two additional
phases.

In the second phase, the algorithm repeatedly finds (applicant, post)
pairs (ai, pj) that cause M to satisfy blocking condition 2. Whenever such
a pair is found, the algorithm breaks the existing assignment involving ai,
and proceeds to match ai to pj. In the final phase, the algorithm repeat-
edly constructs the preference graph G of M , rotating the partners of any
coalition found in these graphs. More formally, in a rotation of coalition
C = 〈a1, a2, . . . , aq〉, we partner ai with M(ai+1) for all 1 ≤ i ≤ q (where
aq+1 = a1), after first breaking all original assignments involving applicants
from C.

Stabilize-ESM(I = (A,P ))
assign each applicant and post to be unmatched;
G := underlying graph of I;
M := any maximum matching of G;
/* M is maximal */
while there exists an applicant ai matched in M and

a post pj unmatched in M , where ai prefers pj to M(ai)
M := M\{(ai,M(ai))};
M := M ∪ {(ai, pj)};

/* M is trade-in-free */
H := preference graph of M ;
while there exists a cycle C in H

/* C represents coalition for M*/
Cyclically rotate the posts assigned to applicants in C;
H := preference graph of M ;

/* M is coalition-free */
return M ;

Figure 16: Algorithm Stabilize-ESM.

Theorem 3.6 Let I be an instance of ESM with m applicants and n posts.
Then Stabilize-ESM returns a maximum cardinality exchange-stable matching
of I in O(L2) time, where L is the total length of the applicant preference
lists.
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Proof: In the first phase of Stabilize-ESM, we find a maximum matching M
of G. Every applicant that is matched in M remains matched throughout the
algorithm. So, the returned matching has maximum cardinality, and must
therefore be maximal. This phase takes O(

√

min (m, n)L) time.
In the second phase of Stabilize-ESM, we check to see if any applicant ai

can trade-in his/her existing post for a unmatched post pj, where ai prefers
pj to M(ai). It is clear that finding such a pair (ai, pj), or proving that no
such pair exists, takes O(L) time. We need to repeat this at most L times,
since each trade-in results in some applicant improving his/her assignment,
and the total length of the preference list is L. Therefore, it takes O(L2)
time to ensure that M is trade-in-free 6. We remark that every post that is
(un)matched in M at this point remains (un)matched after the third phase of
the algorithm (since the final phase only involves partner swapping). Hence,
the returned matching is trade-in-free.

In the final phase of the algorithm, we repeatedly check for the existence
of a coalition in M . This check takes O(L) time, and since every member of
the coalition improves his/her allocation, the maximum number of iterations
is O(L). Hence, it takes O(L2) time to ensure that M is coalition-free.

Therefore, Algorithm Stabilize-ESM returns a maximum cardinality exchange-
stable matching of I in O(L2) time. Finally, we remark that since the re-
turned matching has maximum cardinality of all matchings of I, it must also
have maximum cardinality of all exchange-stable matchings of I.

Corollary 3.7 Let I be an instance of ESM with applicant set A and post
set P . The size of a maximum cardinality exchange-stable matching of I is
equal to the size of a maximum cardinality matching of I.

The second algorithm we present is based on the observation in Theorem
3.8 that any minimum weight maximum cardinality matching of an underly-
ing graph G is also a maximum cardinality exchange-stable matching in the
corresponding instance I of ESM. Let p = n+m and L be the number of ver-
tices and edges in G respectively. We can find a minimum weight maximum
cardinality matching of G in O(p(L + p log p)) time, using the algorithm due
to Fredman and Tarjan [19].

Theorem 3.8 Let G be the underlying graph of some instance I of ESM.
Any minimum weight maximum cardinality matching of G is a maximum
cardinality exchange-stable matching of I.

6Manlove gives an algorithm that performs this second stage in only O(L) time. How-
ever, the overall O(L2) runtime is still dominated by the third phase
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Proof: Let M be a minimum weight maximum cardinality matching of G.
Since M is a maximum matching, we immediately have that M is maximal.

Suppose for a contradiction that M is not trade-in-free due to some (ap-
plicant, post) pair (ai, pj). Consider the matching M ′ = (M\(ai, M(ai))) ∪
(ai, pj). We have that |M ′| = |M |, and so M ′ is a maximum cardinality
matching of G. Also, since ai prefers pj to M(ai), the weight of M ′ is smaller
than the weight of M , contradicting the assumption that M has minimum
weight among all maximum cardinality matchings of G.

Now, suppose for a contradiction that M admits a coalition C = 〈a1, a2, . . . , aq〉.
Consider the matching M ′ = (M\{(a1, M(a1)), (a2, M(a2)), . . . , (aq, M(aq))})∪
{(a1, M(a2)), (a2, M(a3)), . . . , (aq, M(a1))}. The same contradiction follows,
since M ′ is a maximum matching of G with smaller weight than M (each
applicant in C is matched to a more preferable post in M ′ than in M).

The third algorithm we present, Lex-ESM, begins with an arbitrary exchange-
stable matching M , and repeatedly augments M by matching an additional
applicant and post (though not in general to each other). Lex-ESM is there-
fore a classical augmenting path algorithm, although here, we require that
the augmenting paths preserve the exchange-stability from one matching to
the next.

In the following discussion, a string S = 〈s1, s2, . . . , sq〉 is a fixed per-
mutation of some underlying set {s1, s2, . . . , sq}. We denote by S[i] the ith
ranked element in S, where S[1] is the first element and |S| is the length of
S. A string S ′ is a substring of S if there exists some integer b such that
S ′[i] = S[b + i] for all 1 ≤ i ≤ |S ′|. We define the term Prefix (S, s) to be
the substring 〈S[1], S[2], . . . , S[k]〉 of S, where S[k] = s. Similarly, we de-
fine Suffix (S, s) to be the substring 〈S[k], S[k + 1], . . . , S[|S|]〉 of S, where
S[k] = s. Note that these two terms are well-defined since all elements of S
are distinct. Given two strings S = 〈s1, s2, . . . , sq〉 and T = 〈t1, t2, . . . , tl〉,
where the intersection of the underlying sets is empty, the concatenation of
S and T is the string S · T = 〈s1, s2, . . . , sq, t1, t2, . . . , tl〉.

Recall that an alternating string Λ = 〈a1, p1, . . . , aq, pq〉 of applicants and
posts is an augmenting path of some matching M if

(i) a1 is an unmatched applicant in M ,

(ii) pq is an unmatched post in M

(iii) pi = M(ai+1) for all 1 ≤ i ≤ q − 1,

(iv) ai finds pi acceptable for all 1 ≤ i ≤ q.
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We denote by Aug(M) the set of all augmenting paths with respect to
M . For each applicant ai, denote by Aug(M, ai) the set {Λ ∈ Aug(M) :
Λ[1] = ai}. Let Λ = 〈a1, p1, . . . , aq, pq〉 be any augmenting path in Aug(M).
We associate with Λ a vector rank(Λ), which consists of the ranks of ai for
pi, where 1 ≤ i ≤ q. Also, we define a strict partial ordering on Aug(M): for
all Λ, Λ′ ∈ Aug(M), Λ < Λ′ if and only if Λ, Λ′ ∈ Aug(M, ai), for some i, and
rank(Λ) is lexicographically smaller than rank(Λ′). Finally, for an augment-
ing path Λ ∈ Aug(M), we denote by M ⊕ Λ the matching M augmented by
Λ.

Lex-ESM(I)
M := any exchange-stable matching of I;
while Aug(M) 6= ∅

Λ := minimal element of Aug(M);
M := M ⊕ Λ;

Figure 17: Algorithm for Lex-ESM.

Let I be an instance of ESM, and let M be any exchange-stable matching
of I. If M is not a maximum cardinality matching, then we know from basic
augmenting path theory that Aug(M) 6= ∅. Let Λ be any minimal element
of Aug(M), and consider the matching M ′ = M ⊕ Λ.

Lemma 3.9 M ′ = M ⊕ Λ is a maximal matching of I.

Proof: Suppose for a contradiction that M ′ is not maximal due to some
(applicant, post) pair (ai, pj). Now, since ai and pj are unmatched in M ′,
they must both be unmatched in M . This means M is not maximal, giving
the required contradiction.

Lemma 3.10 M ′ = M ⊕ Λ is a trade-in-free matching of I.

Proof: Suppose for a contradiction that M ′ is not trade-in-free due to some
(applicant, post) pair (ai, pj). Let Λ′ be the string 〈ai, pj〉 if ai /∈ Λ, or
Prefix (Λ, ai). 〈pj〉 otherwise. Now, since pj is unmatched in M ′, pj is also
unmatched in M , and so pj /∈ Λ. Therefore, Λ′ ∈ Aug(M), and since ai

prefers pj to M ′(ai), Λ′ < Λ. This contradicts the minimality of Λ.

Lemma 3.11 M ′ = M ⊕ Λ is a coalition-free matching of I.
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Proof: Suppose for a contradiction that M ′ admits a coalition C = 〈a1, a2, . . . , aq〉.
At least one applicant from C must also be in Λ, for otherwise M also admits
C. Let ai be the first applicant in Λ who is also in C, and for the follow-
ing argument, any applicant akq+t refers to at, where k is some integer, and
1 ≤ t ≤ q.

Since ai ∈ C, we have that ai prefers M ′(ai+1) to M ′(ai). Now, M ′(ai+1)
cannot be unmatched in M , for otherwise M admits the augmenting path
Λ′ =Prefix (Λ, ai) · 〈M ′(ai+1)〉, which is less than Λ. Also, M ′(ai+1) cannot
appear in Λ before ai, for otherwise ai+1 precedes M ′(ai+1) in Λ, and ai

is not the first applicant in Λ who is also in C. Furthermore, M ′(ai+1)
cannot appear in Λ after ai, for otherwise M admits the augmenting path
Λ′ =Prefix (Λ, ai)·Suffix (Λ, M ′(ai+1)), which is less than Λ.

So, it must be the case that M ′(ai+1) is matched in M and does not appear
in Λ. Now, consider the string S = 〈M ′(ai+1), ai+1, . . . , M

′(ai+j−1), ai+j−1〉,
where ai+j is the first applicant after ai in C that is also in Λ. Note, there
must exist such an applicant ai+j, since ai ∈ Λ and ai+q = ai. The string
S has the following properties, the last two of which mirror the final two
properties of an augmenting path.

(i) The intersection of the underlying sets of S and Λ is empty, since an
applicant a is not a member of Λ if and only if M ′(a) is not a member
of Λ.

(ii) For all 1 ≤ k < j, M ′(ai+k) is matched with ai+k in M .

(iii) For all 1 ≤ k < j, ai+k prefers M ′(ai+k+1) to M ′(ai+k), since C is a
coalition for M ′.

Now, if ai = ai+j, then M ′(ai+j) appears after ai in Λ. This is true also
if ai 6= ai+j, for otherwise, since ai+j precedes M ′(ai+j) in Λ, ai would not
be the first applicant in Λ to appear in C. So, the string Λ′ =Prefix (Λ, ai) ·
S·Suffix (Λ, M ′(ai+j)) forms a valid augmenting path. Finally, since ai prefers
M ′(ai+1) to M ′(ai), Λ′ is less than Λ, contradicting the minimality of Λ.

We now show how to efficiently find a minimal element of Aug(M). Con-
struct the underlying graph G of I. For each edge (ai, pj), if M(ai) = pj,
then replace this edge with (pj, ai). Recall that, in general, an augmenting
path from Aug(M) can be found by performing a depth-first search (DFS)
of G, where each tree in the resulting forest is rooted by an applicant un-
matched in M . It is not too hard to see that we can find a minimal element of
Aug(M) by performing a well-known variant of depth-first search, which we
call ordered depth-first search (ODFS). During this search, whenever we visit
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ai, the next post visited must currently be unvisited, as in DFS, and, subject
to this constraint, the post must be the endpoint of the smallest weight edge
out of ai.

In general graphs, ODFS is asymptotically slower than DFS, since ODFS
has the added overhead of finding a smallest weight edge (as opposed to any
edge). However, if the graph is already represented as an adjacency list,
where for each vertex v, v’s adjacency list stores the edges out of v in non-
decreasing order of weight, then the runtime of ODFS is the same as DFS.
We can build G in this way in only linear time, since the preference list of
each applicant is already given to us in non-decreasing order of rank. Hence,
given a matching M , we can find a minimal element of Aug(M) or show
that Aug(M) = ∅ in O(L) time, where L is the total length of the applicant
preference lists.

The following theorem collects together Lemmas 3.9 to 3.11, as well as
the preceding discussion on the time complexity of finding a minimal element
of Aug(M).

Theorem 3.12 For an arbitrary instance I of ESM, Lex-ESM returns a
maximum cardinality exchange-stable matching of I in O(min (m, n)L) time,
where m and n are the numbers of applicants and posts in I, and L is the
total length of the applicant preference lists.

Theorem 3.13 Let M− and M+ be minimum and maximum cardinality
exchange-stable matchings of some instance I of ESM. There exist exchange-
stable matchings of I of all cardinalities between |M−| and |M+|.

Proof: Let E be an execution of Lex-ESM on I, beginning from the matching
M = M−. On each iteration of E, Lex-ESM generates a new matching
M ⊕ Λ of I, where |M ⊕ Λ| = |M | + 1, and by Lemmas 3.9-3.11, M ⊕
Λ is exchange-stable. This process continues until Lex-ESM generates a
maximum cardinality exchange-stable matching of I (Theorem 3.12). Hence,
there exist exchange-stable matchings of I of all cardinalities between |M−|
and |M+|.

3.5 Uniqueness and Applicant-Optimality

Let M be an exchange-stable matching of some instance I of ESM. We say
that M is unique if I admits no exchange-stable matching other than M . In
this section, we give a polynomial-time characterization of the set of ESM
instances that admit a unique exchange-stable matching.
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Let M1 and M2 be any two matchings of some instance I of ESM. We
say that an applicant ai prefers M1 to M2 if

(i) ai is matched in M1, and

(ii) ai is unmatched in M2, or ai prefers M1(ai) to M2(ai).

We say that an exchange-stable matching M of I is applicant-optimal if
every applicant either prefers M to any other exchange-stable matching of I,
or is indifferent between them. The following lemma will help us show that
there is a close connection between uniqueness and applicant-optimality.

Lemma 3.14 Let M1 6= M2 be any two exchange-stable matchings of some
instance I of ESM with applicant set A and post set P . Then, at least one
applicant in A must prefer M1 to M2, and at least one other applicant in A
must prefer M2 to M1.

Proof: Let Λ1 = {ai ∈ A : ai prefers M1 to M2}, and let Λ2 = {ai ∈ A : ai

prefers M2 to M1}. For any A′ ⊆ A, and for any matching M of I, denote
by P (A′, M) the set P (A′, M) = {pj ∈ P : M(pj) ∈ A′}.

Now, since M1 6= M2, it must be the case that, without loss of generality,
Λ1 6= ∅. Suppose for a contradiction that Λ2 = ∅. We will prove that a subset
of Λ1 forms a coalition for M2.

Firstly, we show that P (Λ1, M1) ⊆ P (Λ1, M2). Suppose for a contra-
diction that there exists a post pj ∈ P (Λ1, M1)\P (Λ1, M2). We remark
that pj /∈ P (Λ2, M2), since Λ2 = ∅. Also, pj /∈ P (A\{Λ1 ∪ Λ2}, M2), since
P (A\{Λ1∪Λ2}, M2) = P (A\{Λ1∪Λ2}, M1), and pj ∈ P (Λ1, M1). Therefore,
pj is unmatched in M2.

Now, since pj ∈ P (Λ1, M1), pj is matched in M1 with some applicant
ai ∈ Λ1. It follows that ai prefers M1 to M2, and so either (i) ai is unmatched
in M2, in which case M2 is not maximal due to the pair (ai, pj), or (ii) ai

is matched to some post M2(ai), where ai prefers pj to M2(ai). Thus, M2

is not trade-in-free due to (ai, pj), giving the required contradiction. Hence,
P (Λ1, M1) ⊆ P (Λ1, M2).

Now, Λ1 6= ∅, so there must be some ai ∈ Λ1, who prefers M1 to M2 and is
therefore matched to some p1 in M1. So, p1 ∈ P (Λ1, M1), and, furthermore,
p1 ∈ P (Λ1, M2), since P (Λ1, M1) ⊆ P (Λ1, M2). Hence, there exists an a1 ∈
Λ1 such that (a1, p1) ∈ M2. Now, since a1 ∈ Λ1, a1 prefers M1 to M2 and
must therefore be matched to some p2 in M1. So, p2 ∈ P (Λ1, M1), and,
furthermore, p2 ∈ P (Λ1, M2), since P (Λ1, M1) ⊆ P (Λ1, M2). Hence, there
exists an a2 ∈ Λ1 such that (a2, p2) ∈ M2.

Eventually, this process must cycle. It is easy to see that the applicants
in this cycle form a coalition for M2, giving the required contradiction.
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Corollary 3.15 An exchange-stable matching M is unique if and only if M
is applicant-optimal.

The next lemma leads to a different characterization of applicant-optimality.

Lemma 3.16 Let I be an instance of ESM with applicant set A and post
set P , and let ai ∈ A be any applicant with Ai 6= ∅. Then there is some
exchange-stable matching M of I such that ai is matched in M with his/her
first-choice post.

Proof: We can find such a matching M for ai by running Greedy-ESM on I
and forcing ai to be the first applicant to be assigned a post.

Corollary 3.17 An exchange-stable matching M is applicant-optimal if and
only if every applicant ai with Ai 6= ∅ is matched in M with his/her first-
choice post.

We summarize the preceding results in the following theorem.

Theorem 3.18 Let M be an exchange-stable matching of some instance I
of ESM. The following statements are equivalent: (i) M is unique, (ii) M is
applicant-optimal, and (iii) every applicant ai with Ai 6= ∅ is matched in M
with his/her first choice post.

So we can test if an instance I of ESM admits a unique exchange-stable
matching by checking that no two applicants with a non-empty preference
list have the same first-choice post.

3.6 Generating all Exchange-Stable Matchings

In this section, we consider the problem of generating the set of all exchange-
stable matchings for some instance I of ESM. We require that this generation
be efficient, meaning that the generation can only take polynomial time for
each exchange-stable matching.

Let M be any exchange-stable matching of I. If M is unique, we are
done. Otherwise, by Theorem 3.18, some applicant must not be matched in
M to his/her first choice post. As described in the proof of Lemma 3.16,
we can generate a limited number of additional exchange-stable matchings
by successively identifying an applicant ai who is not assigned his/her first
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ranked post pj in M , and then constructing a new exchange-stable matching
that includes (ai, pj).

Here, we present a more general approach, which we describe for the
following restricted version of the generation problem: Given an exchange-
stable matching M of I, generate a second exchange-stable matching of I
that matches exactly the same set of applicants as M , or determine that no
such matching exists.

Construct the graph G′ = (V, E ′) by augmenting the preference graph
G = (V, E) of M with the following edges and weights. For each applicant
pair (ai, aj), where ai is matched in M and prefers M(ai) to M(aj), add the
edge (ai, aj) to E ′ with weight 0. For any edge (ai, aj) in E, we know that
ai is either unmatched in M or prefers M(aj) to M(ai). Assign a weight of
−1 to all such edges.

Suppose that G′ admits a negative weight cycle C = 〈a1, a2, . . . , aq〉.
We remark that since vertices corresponding to unmatched applicants have
no incoming edges, every member of C must be matched in M . Con-
struct the matching M ′ = (M\{(a1, M(a1)), (a2, M(a2)), . . . , (aq, M(aq))})∪
{(a1, M(a2)), (a2, M(a3)), . . . , (aq, M(a1))}). Now, at least one applicant ai

in C prefers M ′ to M , since C is a negative weight cycle. Therefore, M ′ 6= M ,
and the set of applicants (respectively posts) matched in M ′ is exactly the
same set of applicants (respectively posts) matched in M . It follows imme-
diately that, by the exchange-stability of M , M ′ must be maximal.

However, in general, M ′ may not be trade-in-free or coalition-free. Our
aim now is to stabilize M ′, ensuring that we do not transform M ′ back into
M .

Let M ′′ be the result of running the second and third phase of Stabilize-
ESM on M ′. It is easy to see that every applicant either prefers M ′′ to M ′,
or is indifferent between them. In particular, ai prefers M ′′(ai) to M(ai),
and so M ′′ 6= M . Hence, M ′′ is a second exchange-stable matching of I.

Finally, we remark that if I admits a second exchange-stable matching
that matches the same set of applicants as M , then by Lemma 3.14, G′ must
admit a negative weight cycle. Hence, this approach solves the restricted
generation problem. We leave open the problem of extending this approach
to efficiently generate the set of all exchange-stable matchings.

3.7 Relationship with Stable Marriage

For each instance J of SMI, we can construct an instance I of ESM by
ignoring the preference lists of women in J . In this section, we examine the
relationship between exchange-stability in I, and classical stability in J . For
exposition purposes, we now regard I as consisting of a set U of men and a
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set W of women, where each man supplies a preference list ranking a subset
of W in strict order of preference. Women express no preference in I. We
also rename exchange-stability as man-exchange-stability.

The following theorem, due to Knuth [45], is used in subsequent proofs.

Theorem 3.19 (Knuth [45]) Let M and M ′ be stable matchings of some
instance J of SMI, and suppose that there is some (man, woman) pair (m, w)
in M but not in M ′. Then, one of m and w prefers M to M ′, and the other
prefers M ′ to M .

Theorem 3.20 Let J be an instance of SMI, and let I be the correspond-
ing instance of ESM. A stable matching M of J is a man-exchange-stable
matching of I only if M = MO.

Proof: Suppose for a contradiction that M is a man-exchange-stable match-
ing of I, where M 6= MO. We remark that, by Theorem 2.1, M and MO

match the same set of people.
Let C be the set of men that prefer MO to M . Now, C 6= ∅, since

M 6= MO, and so there is some man m1 ∈ C.
Let w1 = MO(m1). It follows that since m1 prefers MO to M , (m1, w1) ∈

MO\M . Therefore, by Theorem 3.19, w1 prefers M to MO.
Let m2 = M(w1). It follows that since w1 prefers M to MO, (m2, w1) ∈

M\MO. Therefore, by Theorem 3.19, m2 prefers MO to M .
Eventually this process must cycle. It is easy to see that the men in

this cycle form a coalition for M , since each such man mi prefers MO(mi)
to M(mi), where MO(mi) = M(mi+1). Therefore, M is not man-exchange-
stable, giving the required contradiction.

We now give a small example to demonstrate that some man-optimal
stable matchings are not man-exchange-stable. Consider the instance I
of SMI in Figure 18. The man-optimal stable matching of I is MO =
{(m1, w1), (m2, w2), (m3, w3)}. This matching is blocked by the coalition
〈m1, m2〉, since m1 prefers w2 to w1, and m2 prefers w1 to w2.

m1 : w2 w1 w1 : m1 m3 m2

m2 : w1 w2 w2 : m2 m1

m3 : w1 w3 w3 : m3

Figure 18: An instance of SMI which admits no stable matching which is
also man-exchange-stable.
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Let M be a man-exchange-stable matching of some instance I of ESM,
and let G be the preference graph for M . Since G is acyclic, it must admit
a topological ordering of the men in I. Let σ be any reversed topological
ordering of G. We call σ a signature of M , and remark that every man-
exchange-stable matching has at least one signature. We will use this fact in
the following theorem.

Theorem 3.21 Let I be an instance of ESM. Every man-exchange-stable
matching of I is a man-optimal stable matching for some instance of SMI.

Proof: Let M be a man-exchange-stable matching of I, and let σ be a signa-
ture of M . Construct the instance J of SMI, where I is the restriction of J ,
and every woman in J inherits her preference list from σ (i.e. each woman
ranks the men of J in order of σ, omitting any man that does not find her
acceptable). We claim that M is the man-optimal stable matching of J .

Suppose for a contradiction that M is blocked by some (man, woman)
pair (m, w). Now, w must be matched in M , for otherwise M is either not
maximal (if m is unmatched in M) or not trade-in-free (if m is matched
in M), contradicting the man-exchange-stability of M . So, m must appear
before M(w) in σ, since w prefers m to M(w).

We also have that m is unmatched in M and finds w acceptable, or m
prefers w to M(m). In either case, there must be a directed edge from m to
M(w) in G. Therefore, m must appear after M(w) in σ, giving the required
contradiction.

Finally, since M is both a stable matching of J and a man-exchange-stable
matching of I, M must be man-optimal by Theorem 3.20.

3.8 Signature Results

In this section, we use the concept of a signature to prove several miscella-
neous results.

Theorem 3.22 Every exchange-stable matching can be generated by an ex-
ecution of Greedy-ESM.

Proof: Let M be any exchange-stable matching of some instance I of ESM.
Let G be the preference graph of M , and let σ be a signature of M . We claim
that by processing the applicants of I in order of σ, Greedy-ESM returns the
matching M ′ = M .

Suppose for a contradiction that M ′ 6= M . By Lemma 3.14, there must
be some applicant that prefers M ′ to M . Let ai be the first such applicant in
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σ, and let pj = M ′(ai). Now, pj must be matched in M to some a′
i = M(pj),

for otherwise M is not maximal (if ai unmatched in M), or M is not trade-
in-free (if ai is matched in M). It follows that G contains an edge from ai to
a′

i, and therefore, that a′
i appears before ai in σ.

Now, since Greedy-ESM processes the applicants in order of σ, pj is free
at the time a′

i is selected in Greedy-ESM. Furthermore, since M ′(pj) = ai,
a′

i must be assigned a partner in M ′ that he/she prefers to pj. Therefore, a′
i

prefers M ′ to M , contradicting the assumption that ai is the first applicant
in σ to prefer M ′ to M .

Hence M ′ = M , and the result follows.

We remark that every signature corresponds to a unique exchange-stable
matching, though such a matching may have several signatures.

Lemma 3.23 Let M be an exchange-stable matching of some instance I of
ESM. Suppose an applicant ai is matched in M with his/her (k +1)th-choice
post. Then there is some exchange-stable matching of I in which ai is matched
with his/her kth-choice post.

Proof: Denote by pj the kth-choice post of ai. Now, pj must be matched in
M , say to a = M(pj), for otherwise, M is not trade-in-free.

Let σ be a signature of M . We have that ai prefers pj = M(a) to M(ai),
and so a must precede ai in σ. Let σ′ be a reordering of σ, in which ai and a
switch positions, and all other entries are unchanged. It is easy to see that in
the unique exchange-stable matching M ′ corresponding to σ′, ai is matched
to pj.

We generalize the preceding lemma in the following theorem.

Theorem 3.24 Let M be an exchange-stable matching of some instance I of
ESM. Suppose an applicant ai is matched in M with his/her kth-choice post.
Then there is some exchange-stable matching of I in which ai is matched
with his/her jth-choice post, where 1 ≤ j ≤ k.

Theorem 3.25 In any non-empty exchange-stable matching M , at least k
applicants are matched with their kth-ranked post or better, where 1 ≤ k ≤
|M |.

Proof: Let σ be a signature of M after removing any applicants unmatched in
M . So, σ contains |M | applicants, all of whom are matched in M . Consider
the execution E of Greedy-ESM with ordering σ.
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Let ai be the kth applicant in σ, for any 1 ≤ k ≤ |M |. Now, if |Ai| < k,
then since every applicant in σ is matched in M , ai must be matched in M
to some post that he/she ranks better than k.

Otherwise, let pj be the kth-choice post of ai. Consider the point in E
immediately before ai is matched. Since ai is the kth applicant in σ, exactly
(k − 1) posts have been matched by this point in E. It is easy to see then
that ai must be matched in M with pj or better.

The result follows by a simple inductive argument.

3.9 Conclusion and Open Problems

In this chapter, we gave three algorithms for finding a maximum cardinality
exchange-stable matching. We then gave an efficient characterization of the
set of ESM instances that admit a unique exchange-stable matching. Finally,
we introduced the concept of a signature to show the connection between
exchange-stable matchings in ESM and classical stable matchings in SMI.

A number of open problems remain. For example,

• We can find a maximum cardinality exchange-stable matching in time
O(min (m, n)L), where m and n are the numbers of applicants and
posts, and L is the total length of the applicant preference lists. This
matching is a maximum matching of applicants to posts. In general,
we can find a maximum matching (which is not necessarily exchange-
stable) in only O(

√

min (m, n)L) time [33]. It is an open problem to
determine if we can find a maximum matching that is also exchange-
stable within this time bound.

• Let I be an instance of ESM, and consider the problem of finding a
minimum cardinality exchange-stable matching M of I (MIN-ESM).
Although it is not known if MIN-ESM is polynomial-time solvable,
we conjecture that the problem is NP-hard. We base this conjecture
on the obvious similarity between MIN-ESM (noting that M must be
maximal) and the problem of finding a minimum cardinality maximal
matching of a bipartite graph (MMM), which is well-known to be NP-
hard [69].

The only positive result we have for MIN-ESM is a 2-approximation:
any exchange-stable matching of I is no larger than twice the size of a
minimum cardinality exchange-stable matching. This follows from the
maximality property of exchange-stability. For a full proof, see Lemma
7.1.
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• We can extend the ESM model so that the applicant preference lists
may contain ties. In this context, as with SMT and HRT, there are
several possible definitions of stability. It remains open to determine if
we can efficiently find stable matchings under these definitions.

• Given an exchange-stable matching, we solved the problem of deter-
mining if there is another exchange-stable matching (which matches
the same set of applicants), and finding such a matching, if one ex-
ists. However, the problem of efficiently generating all exchange-stable
matchings remains open. One approach to this problem is to give an
algorithm that finds an exchange-stable matching M , where M is re-
quired to (not) contain a given (applicant, post) pair. Again, solving
this problem is open.
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4 Tutorial Allocation

4.1 The Model

An instance I of the tutorial allocation problem (TA) consists of a set
S = {s1, s2, . . . , sm} of students, and a set T = {t1, t2, . . . , tn} of tutorials.
Each tutorial tj ∈ T has a positive integer capacity cj, indicating the max-
imum number of students that can be allocated to tj. Each student si ∈ S
supplies a subset Ai of tutorials, each of which he/she is free to attend. If
tj ∈ Ai, we say that si finds tj acceptable.

A matching M of I is a subset of S × T such that,

(i) (si, tj) ∈ M only if tj ∈ Ai.

(ii) For each student si ∈ S, |(si, tj) ∈ M : tj ∈ T | ≤ 1.

(iii) For each tutorial tj ∈ T , |(si, tj) ∈ M : si ∈ S| ≤ cj.

If (si, tj) ∈ M , we say that si is matched to tj, and tj is matched to si.
Denote by M(tj) the set of students matched to tj in M . Similarly, a student
si is either unmatched in M , or matched to some tutorial, which we denote
by M(si).

The tutorial allocation problem is to find a maximum cardinality
matching of students to tutorials. Figure 19 gives an example instance of
TA with student set S = {s1, s2, s3}, and tutorial set T = {t1, t2, t3, t4}.
This instance admits several maximum cardinality matchings, such as M1 =
{(s1, t1), (s2, t2), (s3, t4)} and M2 = {(s1, t2), (s2, t2), (s3, t4)}.

Let I be an instance of TA. The underlying graph G of I consists of
one vertex for each student si, one vertex for each tutorial tj, and an edge
between si and tj whenever tj ∈ Ai. Each student vertex has capacity 1,
while each tutorial vertex tj has capacity cj.

The problem of finding a maximum cardinality matching of I is equiva-
lent to the problem of finding a maximum cardinality b-matching of G (see
Section 1.2.3 for more details). In the rest of this chapter, we look at several
variants of TA in which we require a maximum cardinality matching with
some additional property.

4.2 Minimum Tutorial Cover

Let I be an instance of TA, and let M be any matching of I. We say that
a tutorial tj is empty in M if |M(tj)| = 0. Suppose there is a fixed non-zero
cost associated with running each non-empty tutorial. Our aim is to find an
allocation of students to tutorials that minimizes the overall financial cost,
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Acceptable Tutorials
s1 : {t1, t2}
s2 : {t2, t3}
s3 : {t4}

Tutorial capacities: c1 = 1, c2 = c3 = c4 = 2

Figure 19: An instance of TA.

without sacrificing the number of matched students, or violating any tuto-
rial capacity constraints. More formally, the minimum tutorial cover
problem (MTC) is to find a maximum matching M of I with the minimum
number of non-empty tutorials.

It turns out that MTC is NP-hard. We prove this with a reduction from
the minimum set cover problem (MSC) ([26, problem SP5]). An instance
J of MSC consists of a base set β and a family F of subsets of β, where
⋃

F∈F F = β. A set cover of J is a subset C of F , such that every member
of β is in some member of C. The problem of finding a minimum cardinality
set cover is NP-hard [43], and NP-hard to approximate within o(lg(|β|)) [17].
We remark that Johnson [42] gives a (1+ ln|β|)-approximation algorithm for
MSC.

Given an instance J of MSC, construct the following instance I of MTC.
For each element F ∈ F , construct a tutorial, denoted by t(F ), with capacity
|F |. For each element b ∈ β, construct a student, denoted by s(b), who finds
acceptable any tutorial t(F ), where b ∈ F . This construction is clearly
polynomial-time computable.

Now, let M be any maximum matching of I with k non-empty tutorials.
Since

⋃

F∈F F = β and every tutorial t(F ) has capacity |F |, it must be the
case that every student is matched in M . Hence, the non-empty tutorials in
M describe a set cover C of J , where |C| = k.

Conversely, let C be any set cover of J , where |C| = k. We can construct
a matching M of I by arbitrarily matching each student s(b) to exactly one
tutorial t(F ), where b ∈ F and F ∈ C. It is not too hard to see that M is a
maximum matching with at most k non-empty tutorials.

We summarize the preceding discussion in the following theorem.

Theorem 4.1 MTC is NP-hard and NP-hard to approximate within o(lg(|S|)).

Although MTC is NP-hard, the problem is polynomial-time solvable un-
der certain restrictions. For example, suppose that cj = 1 for every tutorial
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tj in a given instance I of MTC. Then, every maximum matching of I has
the same number of non-empty tutorials, and so MTC is equivalent to TA.

More generally, let I be an instance of MTC in which every tutorial
has capacity at most 2. We remark that if m = 1, then MTC is trivial.
Otherwise, we can solve MTC for I in polynomial time by finding a certain
type of matching in the following weighted graph.

Let G[I] be the graph consisting of four disjoint vertex sets: S, T , T ′ and
T ′′. Each student is represented by a vertex in set S, while each tutorial tj is
represented by three vertices, namely tj ∈ T , t′j ∈ T ′ and t′′j ∈ T ′′. These last
three vertices are connected by the edges {tj, t

′
j} and {t′j, t′′j}, with weight

0 and m respectively. For each student si, there is an edge between si and
tj ∈ T if si finds tj acceptable. Furthermore, if cj = 2, there is also an edge
between si and t′j ∈ T ′. Both these edges, if defined, have weight 1. Figure
20 gives an example of this graph for the instance in Figure 19.
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1

1

1

1

1

1

Figure 20: G[I] for TA instance in Figure 19.

We associate with every matching M ′ of G[I] a corresponding matching
M of I, where M = {(si, tj) : {si, tj} ∈ M ′ or {si, t

′
j} ∈ M ′}. Similarly, we

associate with every matching M of I a corresponding matching M ′ of G[I],
where M ′ is defined according to the rules in Figure 21.

Notice that whenever |M(tj)| = 1, M ′ includes an edge with maximum
weight among all edges in G[I]. These maximum weight edges act as penalties
for matching tutorials to exactly one student.
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|M(tj)| M(tj) Edges in M ′ Weight of edges in M ′

0 ∅ {tj, t′j} 0
1 {sa} {sa, tj}, {t′j, t′′j} 1 + m
2 {sa, sb} {sa, tj}, {sb, t

′
j} 2

Figure 21: Constructing M ′ from M .

Now, recall from Section 1.2.2 that algorithm MinWMCM builds a min-
imum weight maximum cardinality matching M ′ by repeatedly finding and
applying minimum weight M ′-augmenting paths. Consider an execution E
of MinWMCM on G[I]. It is not too hard to see that, due to the structure
of G[I], we can partition E into the following four distinct phases.

In the first phase, every M ′-augmenting path has weight 0, matching
each tutorial vertex tj ∈ T , with the corresponding vertex t′j ∈ T ′. In the
second phase, every M ′-augmenting path has weight 2, beginning and ending
with distinct unmatched students. At the termination of this phase, every
tutorial tj has either |M ′(tj)| = 2 or |M ′(tj)| = 0. In the third phase,
every M ′-augmenting path has weight 1 + m, beginning and ending with an
unmatched student and a tutorial vertex t′′j ∈ T ′′. In the final phase, every
M ′-augmenting path has weight 2m, beginning and ending with unmatched
tutorial vertices from T ′′. Figure 22 shows the result of phase 2 and phase 3
of MinWMCM on the graph G[I] from Figure 20.
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Figure 22: MinWMCM on G[I].
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Let M ′ be the matching of G[I] immediately after phase 3 has terminated.
We claim that the corresponding matching M of I is a maximum cardinality
matching with the fewest number of non-empty tutorials.

Lemma 4.2 Let I be an instance of MTC in which there are m > 1 students,
and each tutorial has capacity at most 2. Let M ′ be the matching of G[I]
immediately after phase 3 of MinWMCM has terminated. Then the matching
M of I corresponding to M ′ is a maximum cardinality matching.

Proof: Suppose for a contradiction that M is not a maximum cardinality
matching of I. It follows that M admits some shortest length augmenting
path A = 〈s0, t1, s1, . . . , tk−1, sk−1, tk〉 in the underlying graph of I. Since A
has shortest length, it must be the case that tk is the first tutorial ti in A
with |M(ti)| < ci. Also, since (si, ti) ∈ M for 1 ≤ i ≤ k − 1, we have that
{si, ti} ∈ M ′, where ti is the vertex representing ti in either T or T ′.

Now, if |M(tk)| = 0, then {tk, t′k} ∈ M ′, and G[I] admits the phase 3
M ′-augmenting path

〈

s0, t1, s1, . . . , tk−1, sk−1, tk, t
′
k, t

′′
k

〉

. This contradicts the
assumption that phase 3 has terminated.

So, it must be the case that |M(tk)| = 1 and {t′k, t′′k} ∈ M ′. Consider the
matching M ′′ of G, where M ′′ = (M ′\{{t′k, t′′k}})⊕

〈

s0, t1, s1, . . . , tk−1, sk−1, t
′
k

〉

.
Now, it is easy to see that |M ′′| = |M ′| and w(M ′′) = w(M ′)−m + 1. Since
m > 1, we have that w(M ′′) < w(M ′), which contradicts the property that
the matching M ′ maintained by MinWMCM has minimum weight among all
matchings of size |M ′|. Therefore, M is a maximum cardinality matching of
I.

Theorem 4.3 Let I be an instance of MTC in which there are m > 1 stu-
dents, and each tutorial has capacity at most 2. Let M ′ be the matching
of G[I] immediately after phase 3 of MinWMCM has terminated. Then the
matching M of I corresponding to M ′ is a maximum cardinality matching
with the fewest number of non-empty tutorials.

Proof: Suppose for a contradiction that there is some maximum matching
M∗ of I that has fewer non-empty tutorials than M . Let E∗, U∗ and D∗

be the number of tutorials in M ∗ with 0, 1, and 2 students respectively.
Similarly, Let E, U and D be the number of tutorials in M with 0, 1, and 2
students respectively.

By Lemma 4.2, we have that |M ∗| = 2D∗ + U∗ = 2D + U = |M |. Also,
by assumption, we have that D∗ +U∗ < D +U , which together with the last
equality, implies that U ∗ < U .

64



Let M ′′ be the matching of G[I] associated with M ∗. Now, the weight of
M ′′ is 2D∗+U∗(1+m) = 2D∗+U∗+U∗m = 2D+U +U∗m < 2D+U +Um,
which is the weight of M ′ in G[I]. This contradicts the property that the
matching M ′ maintained by MinWMCM has minimum weight among all
matchings of size |M ′|. Therefore, M is a maximum cardinality matching of
I with the fewest number of non-empty tutorials.

We remark that MSC is polynomial-time solvable when every subset of
the base set has cardinality at most 2. However, there doesn’t appear to be
a simple reduction from MTC to MSC under these restrictions, since several
students may find any one tutorial acceptable. Therefore, we cannot see any
way of using the polynomial-time algorithm for MSC to solve MTC.

In contrast to Theorem 4.3, if we restrict |Ai| = 2 for each student si,
then MTC is NP-hard. We prove this with a reduction from the minimum
vertex cover problem (MVC) ([26, problem GT1]). An instance J of
MVC consists of an undirected graph G = (V, E). A vertex cover of G is
a subset C of V such that every edge in E has at least one endpoint in C.
The problem of finding a minimum vertex cover is well-known to be NP-hard
[43].

Given an instance J of MVC consisting of a graph G = (V, E), construct
the following instance I of MTC. For each vertex v ∈ V , construct a tu-
torial, denoted by t(v), with capacity deg(v). For each edge {u, v} ∈ E,
construct a student, denoted by s({u, v}), who finds acceptable t(u) and t(v)
(so each student finds exactly two tutorials acceptable). This construction
is equivalent to the subdivision graph of G, and is clearly polynomial-time
computable.

Now, let M be any maximum matching of I with k non-empty tutorials.
Since each tutorial t(v) has capacity deg(v), it must be the case that every
student is matched in M . Hence, the non-empty tutorials in M describe a
vertex cover C of J , where |C| = k.

Conversely, let C be any vertex cover of J , where |C| = k. So, for each
edge {u, v}, at least one of u and v must be in C. Therefore, we can construct
a maximum matching M of I, in which each student s({u, v}) is matched
with either t(u), if u ∈ C, or t(v), if u /∈ C. It is not too hard to see that M
has at most k non-empty tutorials.

We summarize the preceding discussion in the following theorem.

Theorem 4.4 MTC is NP-hard, even when each student finds at most two
tutorials acceptable.

Theorem 4.5 MTC is NP-hard, even when each student finds at most two
tutorials acceptable, and each tutorial has capacity 3.
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Proof: MVC is APX-complete even for cubic graphs [4], that is, graphs in
which every vertex has degree 3. Using the reduction function above, we can
transform any cubic graph into an instance of MTC, where each tutorial has
capacity 3. The result follows immediately.

4.3 Balanced Matchings

Let M be a matching of some instance I of TA. Define the load vector of M
as l(M) = 〈|M(t1)|, |M(t2)|, . . . , |M(tn)|〉. We measure the imbalance of M ,
denoted by ||l(M)||p, by the Lp-norm of l(M), where for p ≥ 1,

||l(M)||p =





∑

tj∈T

|M(tj)|p




1/p

A balanced matching of I is a maximum cardinality matching of I with
minimum imbalance for every p ≥ 1.

Remark 4.6 Let I be an instance of TA. Any maximum matching of I has
minimum imbalance using the L1-norm.

Proof: Let M1 and M2 be any two maximum matchings of I. Then ||l(M1)||1 =
|M1| = |M2| = ||l(M2)||1

Alon et al. [5] have studied a similar problem in the context of scheduling.
In their work, S is a set of jobs and T is a set of machines. Each job si can be
processed in unit time by any machine in a specified subset Ai of T . Unlike
TA, machines have infinite capacity and every problem instance must admit
a complete matching of jobs to machines. Alon et al prove the existence of
a strongly-optimal assignment, which is a complete matching with minimum
Lp-norm for any p ≥ 1. Their algorithm runs in O(v3e), where v and e are
the numbers of vertices and edges in the underlying graph.

In this section, we present RRBalance (Figure 23), which is a new algo-
rithm for finding a balanced matching. we show below that RRBalance runs
in O(ve) time, giving a factor of v2 improvement on the algorithm due to
Alon et al. The correctness proof for RRBalance also independently proves
the existence of a strongly-optimal assignment.

An execution of RRBalance consists of a sequence of rounds, where each
round corresponds to an iteration of the outer loop. During each round,
RRBalance performs a sequence of steps, where, initially, there is one step
for each tutorial tj. During each step, RRBalance attempts to find and apply
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RRBalance(I)
M := ∅;
C := T ;
while (C 6= ∅)

for each (tj ∈ C)
if (|M(tj)| = cj or there is no tj-augmenting path P )

C := C\{tj};
else

M := M
⊕

P ;
return M ;

Figure 23: An algorithm for finding a balanced matching.

a tj-augmenting path, that is, an augmenting path with endpoint tj (similarly,
a tj-alternating path is an alternating path with endpoint tj). If tj is already
matched with cj students, or no tj-augmenting path can be found, then tj

is removed from the set C of candidate tutorials, and no subsequent step
of RRBalance involves the search for a tj-augmenting path. The algorithm
continues until there are no candidate tutorials.

So, for each step in RRbalance, we either remove a candidate tutorial or
apply an augmenting path. The maximum number of steps in RRbalance is
therefore n + min (m, N) = O(v), where N is the total capacity sum of all
the tutorials. We can store candidate tutorials in a linked list, which allows
efficient traversal and deletion. We can perform each step in O(e) time using
a depth first search. Therefore, the overall runtime of RRbalance is O(ve).

Let I be a instance of TA with tutorial set T and underlying graph G. Let
E be an arbitrary execution of RRBalance on I, and let Mi be the matching
of I immediately before step i of E. The following definitions and results are
used in Theorem 4.13, which proves the correctness of RRBalance.

Definition 4.7

(i) Aug(i) = {tk ∈ T : G admits a tk-augmenting path at step i of E}.

(ii) Alt(i) = {tk ∈ T : G admits a tk-alternating path ending with a student
unmatched in Mi at step i of E}.

(iii) Alttj (i) = {tj} ∪ {tk ∈ T : tk is reachable from tj by an Mi-alternating
path beginning with an unmatched edge incident to tj}.

Based on these definitions, we make the following remarks.

Remark 4.8
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(i) Aug(i) ⊆ Alt(i).

(ii) tj ∈ Alt(i)\Aug(i) implies |Mi(tj)| = cj.

(iii) tk ∈ Alttj (i) implies Alttk(i) ⊆ Alttj (i).

(iv) tj ∈ Alt(i) if and only if there is a tk ∈ Alttj (i) such that tk is adjacent
in G to some student unmatched in Mi.

Lemma 4.9 If tj /∈ Alt(i), then tj /∈ Alt(i + 1).

Proof: Suppose tj /∈ Alt(i). Then, by Remark 4.8(iv), no tutorial in Alttj (i)
is adjacent to a student unmatched in Mi. Therefore, Alttj (i) ∩ Alt(i) = ∅.
Let S ′ be the set of all students matched to some tutorial in Alttj (i), and let
A be any Mi-augmenting path.

Now, since Alttj (i)∩Alt(i) = ∅, A cannot include any member of Alttj (i)∪
S ′. So, if Mi+1 = Mi⊕A, we have that Alttj (i+1) = Alttj (i). It follows then
that every tutorial in Alttj (i + 1) can only be adjacent to members of S ′, all
of whom are matched in Mi+1. Hence, by Remark 4.8(iv), tj /∈ Alt(i + 1).

Corollary 4.10 If tj /∈ Alt(i), then for all k ≥ 0, tj /∈ Alt(i + k).

Corollary 4.11 If tj /∈ Alt(i), then M(tj) = Mi(tj).

Lemma 4.12 If tj /∈ Aug(i), then for all k ≥ 0, tj /∈ Aug(i + k).

Proof: Suppose tj /∈ Aug(i). Now, if |Mi(tj)| < cj, Remark 4.8(ii) gives us
that tj /∈ Alt(i). Therefore, by Corollary 4.10, tj /∈ Alt(i + k) for any k ≥ 0.
Now, since Aug(i + k) ⊆ Alt(i + k) (Remark 4.8(i)), tj /∈ Aug(i + k) for any
k ≥ 0. Otherwise, |Mi(tj)| = cj, and tj trivially cannot be the endpoint of
any subsequent augmenting path.

Theorem 4.13 Let I be an instance of TA, and let M be the matching of I
returned by an arbitrary execution E of RRBalance. Then M is a balanced
matching of I.

Proof: We remark that M is a maximum matching of I, since once a tutorial
tj is removed from C, G never subsequently admits a tj-augmenting path
(Lemma 4.12). Therefore, by Remark 4.6, M has minimum imbalance for
p = 1.
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We now show that M has minimum imbalance whenever p > 1. Let
M∗ be any matching of I, and suppose for a contradiction that ||l(M ∗)||p <
||l(M)||p. Intuitively, M∗ has less imbalance (in the Lp-norm) than M be-
cause it more evenly distributes the students among tutorials. More formally,
consider the symmetric difference M⊕M ∗ between M and M ∗, which consists
of a set of alternating cycles and paths. Now, since ||l(M ∗)||p < ||l(M)||p and
|M | = |M∗|, G must admit an M -alternating path A = 〈t1, s1, t2, . . . , sr−1, tr〉
and matching M ′ = M ⊕ A, where

(i) (si, ti) ∈ M , for all 1 ≤ i ≤ r − 1.

(ii) (si, ti+1) ∈ M∗ and (si, ti+1) ∈ M ′, for all 1 ≤ r − 1.

(iii) |M(t1)|p + |M(tr)|p > (|M(t1)| − 1)p + (|M(tr)| + 1)p = |M ′(t1)|p +
|M ′(tr)|p.

It follows from (iii) that |M(t1)|p − (|M(t1)| − 1)p > (|M(tr)| + 1)p −
|M(tr)|p. We will show that |M(t1)| > |M(tr)| + 1, which is central to the
remaining argument.

Denote by f the function f(x) = xp, where x ≥ 0 and p > 1. Now,
suppose that f(a)−f(a−1) > f(b+1)−f(b), where a > 0 and b ≥ 0. Since
a− (a−1) = 1 = (b+1)−b, it follows from Lagrange’s Mean Value Theorem
that there is a c ∈ (a − 1, a) and c′ ∈ (b, b + 1) such that,

f ′(c) =
f(a) − f(a − 1)

a − (a − 1)
>

f(b + 1) − f(b)

(b + 1) − b
= f ′(c′)

Now, since f ′ is an increasing function, we have that a > c > c′ > b. Hence,
a > b + 1, since a and b are integers, and therefore, |M(t1)| > |M(tr)| + 1.

Let i be the step of E in which RRBalance removes tr from C (so, by
Lemma 4.12, tr /∈ Aug(i+k) for any k ≥ 0). Now, since |M ′(tr)| = |M(tr)|+
1, Mi(tr) < cr, and therefore, by Remark 4.8(ii), tr /∈ Alt(i). So, by Corollary
4.11, M(tr) = Mi(tr), and hence, sr−1 is matched to some tutorial t 6= tr in
Mi. It is easy to see that t ∈ Alttr(i), and since tr /∈ Alt(i), we have that
t /∈ Alt(i). Therefore, by Corollary 4.11, M(t) = Mi(t), and so t = tr−1.

We can use a similar argument to prove that no tutorial t ∈ A is a member
of Alt(i). This is a contradiction, since |M(t1)| > |M(tr)|+ 1 implies that at
step i of E, t1 admits at least one more augmenting path. Hence, t1 ∈ Aug(i),
which by Remark 4.8(i), is a subset of Alt(i).
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4.4 Repairing Broken Matchings

Let I be an instance of TA with student set S and tutorial set T , and let M
and M ′ be any two subsets of S × T . We define the similarity between M
and M ′ as s(M, M ′) = |M ∩ M ′|.

In this section, we consider the problem of finding a maximum cardinality
matching M of I that has maximum similarity with some subset M ′ of S×T .
This problem has several practical applications, say in the following situation.
Let M ′ be a matching of some instance J of TA. Suppose that a subset ∆ of
students from J now change the tutorials they find acceptable. The effect of
this change is create a new instance I of TA. Our aim is to find a maximum
cardinality matching M of I, such that the fewest number students are forced
to change their allocation from M ′ to M .

We can solve this in polynomial time with the following transformation
to the maximum weight maximum cardinality b-matching problem.

Construct the underlying graph G of I. For each pair (si, tj) ∈ M ′, if si

finds tj acceptable in I, assign the edge {si, tj} in G a weight of 1. All other
edges in G have weight 0. It is easy to see that a maximum weight maximum
cardinality b-matching (see Section 1.2.3) of this graph gives a maximum
cardinality matching of I with maximum similarity to M ′.

4.5 Conclusions and Open Problems

In this chapter, we introduced a bipartite b-matching problem called TA. We
proved that a variant MTC of TA is NP-hard in general, but polynomial-time
solvable in the special case that each tutorial has capacity at most 2. We
then gave a new algorithm for finding a balanced matching. This algorithm
has better worst-case performance than the previous best algorithm. Finally,
we solved the maximum similarity problem with a reduction to the weighted
b-matching problem.
The following problems remain open.

• Let I be an instance of TA with student set S. Consider the bipartition
of S into the set of males and the set of females. The minimum inde-
pendent female problem (MIF) is to find a maximum matching of
I, which minimizes the number of tutorials with only one female. We
conjecture that both this problem and the more general minimum in-
dependent student problem (MIS), in which we do not distinguish
between males and females, are NP-hard.

• Consider the generalization of TA in which students rank the tutorials
they find acceptable. In this context, we still seek a matching with
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the maximum cardinality property, but, now, we might additionally
require that the matching be one-sided exchange stable (see Chapter
3). Besides the basic TA problem, all the problems we discussed in this
chapter are open in this more general context.
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5 Half-Strong Stability

5.1 Introduction

Let I be an instance of SMTI with a set U of n men, and a set W of n women.
A matching M of I is half-strongly stable unless M admits a blocking pair
(m, w) ∈ U × W , such that

(i) (m, w) /∈ M .

(ii) m is unmatched in M or prefers w to M(m).

(iii) w is either unmatched in M , or prefers m to M(w) or is indifferent
between them.

Note that we may switch the roles of m and w in (ii) and (iii) to obtain a
different definition of half-strong stability. These definitions are symmetrical,
and so, for exposition purposes, we only consider the definition given above.

In the following discussion, we place half-strong stability in context with
the existing types of stability for SMTI, namely weak, strong and super-
stability (see Section 1.3.3 for more detail). Let M be a matching of some
instance I of SMTI.

Remark 5.1 M is half-strongly stable if and only if (i) M is weakly stable,
and (ii) for all matched women w in M , if w is indifferent between M(w)
and m 6= M(w), then m is matched in M and either prefers M(m) to w or
is indifferent between them.

If m is either unmatched in M or prefers w to M(m), then m may attempt
to bribe w to switch partners from M(w) to m. If w is indifferent between
M(w) and m, this bribe may be all the incentive that w requires to ignore
her allocation in M and partner with m. A weakly stable matching in which
this situation cannot arise is half-strongly stable. We say that half-strongly
stable matchings are more robust than weakly stable matchings, since there
are fewer opportunities for bribery.

Remark 5.2 M is strongly stable if and only if (i) M is half-strongly stable,
and (ii) for all matched men m in M , if m is indifferent between M(m) and
w 6= M(m), then w is matched in M and either prefers M(w) to m or is
indifferent between them.

If w is either unmatched in M or prefers m to M(w), then w may attempt
to bribe m to switch partners from M(m) to w. If m is indifferent between
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M(m) and w, this bribe may be all the incentive that m requires to ignore
his allocation in M and partner with w. A half-strongly stable matching in
which this situation cannot arise is strongly stable. Strongly stable matchings
are more robust than half-strongly stable matchings.

Remark 5.3 M is super-stable if and only if (i) M is strongly stable, and
(ii) for all matched people p in M , if p is indifferent between M(p) and
q 6= M(p), then q is matched in M and prefers M(q) to p.

So, every super-stable matching is strongly stable, every strongly stable
matching is half-strongly stable and every half-strongly stable matching is
weakly stable. Figure 24 summarizes the relationship between the different
definitions of stability for an arbitrary instance I of SMTI. The terms super,
strong, half-strong and weak refer to the set of super-stable, strongly
stable, half-strongly stable and weakly stable matchings of I respectively.

super ⊆ strong ⊆ half-strong ⊆ weak

Figure 24: Relationship between stability definitions

In practice, we may want to find a matching that is at least strongly stable
(and possibly super-stable as well), since strong stability is more robust than
half-strong stability or weak stability. However, it turns out some instances of
SMT/SMTI admit no strongly stable matching [36]. For example, consider
the instance in Figure 25. Any strongly stable matching of this instance
must have cardinality 2, but neither M1 = {(m1, w1), (m2, w2)} nor M2 =
{(m1, w2), (m2, w1)} is strongly stable due to the pairs (m2, w1) and (m2, w2)
respectively. It is easily verified, however, that both M1 and M2 are half-
strongly stable.

m1 : w1 w2 w1 : m2 m1

m2 : (w1 w2) w2 : m2 m1

Figure 25: An instance of SMT/SMTI with no strongly stable matching

Manlove [48] gives a polynomial-time algorithm to determine if an in-
stance of SMTI admits a strongly stable matching, and to find such a match-
ing, if one exists. If no such matching exists, then before settling for a weakly
stable matching, one could search for a half-strongly stable matching. Al-
though some participants may have an incentive to bribe in a half-strongly
stable matching, we can at least guarantee that such participants only come
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from one side of the matching. This is more than a weakly stable matching
can guarantee, and it might be all that is required, say if one set of the par-
ticipants (here, the men) have more to offer by way of a bribe. One example
of this is the allocation of medical residents to hospitals: a hospital may cer-
tainly have the financial means to offer a resident a bribe, whereas it is less
likely that a resident r could bribe a hospital h, when h has no preference
for r over its existing allocation.

5.2 Preliminary Observations

Although an instance of SMTI is more likely to admit a matching that is half-
strongly stable than strongly stable, it turns out that some instances admit
no half-strongly stable matching. An example of this is given in Figure 26.
Matching M1 = {(m1, w1), (m2, w2)} is blocked by (m2, w1), while matching
M2 = {(m1, w2), (m2, w1)} is blocked by (m1, w1). No other matching besides
M1 and M2 is even weakly stable.

m1 : w1 w2 w1 : (m1 m2)
m2 : w1 w2 w2 : m1 m2

Figure 26: An instance of SMTI with no half-strongly stable matching

The main problem we are concerned with here then is how to efficiently
determine if a given instance of SMTI admits a half-strongly stable matching,
and how to find such a matching, if one exists. Before dealing with this
problem in general, we present two special cases.

In the first special case, we consider the set of all SMTI instances in which
no ties occur in the women’s preference lists.

Proposition 5.4 In any instance of I SMTI with no ties on the women’s
side, (i) every weakly stable matching is half-strongly stable, and (ii) every
strongly stable matching is super-stable.

Proof:

(i) Let M be any weakly stable matching of I. Since I has no ties on the
women’s side, no woman is indifferent between any two men, and so by
Remark 5.1, M must also be half-strongly stable.

(ii) Let M be any strongly stable matching of I, and suppose for a contra-
diction that M is not super-stable. It follows that M admits a blocking
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pair (m, w), where, by Remark 5.3, m and w are indifferent between
each other and their partners in M . This is a contradiction, since there
are no ties on the women’s side. Therefore, M is super-stable.

Figure 27 summarizes the relationship between the different definitions
of stability for this first special case of SMTI.

super = strong ⊆ half-strong = weak

Figure 27: Relationship between stability definitions, where no ties occur on
the women’s side

Corollary 5.5 Any instance I of SMTI with no ties on the women’s side
admits a half-strongly stable matching, which we can find in linear-time.

Proof: By Proposition 5.4, the set of half-strongly stable matchings of I
is equal to the set of weakly stable matchings of I. Therefore, we can use
Irving’s linear-time algorithm [36] to return any weakly stable matching of
I.

Corollary 5.6 An instance of SMTI may admit half-strongly stable match-
ings of different cardinalities.

Proof: Consider the instance given in Figure 28. It is easily verified that this
instance admits exactly two half-strongly stable matchings, M1 = {(m1, w1)}
and M2 = {(m1, w2), (m2, w1)}, where |M1| < |M2|.

m1 : (w1 w2) w1 : m1 m2

m2 : w1 w2 : m1

Figure 28: Instance of SMTI admitting half-strongly stable matchings with
different cardinalities

This last result is not too surprising since, by Proposition 5.4, every
weakly stable matching is half-strongly stable, and instances of SMTI can
admit weakly stable matchings of different cardinalities [51].

The next special case considers the set of all SMTI instances in which no
ties occur in the men’s preference lists.
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Proposition 5.7 In any instance I of SMTI with no ties on the men’s
side, (i) every half-strongly stable matching is strongly stable, and (ii) ev-
ery strongly stable matching is super-stable.

Proof:

(i) Let M be any half-strongly stable matching of I. Since I has no ties
on the men’s side, no man is indifferent between any two women, and
so by Remark 5.2, M must also be strongly stable.

(ii) This proof is analogous to part (ii) of Proposition 5.4.

Figure 29 summarizes the relationship between the different definitions
of stability for this second special case of SMTI.

super = strong = half-strong ⊆ weak

Figure 29: Relationship between stability definitions, where no ties occur on
the men’s side

Corollary 5.8 In any instance I of SMTI with no ties on the men’s side,
we can determine if I admits a half-strongly stable matching, and find such
a matching if one exists, in linear time.

Proof: By Proposition 5.7, the set of half-strongly stable matchings of I
is equal to the set of super-stable matchings of I. Therefore, we can use
Manlove’s linear-time algorithm [48] to determine if I admits a super-stable
matching, and to find such a matching if one exists.

5.3 Complexity of Half-Strong Stability

In this section, we use the following theorem to prove that the problem
of determining if an instance of SMT/SMTI admits a half-strongly stable
matching is NP-complete.

Let I be an instance of SMTI in which ties occur only on the men’s side.

Theorem 5.9 ([51]) The problem of determining if I admits a complete
weakly stable matching is NP-complete.
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Denote by U and W the set of men {m1, m2, . . . , mn} and set of women
{w1, w2, . . . , wn} in I respectively. For each person p ∈ U ∪ W , denote by
P (p) the preference list of p in I.

Construct the instance J of SMT with men U ′ = U∪{mn+1, mn+2, . . . , m2n}
and women W ′ = W ∪ {wn+1, wn+2, . . . , w2n}. For each person p ∈ U ′ ∪ W ′,
denote by P ′(p) the preference list of p in J . We describe P ′ in Figure 30:
parentheses denote ties, square brackets denote arbitrary order, and U ′ (re-
spectively W ′) at the end of a preference list P ′(p) denotes all members of
U ′ (respectively W ′) that have not already appeared in P ′(p).

P ′(mi) : P (mi) wn+i [W ′] P ′(wi) : P (wi) mn+i [U ′]
P ′(mn+i) : wn+i [W ′] P ′(wn+i) : (mn+i mi) [U ′]

Figure 30: Reduction preference lists

We remark that J is an instance of SMT, since each person p ∈ U ′ ∪ W ′

ranks every member of the opposite sex exactly once in P ′(p). Furthermore,
it is clear that J can be constructed from I in polynomial time.

Suppose that I admits a complete weakly stable matching M . Let M ′ =
M ∪ {(mn+i, wn+i) : 1 ≤ i ≤ n}, and suppose for a contradiction that M ′ is
not a half-strongly stable matching of J due to some blocking pair (m, w).
Now, since each man mn+i is matched in M ′ with his first-choice partner, it
must be the case that m ∈ U . Therefore, M ′(m) = M(m) ∈ W , and so by
construction of P ′(m), w ∈ W . Now, since (m, w) blocks M ′, m prefers w
to M ′(m) = M(m), and w prefers m to M ′(w) = M(w) (note that w cannot
be indifferent between m and M(w), since P ′(w) contains no ties). So, M is
not a weakly stable matching of I due to the pair (m, w), giving the required
contradiction. Hence, M ′ is a half-strongly stable matching of J .

Conversely, suppose that J admits a half-strongly stable matching M ′.
We will show that M ′ describes a complete weakly stable matching in I.
Firstly, (mn+i, wn+i) ∈ M ′, for 1 ≤ i ≤ n, since otherwise (mn+i, wn+i)
blocks M ′. Also, each mi ∈ U is matched to some wj ∈ W , for otherwise,
(mi, wn+i) blocks M ′. Therefore, M = M ′∩ (U ×W ) is a complete matching
of I. Furthermore, M is weakly stable, for otherwise, any pair that blocks
the weak stability of M also blocks half-strong stability of M ′. Hence, M is
a complete weakly stable matching of I.

Finally, it is clear that the problem of determining if an instance of
SMT/SMTI admits a half-strongly stable matching is in NP. The next the-
orem summarizes the preceding result.
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Theorem 5.10 The problem of determining if an instance of SMT/SMTI
admits a half-strongly stable matching is NP-complete.

5.4 Conclusion and Open Problems

In this chapter, we introduced a new definition of stability for SMTI, called
half-strong stability. We placed this definition in context with the existing
types of stability, showing that it is more robust than weak stability, and less
robust than strong stability. We also showed that, when no ties occur on the
women’s side, half-strong stability is equivalent to weak stability, and, when
no ties occur on the men’s side, half-strong stability is equivalent to super-
stability. Finally, despite the fact that we can solve the existence problems
for weak stability and strong stability in polynomial time, we proved that
the corresponding problem for half-strong stability is NP-hard.

Given this hardness result, a next step is to examine the more general
problem of finding a weakly stable matching with the minimum number of
half-strongly stable blocking pairs. It is not known if this problem is in APX.
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6 Reducing Roommates to Stable Marriage

6.1 Background

Recall that an instance I of the stable roommates problem (SR) consists
of an even cardinality set of people P , each of whom ranks every other person
in strict order of preference. A matching of I is a partition of P into disjoint
pairs. A matching M is unstable if there are two distinct people, each of
whom prefers the other to their partner in M . These two people are said to
form a blocking pair for M . If M admits no blocking pair, then M is stable.
Given an instance I of SR, the stable roommates problem is to find a
stable matching of I, or determine that no such matching exists.

SR generalizes the stable marriage problem (SM) by the following
result.

Theorem 6.1 (Gusfield and Irving [28]) For every instance J of SM,
there is an instance I of SR such that there is a bijection between the stable
matchings of I and the stable matchings of J .

Proof: Given an instance J of SM with n men and n women, construct the
following instance I of SR. For each man and each woman p in J , construct a
person p in I, whose preference list consists of p’s preference list in J followed
by all other members of the same sex as p in arbitrary order. Since there are
n men and n women in J , I has 2n people, each of whom ranks every other
constructed person. Hence, I is an instance of SR.

Let M be any stable matching of J , and let M ′ = {{mi, wj}|(mi, wj) ∈
M}. We will show that M ′ is a stable matching of I. Suppose for a con-
tradiction that {pi, pj} blocks M ′. Now, since M consists of (man, woman)
pairs, and all people in I prefer members of the opposite sex to members of
the same sex, it must be the case that, without loss of generality, pi is a man
and pj is a woman in J . But then (pi, pj) forms a blocking pair for M , giving
the required contradiction.

Conversely, let M ′ be any stable matching of I. Suppose that {pi, pj} ∈
M ′, where pi and pj are both men in J . Since, M ′ is a complete matching,
M ′ must also contain a pair {p′

i, p
′
j}, where p′i and p′j are both women in

J . But then {pi, p
′
i} blocks M ′, since all people in I prefer members of the

opposite sex to members of the same sex. Hence, M ′ only contains {man,
woman} pairs. We can trivially construct a matching M of J from these
pairs of M ′, and it is clear that M is stable, for otherwise, any blocking pair
for M gives a blocking pair for M ′.
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An immediate corollary of this theorem is that several properties of SM
also apply to SR. For example, the maximum number of stable matchings
in an instance I of SR grows exponentially with the size of I (see Knuth’s
analogous result for SM [45]). Also, since the reduction in Theorem 6.1 is
computable in linear time, the linear time lower bound on SM [56] also holds
for SR.

A natural conjecture arising from Theorem 6.1 is that the reverse holds.
That is, for every instance I of SR, there is an instance J of SM such that
there is a bijection between the stable matchings of J and the stable match-
ings of I. One small problem with this conjecture is that, unlike SM, an
instance of SR may not admit any stable matchings. Figure 31 gives an
example of such an instance: It is easy to see that a matching containing
{p1, p4}, {p2, p4} or {p3, p4} is blocked by {p1, p3}, {p2, p1} or {p3, p2} respec-
tively [45]. We therefore restrict our attention to solvable instances of SR.
Determining the truth of this restricted conjecture is the ninth open problem
of Gusfield and Irving [28].

p1 : p2 p3 p4

p2 : p3 p1 p4

p3 : p1 p2 p4

p4 : arbitrary

Figure 31: Instance of SR that admits no stable matchings [45].

In this chapter, we give a polynomial-time reduction from SR to a gen-
eralization of SM, which we call MAX-SMRI. Under this reduction, there is
a bijection between stable matchings in an instance I of SR and complete
weakly stable matchings in the constructed instance J of MAX-SMRI. We re-
gard this correspondence as a first step towards solving Gusfield and Irving’s
ninth open problem.

6.2 Reduction from SR to MAX-SMRI

Recall that SMTI is a generalization of SM in which preference lists may
contain ties and be incomplete. Here, we define a new problem, SMRI,
which generalizes SMTI by permitting non-transitive acyclic preference lists.
So, for example, if m prefers w to w′, and w′ to w′′, then unless explicitly
specified, it is not the case that m prefers w to w′′. Preference lists in SMRI
must still be acyclic, so, in the previous example, m cannot prefer w′′ to w.
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Although the definition of SMRI may seem unnatural, non-transitive pref-
erence lists do have some justification in the literature [18]. In fact, May [52]
has experimental evidence that people sometimes even have cyclic prefer-
ences. In this experiment, May gave 62 students a sequence of binary com-
parisons between three potential marriage partners, denoted by x, y and z.
The marriage partners were described in terms of three categories: intelli-
gence, appearance and financial situation.

Partner Intelligence Appearance Financial Situation

x Very Intelligent Plain Well Off

y Intelligent Very Good Looking Poor

z Fairly Intelligent Good Looking Rich

Of the 62 students, 17 preferred x to y, y to z and z to x. These cyclic
preferences arise because x has 2 of 3 attributes superior to y (intelligence
and financial situation), y has 2 of 3 attributes superior to z (intelligence
and looks), and z has 2 of 3 attributes superior to x (looks and financial
situation). Although this example demonstrates that non-transitive (even
cyclic) preferences can occur in practice, we are considering SMRI since it is
the most restrictive version of SM to which we are currently able to reduce
instances of SR.

Let J be an instance of SMTI (and therefore of SMRI). A matching M
of J is weakly stable if there is no (man, woman) pair not in M , each of
whom is either unmatched in M or prefers the other to their partner in
M . Figure 32 gives an instance of SMTI/SMRI that admits two distinct
weakly stable matchings, M1 = {(m1, w1)} and M2 = {(m1, w2), (m2, w1)}.
We say that M2 is a complete weakly stable matching, since it matches
every participant. MAX-SMTI (respectively MAX-SMRI ) is the problem
of deciding if an instance of SMTI (respectively SMRI) admits a complete
weakly stable matching, and finding such a matching if one exists.

m1 : w1 w2 w1 : (m1 m2)
m2 : w1 w2 : m1

Figure 32: Instance of SMTI/SMRI.

Iwama et al [41] proved that MAX-SMTI is NP-hard. This result holds
for MAX-SMRI as well, since MAX-SMRI generalizes MAX-SMTI. Hence,
the reduction we present below is from a polynomial-time solvable problem,
namely SR [35], to an NP-hard problem, namely MAX-SMRI. Although this
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makes the reduction of little use from a computational perspective, we are
primarily interested in exploring the structural relationship between the two
problems, which, ultimately, we hope will help solve Gusfield and Irving’s
ninth open problem. We now present the reduction.

Given an instance I of SR, the reduction function constructs an instance
J of MAX-SMRI according to Gusfield and Irving’s broad suggestion that
each person pi ∈ I be mapped to a male copy, mi, and female copy, wi. Our
plan is, given any complete weakly stable matching M ′ of J , to construct
a stable matching M of I such that if (mi, wj) ∈ M ′, then {pi, pj} ∈ M .
This plan imposes two immediate constraints on M ′, and therefore on the
constructed instance J :

Irreflexivity: (mi, wi) /∈ M ′.

Symmetry: (mi, wj) ∈ M ′ only if, for k 6= i, (mj, wk) /∈ M ′, and for k 6= j,
(mk, wi) /∈ M ′.

The irreflexivity constraint ensures that pi is never matched with him/herself
in M . This constraint is easily satisfied - the reduction function need only
declare mi and wi mutually unacceptable in J .

The symmetry constraint ensures that if pi and pj are matched in M ,
then pj cannot also be matched with pk 6= pi. We haven’t found any way
to enforce this constraint in a reduction to SM, and hence the reduction
presented here uses the more complex preference list structures allowed by
MAX-SMRI. These structures are detailed below.

The preference list of each man mi consists of a copy of pi’s preference
list, in which each pj is converted to wj. Transitivity of preference holds
between all triples of these women. Additionally, for each woman wj in mi’s
preference list, we add a new woman y{i,j} such that,

1. mi prefers y{i,j} to wj.

2. if mi prefers wk to wj, then mi prefers wk to y{i,j}.

There are no other transitive preferences in mi’s list. So, for example, mi

is indifferent between y{i,j} and any other y{i,k} on his list, and also between
y{i,j} and any woman wk such that mi prefers wj to wk. Each woman wi has
a symmetrical construction, with the new type of men labelled x{i,j}.

The reduction’s proof of correctness will show that whenever mi is matched
to wj in a complete weakly stable matching of J , it is necessarily the case that
mj is matched to y{i,j}, and wi is matched to x{i,j}. So, when we construct
the roommates matching, the symmetry property is guaranteed to hold.
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To enforce this situation in J , the additional men, X, and women, Y ,
must have special preference lists. Before giving these lists, we firstly remark
that if I has 2n people, then |X| = 2nC2, since there are 2n women copied
from I, and the indices of x{i,j} must be distinct by the irreflexivity property.
Of these 2nC2 men, only n will be used in the matching we are aiming for.
This leaves 2nC2 − n men from X remaining, and since the matching must
be complete, we construct a further set of 2nC2 − n women V , which we call
garbage collectors. The garbage collectors are indifferent between all men in
X. Finally, we can specify the preference lists of each x{i,j} ∈ X: x{i,j} is
indifferent between wi and wj, and prefers either to all women in V , who are
ranked equally. This same construction applies to the women in Y , and so
we have a corresponding set U of male garbage collectors, where Y and U
have analogous preference structures to X and V respectively.

Figure 33 gives a concrete instance of SR with 4 people, p1, p2, p3 and p4.
The figure also gives the corresponding preference structure in MAX-SMRI
of m1, the male copy of p1, as well as x{1,2}. In these structures, a vector
from participant pi to pj indicates that pi is preferred to pj.

p1 : p4 p2 p3

p2 : p1 p3 p4

p3 : p2 p4 p1

p4 : p2 p1 p3

m1 : y{1,4}
w4

y{1,2} w2

y{1,3}
w3

x{1,2} : w1 w2

v1 v2 v3 v4

Figure 33: Instance of SR and two corresponding preference structures in
MAX-SMRI.

This reduction function is clearly polynomial-time computable. We now
show that every stable matching in the roommates instance has a correspond-
ing complete weakly stable matching in the marriage instance.

Suppose M is a stable matching for the roommates instance I. Construct
a matching M ′ of J in the following way:

1. For all {pi, pj} ∈ M where i < j, add (mi, wj), (mj, y{i,j}), and (x{i,j}, wi)
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to M ′.

2. Add an arbitrary complete matching between unmatched members of
X and members of V .

3. Add an arbitrary complete matching between unmatched members of
Y and members of U .

It follows from the construction that M ′ is a complete matching in J .
Now, suppose for a contradiction that (bm, bw) is a blocking pair for M ′. We
remark that bm /∈ U and bw /∈ V since no members of U or V have any strict
preferences and M ′ is a complete matching. Also, members of X and Y are
mutually unacceptable, therefore bm and bw cannot simultaneously belong to
X and Y respectively. It must be the case then that at least one of bm and
bw corresponds to a person in I. We deal with each case in turn.

Suppose bm = x{r,s} ∈ X. Given bm’s preference list, bw can only be wr or
ws. Without loss of generality then, we will assume that (x{r,s}, wr) forms a
blocking pair for M ′. Now, wr prefers x{r,s} to her partner in the matching,
who, by construction, must therefore be ms. So, (ms, wr) ∈ M ′, which implies
that (mr, y{r,s}) and (x{r,s}, ws) are in M ′. But this is a contradiction, since
x{r,s} is indifferent between wr and ws, and therefore does not prefer wr to
his partner in the matching. A symmetrical argument proves that no y{r,s}

can be a member of a blocking pair either.
The only remaining case is that some pair (mi, wj) blocks M ′. Firstly, we

remark that {pi, pj} /∈ M , for otherwise (i) (mi, wj) ∈ M ′, a contradiction,
or (ii) (mi, y{i,j}) ∈ M ′, which again leads to a contradiction since mi prefers
y{i,j} to wj. Let {pi, ps} 6= {pr, pj} be matched roommates in M , so that,
by construction, mi is matched with ws or y{i,s}, and wj is matched with mr

or x{r,j}. Now, if mi is matched to ws, then since (mi, wj) blocks M ′, mi

prefers wj to ws. Otherwise, mi is matched to y{i,s}, and so mi prefers wj

to y{i,s} and therefore to ws. In either case then, mi prefers wj to ws, and
similarly, wj prefers mi to mr. Now, if we project these preferences back into
the roommates instance, it is clear that pi prefers pj to their partner ps in
M , and pj prefers pi to their partner pr in M . So {pi, pj} forms a blocking
pair, contradicting the stability of M .

Hence, M ′ has no blocking pairs and is therefore a complete weakly stable
matching in the transformed instance J .

Conversely, we show that every complete weakly stable matching in the
marriage instance has a corresponding stable matching in the roommates
instance.

Suppose M ′ is a complete weakly stable matching in the marriage instance
J . Since M ′ is complete, every garbage collector in U must be matched to
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some woman in Y , and every garbage collector in V must be matched to some
man in X. This leaves n people in both X and Y , and, by construction, these
people must be matched with male and female copies of people in I. Since
there are 2n men and 2n women corresponding to people in I, there are
exactly n pairs of the form (mi, wj) ∈ M ′.

Construct M so that for every pair (mi, wj) ∈ M ′, {pi, pj} ∈ M . We
have already shown that M ′ is irreflexive (since mi and wi are mutually
unacceptable), and therefore M must also be irreflexive. Suppose for a con-
tradiction that M ′ is not symmetric because, for example, (mi, wj) ∈ M ′ and
(mj, wk) ∈ M ′, where wi 6= wk. Now, wk prefers x{j,k} to mj, and since x{j,k}

is not matched to wk (mj’s partner) or wj (mi’s partner), (x{j,k}, wk) forms a
blocking pair for M ′. This is a contradiction, since M ′ is weakly stable, and
therefore M ′ must satisfy the necessary symmetry constraint, which together
with the cardinality and irreflexivity arguments, means that M is a complete
matching in the stable roommates instance.

It remains to show that M is stable in the roommates instance. Suppose
for a contradiction that M is not stable due to some blocking pair {pj, pk},
where {pi, pj} and {pk, pl} ∈ M . Then, pj prefers pk to pi, and pk prefers pj

to pl. It follows then that mj prefers wk to wi, and wk prefers mj to ml. Now,
mj is matched in M ′ to either wi or y{i,j}, and wk is matched to either ml or
x{k,l}. Clearly then, (mj, wk) blocks M ′, giving the required contradiction.

6.3 Conclusion and Open Problems

In this chapter, we have presented a polynomial-time reduction from SR
to MAX-SMRI with the property that there is a bijection between stable
matchings in an instance I of SR and complete weakly stable matchings
in a corresponding instance J of MAX-SMRI. Although this reduction is
from a polynomial-time solvable problem to an NP-hard problem, we believe
that the correspondence is still useful from a structural perspective. In par-
ticular, a next step might be to use similar preference list structures in a
correspondence between SR and MAX-SMTI (adding a transitivity of pref-
erence requirement to MAX-SMRI). A further goal might be to strengthen
the stability criterion from complete weak stability to strong or super sta-
bility, both of which are polynomial time solvable. This work, although still
not directly answering Gusfield and Irving’s ninth open problem, should then
provide some intuition and machinery to help find the required reduction or
prove that no such reduction exists.
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7 Minimum Maximal Matching in Graphs

7.1 Introduction

Recall from Section 1.3.3 that in an instance of SMTI, every weakly stable
matching is at least half the size of a maximum cardinality weakly stable
matching [51]. The proof of this result is based on property that every
stable matching M is maximal, meaning that there can be no two agents who
are both unmatched in M and find each other acceptable. In this chapter,
we examine the concept of a maximal matching in more detail, specifically
focusing on the problem of finding a minimum cardinality maximal matching.

7.2 Background

Let G = (V, E) be an arbitrary undirected graph with n vertices and m edges.
A matching M of G is maximal if no proper superset of M is a matching.
Maximal matchings can also be defined in terms of edge domination. We say
that an edge e = {u, v} dominates any edge in dom(e) = {e′ ∈ E : e′ is
incident to u or v}. An edge dominating set of G is a subset D of E such
that every edge in E is dominated by at least one edge in D. An independent
edge dominating set is an edge dominating set in which no two edges are
adjacent. A matching M is maximal then if and only if M is an independent
edge dominating set.

The problem of finding a maximal matching is solvable in O(n+m) time
using the classical greedy algorithm in Figure 34. The algorithm builds an
edge set M by repeatedly adding elements from a candidate pool E ′, where
E ′ is the set of all edges in E that are not dominated by an edge in M . Once
an edge e is added to M , all edges in dom(e) are removed from E ′. This
guarantees M is a matching, and since the algorithm continues until E ′ is
empty, M is also maximal.

GreedyMaximalMatching(G = (V,E))
M := ∅;
E′ := E;
while E′ 6= ∅

e := any edge in E ′;
M := M ∪ {e};
E′ := E′\dom(e);

return M

Figure 34: Greedy algorithm for finding a maximal matching.
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A maximum cardinality maximal matching is just a maximum matching.
The problem of finding a maximum matching is solvable in O(m

√
n) time

[54].
A minimum cardinality maximal matching is called a minimum maximal

matching. In contrast to finding a maximum matching, Yannakakis and
Gavril [69] proved that the problem of finding a minimum maximal matching
(MMM) is NP-Hard, even for planar or bipartite graphs with maximum
degree 3. Horton and Kilakos [34] subsequently proved hardness results for a
number of other graph classes, including planar bipartite graphs and perfect
claw-free graphs.

MMM has several important practical applications, such as analysing the
worst case performance of certain telephone networks [69]. The problem is
also important in approximating minimum vertex cover (MVC), a fun-
damental problem well-known to be NP-hard [43]. We say that a vertex v
covers any edge incident to v. A vertex cover of a graph G = (V, E) is a
subset C of V such that every edge in E is covered by some vertex in C. The
MVC problem is to find a minimum cardinality vertex cover. Yannakakis
and Gavril [69] use maximal matchings in the following 2-approximation for
MVC.

Let M be any maximal matching of G, and let C be the set of 2|M |
vertices matched by M . Since M is maximal, every edge in E is adjacent to
some vertex in C, and so C is a vertex cover. Now, the size of a minimum
vertex cover, denoted by α0(G), must be at least |M |, since every edge in
M must be covered, and no two edges of M are adjacent. Therefore, |C| =
2|M | ≤ 2α0(G). In practice then, we prefer smaller cardinality maximal
matchings, since these describe smaller vertex covers.

Along with theoretical interest, these applications have motivated the
search for positive results. MMM is known to be polynomial-time solvable for
various classes of graphs, including trees [55, 69], claw-free chordal graphs and
the line graphs of total graphs and chordal graphs [34]. Korte and Hausmann
[46] proved that the size of any maximal matching is no larger than 2β−

1 (G),
where β−

1 (G) denotes the size of a minimum maximal matching of G. Zito [70]
improved this bound to (2 − 1

d
)β−

1 (G), where G is a regular graph of degree
d. On the basis of these two results, GreedyMaximalMatching is the best
known approximation algorithm for arbitrary and regular graphs. Although
the reductions given in [69] indirectly prove that MMM is APX-complete,
Baker [8] found a PTAS for the restricted case that G is planar. More
recently, Zito [70, 71] has found upper and lower bounds on the expected
value of β−

1 (G) in random graphs. This work shows that on average, we can
expect the size of a maximal matching to be much less 2β−

1 (G).
In this section, we present a small observation (Corollary 7.5) that allows
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us to give the first improvement on Korte and Hausmann’s 2-approximation
for arbitrary graphs. We use this observation as the basis of three different
approximation algorithms. The first algorithm, ApproxMMM1, repeatedly
finds and applies reducing paths, an approach based on Berge’s augmenting
path theory [9]. The second algorithm, ApproxMMM2, uses GreedyMaxi-
malMatching to construct several maximal matchings, returning the small-
est that it finds. The third algorithm, ApproxMMM3, generalizes Approx-
MMM2 by using an arbitrary r-approximation algorithm and guaranteeing
to return a maximal matching with size less than rβ−

1 (G). We briefly explore
applying this idea to other NP-hard problems, improving on the best known
approximation algorithms for MVC and maximum satisfiability.

7.2.1 Preliminary Results

Lemma 7.1 (Korte and Hausmann [46]) Let M1 and M2 be maximal
matchings of some graph G = (V, E). Then |M1| ≤ 2|M2|.

Proof: Suppose for a contradiction that |M1| > 2|M2|. We remark that
since M1 is a matching, |M1| ≤ α0(G). Now, let C be the vertex cover of G
consisting of the set of vertices matched in M2. We have that |C| = 2|M2| <
|M1| ≤ α0(G). This is a contradiction, since α0(G) is the minimum size of
any vertex cover of G.

Corollary 7.2 Let M be a maximal matching of some graph G = (V, E). If
M is not a maximum matching, then |M | < 2β−

1 (G).

Lemma 7.3 Let M be a non-empty maximal matching of some graph G =
(V, E), and let e be any edge in M . Then, M\{e} is a maximal matching of
G′ = (V, E\dom(e)).

Proof: Suppose for a contradiction that M\{e} is not maximal in G′. Then
there must be some edge e′ ∈ E\dom(e) such that e′ is not dominated by
any edge in M\{e}. We also have that e′ /∈ dom(e) in G, for otherwise
e′ /∈ E\dom(e). Hence, e′ is not dominated by any edge in M , contradicting
the maximality of M .

Lemma 7.4 Let M1 and M2 be two maximal matchings of some graph G =
(V, E). If |M1| = 2|M2|, then M1 ∩ M2 = ∅.
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Proof: Suppose for a contradiction that |M1| = 2|M2| and M1 ∩M2 6= ∅. Let
e be some edge in M1 ∩M2, and consider the graph G′ = (V, E\dom(e)). By
Lemma 7.3, M ′

1 = M1\{e} and M ′
2 = M2\{e} are both maximal matchings

of G′. Now, |M ′
1| = |M1| − 1 and |M ′

2| = |M2| − 1. So, |M ′
1| = 2|M2| − 1 =

2(|M ′
2| + 1) − 1 = 2|M ′

2| + 1, contradicting Lemma 7.1.

Corollary 7.5 Let M be any maximal matching of some graph G. If M
has an edge in common with any minimum maximal matching of G, then
|M | < 2β−

1 (G) 7.

7.2.2 Reducing Paths

In this section, we define an M-reducing path and show how, given a maximal
matching, such paths may be used to construct smaller maximal matchings.

Let M be some matching of an arbitrary undirected graph G = (V, E). An
M-reducing path P = 〈v1, v2, . . . , vk−1, vk〉 is an M -alternating path, where

1. {v1, v2}, {vk−1, vk} ∈ M .

2. {v1, vk} /∈ E.

3. Any vertex adjacent to v1 or vk is matched in M .

Norman and Rabin [58] give a more restrictive definition of an M -reducing
path, in which v1 must not be adjacent to vk−1, and vk must not be adjacent
to v2. They use this definition as the basis of a polynomial-time algorithm
for the minimum edge cover problem. An edge cover of a connected graph
G = (V, E) is a subset C of E such that every vertex in V is incident to
at least one edge in C. There are significant differences between maximal
matchings and edge covers, making Norman and Rabin’s original definition
unsuitable for our purposes.

Lemma 7.6 Let G = (V, E) be an arbitrary graph that admits an M-reducing
path P = 〈v1, v2, . . . vk〉, where M is a maximal matching of G. Then
M ′ = M

⊕

P is a maximal matching of G with size |M ′| = |M | − 1.

Proof: By basic augmenting path theory, M ′ is clearly a matching with size
|M ′| = |M | − 1. It remains to show that M ′ is maximal. With the exception
of v1 and vk, every vertex matched in M is also matched in M ′. So, any

7In fact, this statement holds for any other maximal matching of G, not just a minimum
maximal matching. However, we will only use the corollary as given.
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edge not incident to v1 or vk is dominated by some edge in M ′. Now, since
there is no edge between v1 and vk, and every vertex adjacent to v1 or vk is
matched in M , any edge incident to v1 or vk must also be dominated in M ′.
Hence, M ′ is a maximal matching.

ApproxMMM1(G = (V,E))
M := GreedyMaximalMatching(G);
while G admits an M -reducing path P

M := M
⊕

P ;
return M ;

Figure 35: Reducing path approximation algorithm for MMM.

The correctness of the first new approximation algorithm, ApproxMMM1,
is based on Lemma 7.6. The algorithm begins with an arbitrary maximal
matching M , and repeatedly finds and applies M -reducing paths. This ap-
proach follows naturally from the classical augmenting path algorithm, and
so it may not be immediately clear that ApproxMMM1 can fail to find a min-
imum maximal matching. In fact, as we demonstrate in the next example,
ApproxMMM1 can even fail on trees.

Construct the graph G[k] = kP4, consisting of k disjoint P4 subgraphs.
Now, add a connecting edge between a new vertex v and exactly one degree
1 vertex in each P4 component. Let M be the maximal matching of G[k]
consisting of two edges from each of the P4 subgraphs (|M | = 2k). Clearly,
G[k] admits no M -reducing path, since, in each P4 subgraph, one of the
matched edges is adjacent to a connecting edge that has the unmatched
vertex v as an endpoint. However, G[k] admits a maximal matching of size
k+1, consisting of one (middle) edge in each P4 subgraph, along with any one
of the connecting edges. Figure 36 gives two maximal matchings of G[3], one
a minimum maximal matching with size 4, while the other is the matching
described above with size 6. In both cases, the matching edges are specified
in bold.

Theorem 7.7 For an arbitrary graph G = (V, E) with n vertices and m ≥ 1
edges, ApproxMMM1 returns a maximal matching of G with size at most
(

2 − 2
n

)

β−
1 (G).

Proof: Let M be the matching returned by ApproxMMM1 on graph G. Since
the algorithm begins with a maximal matching, and applying a reducing path
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Figure 36: ApproxMMM1 on a tree.

preserves maximality (Lemma 7.6), it must be the case that M is maximal.
Now, if M is not a maximum matching of G, then by Corollary 7.2, |M | <
2β−

1 (G). Otherwise, M is a maximum matching. We will show that M has
the same size as a matching M ′, where M ′ is a maximal matching that has
an edge in common with a minimum maximal matching M ∗ of G. It will
follow then from Corollary 7.5 that |M | < 2β−

1 (G).
Let e = {u, v} be any edge in M ∗. If e is in M , then M ′ = M and we are

done. Otherwise, since M is maximal, (i) exactly one of u and v is matched
in M , or (ii) both u and v are matched in M . We deal with each case in
turn.

(i) exactly one of u and v is matched in M .
Suppose without loss of generality that u is unmatched in M and v is
matched in M to some vertex w. Now, since M is maximal and u is
unmatched, u can only be adjacent to vertices that are matched in M .
Similarly, w cannot be adjacent to an unmatched vertex x 6= u, for oth-
erwise 〈x, w, v, u〉 is an M -augmenting path, contradicting the assump-
tion that M is a maximum matching. Clearly, M ′ = (M\{{v, w}}) ∪
{e} is a maximal matching containing e with |M ′| = |M |.

(ii) both u and v are matched in M .
Let {u, u′} and {v, v′} be edges in M . Now, if {u′, v′} ∈ E, then
〈u, v, v′, u′〉 forms an M -alternating cycle and we can construct M ′ =
(M\{{u, u′}, {v, v′}}) ∪ {e, {u′, v′}}, which has the desired properties.
Otherwise, {u′, v′} /∈ E. It follows that at least one of u′ and v′ must
be adjacent to an unmatched vertex, for otherwise G admits the M -
reducing path 〈u′, u, v, v′〉. However, u′ and v′ cannot both be ad-
jacent to distinct unmatched vertices, say u′′ and v′′, for otherwise
〈u′′, u′, u, v, v′, v′′〉 forms an M -augmenting path (contradicting the as-
sumption that M is a maximum matching). Suppose then that (i)
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both u′ and v′ are adjacent to the same unmatched vertex u′′, or (ii)
without loss of generality, only u′ is adjacent to u′′. In either case,
M ′ = (M\{{u, u′}, {v, v′}}) ∪ {e, {u′, u′′}} contains e and |M ′| = |M |.

So |M | ≤ 2β−
1 (G)−1, which means |M | is at most

(

2 − 1
β−

1
(G)

)

β−
1 (G). Now,

β−
1 (G) ≤ n

2
, since no matching can match more than n vertices. Substituting

this inequality for β−
1 (G), we get that |M | ≤

(

2 − 2
n

)

β−
1 (G).

The time-complexity of ApproxMMM1 is not known, although we conjec-
ture that the problem is polynomial-time solvable using techniques similar to
those employed in finding a maximum matching of an arbitrary graph [54].

7.2.3 Restricted Brute Force

In this section, we give another approximation algorithm for MMM, which
is again based on Corollary 7.5. The main idea of this algorithm is to find
a maximal matching that has at least one edge in common with a minimum
maximal matching. We subsequently extend this idea to give a third approx-
imation algorithm, which guarantees a better worst case approximation ratio
than any known algorithm for MMM.

Let e be any edge in some graph G = (V, E), and let M ∗ be a minimum
maximal matching of G. Now, since M ∗ is maximal, there must be some
edge in M∗ that dominates e. Equivalently, M ∗ ∩ dom(e) 6= ∅. Consider the
algorithm given in Figure 37.

ApproxMMM2(G = (V,E))
if E = ∅ return ∅;
e := any edge in E;
M := ∅;
for each e′ ∈ dom(e)

Me′ := GreedyMaximalMatching(G′ = (V,E\dom(e′)));
Me′ := Me′ ∪ {e′};
M := M∪ {Me′};

return M ∈ M minimizing |M |.

Figure 37: A
(

2 − 4
n+2

)

-approximation algorithm for MMM.

Theorem 7.8 For an arbitrary graph G = (V, E) with n vertices and m ≥ 1
edges, ApproxMMM2 (i) runs in O(n2+nm) time, and (ii) returns a maximal
matching with size at most

(

2 − 2
n

)

β−
1 (G) 8.

8We prove a stronger bound of
(

2 − 4

n+2

)

β−1 (G) in Theorem 7.9.

92



Proof:

(i) The maximum size of dom(e) is 2n − 3, and for each edge in dom(e),
ApproxMMM2 finds a maximal matching using the GreedyMaximal-
Matching algorithm which runs in O(n + m) time. Hence, the overall
running time of ApproxMMM2 is O(n2 + nm).

(ii) Let M be the matching returned by ApproxMMM2. If, for some M ′ ∈
M, |M | is strictly less than |M ′|, then, by Corollary 7.2, |M | < 2β−

1 (G).
Otherwise, all matchings in M have the same cardinality, and at least
one of these matchings must have an edge in common with a minimum
maximal matching of G. Hence, by Corollary 7.5, |M | < 2β−

1 (G),
and so following the same argument given in Theorem 7.7, |M | ≤
(

2 − 2
n

)

β−
1 (G).

ApproxMMM2 uses a restricted brute force approach to find a maximal
matching M that has an edge e in common with a minimum maximal match-
ing of G = (V, E). This matching, which may not ultimately be returned by
the algorithm, consists of the edge e and a 2-approximation of a minimum
maximal matching in the subgraph G′ = (V, E\dom(e)). Of course, we are
not restricted to using GreedyMaximalMatching for this 2-approximation.
In practice, any r-approximation algorithm suffices, and indeed, for smaller
r, ApproxMMM2 is able to guarantee a better approximation ratio. We can
further improve ApproxMMM2 by insisting that the returned matching is no
larger than a maximal matching that has c > 1 edges in common with some
minimum maximal matching of G. These generalizations are encapsulated in
the next approximation algorithm, ApproxMMM3, which accepts an integer
c ≥ 0 and an arbitrary r-approximation algorithm, rApproxMMM, where
r > 1. For non-trivial graphs and c ≥ 1, ApproxMMM3 is guaranteed to
return a maximal matching with size less than rβ−

1 (G), thereby providing a
stronger approximation guarantee than rApproxMMM.

Theorem 7.9 Given an arbitrary graph G = (V, E) with n vertices and m ≥
1 edges, an integer constant c ∈ [0, β−

1 (G)], and an r-approximation algorithm
rApproxMMM with time complexity O(T ), ApproxMMM3 (i) runs in O(ncT )

time, and (ii) returns a maximal matching no larger than
(

r − 2cr
n+2c(r−1)

)

β−
1 (G).

Proof:

(i) Since |dom(e)| = O(n), in the worst case O(nc) recursive calls are made
to rApproxMMM, each of which costs O(T ).
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ApproxMMM3(G = (V,E), c, rApproxMMM)
if E = ∅ return ∅;
if c = 0 return rApproxMMM(G);
e := any edge in E;
M := ∅;
for each e′ ∈ dom(e)

Me′ := ApproxMMM3(G′ = (V,E\dom(e′)), c − 1, rApproxMMM);
Me′ := Me′ ∪ {e′};
M := M∪ {Me′};

return M ∈ M minimizing |M |.

Figure 38:
(

r − 2cr
n+2c(r−1)

)

-approximation algorithm for MMM.

(ii) Let M ′ be a maximal matching with c edges in common with some
minimum maximal matching M ∗ of G = (V, E). Also, let G′ be the
graph obtained from G after removing the 2c vertices matched in both
M ′ and M∗. Now, for some real value r′ ∈ [1, r], M ′ induces a maxi-
mal matching of size r′β−

1 (G′) in G′, and since G′ has n − 2c vertices,
β−

1 (G′) ≤ n−2c
2r′

. The approximation ratio of M ′ in G is therefore given
by:

|M ′|
|M∗| =

c + r′β−
1 (G′)

c + β−
1 (G′)

= r′ − c(r′ − 1)

c + β−
1 (G′)

≤ r′ − 2cr′(r′ − 1)

n + 2c(r′ − 1)
= f(r′)

Although tedious, it is not too difficult to show that f(r) > f(r′), for
any r > r′, and so M ′ is also an f(r)-approximation of M ∗. Using a
simple inductive argument based on the correctness of ApproxMMM2,
it is easy to show that ApproxMMM3 finds such a matching M ′, and
ultimately returns a maximal matching M with size |M | ≤ |M ′| ≤
(r − 2cr

n+2c(r−1)
)β−

1 (G).

Although ApproxMMM3 is based on brute force, the running time remains
polynomial in n as long as c is a constant. In general, larger values of c im-
prove the approximation guarantee, but do so at a significant time complexity
cost. This behaviour is similar to a polynomial-time approximation scheme,
except that the approximation ratio does not converge to 1 as c increases.
Figure 39 gives the worst case approximation ratio of ApproxMMM3 for dif-
ferent values of c. This example uses GreedyMaximalMatching as the basis
algorithm, and the ratios given for c = lg(n) indicate a practical upper bound
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on the approximation performance, since ApproxMMM3 is super-polynomial
when c is not a constant function of n.

c\n 25 50 100 1000 10000 100000

0 2 2 2 2 2 2
1 1.85185 1.92308 1.96078 1.99601 1.9996 1.99996
2 1.72414 1.85185 1.92308 1.99203 1.9992 1.99992

lg(n) 1.45825 1.63165 1.76542 1.96092 1.99470 1.99934

Figure 39: Approximation Performance of ApproxMMM3 to 5 decimal
places.

We now give a class of graphs for which ApproxMMM3 may exhibit the
worst case approximation ratio when the GreedyMaximalMatching algorithm
is used. Construct the graph G[c, k] = cC6 + kP4, consisting of c disjoint
6-vertex cycles and k disjoint 4-vertex paths, where k is an arbitrary non-
negative integer. Select an edge ei = {ui, vi} from each disjoint component,
where deg(ui) = deg(vi) = 2. Now, add a connecting edge between vi and
ui+1 for all 1 ≤ i < k + c, thereby connecting the graph. It is easily verified
that β−

1 (G[c, k]) = k+2c, with one edge for each P4 component and two edges
for each C6 component. However, ApproxMMM3 may return a matching as
large as 2k + 3c by including 2 edges from each P4 component, and 3 edges
from each C6 component. This worst case happens if, during the brute
force phase of the algorithm, ApproxMMM3 selects one edge from each C6

component, where the edge is not dominated by a connecting edge. Since
the number of vertices in G[c, k] is n = 6c + 4k, the returned matching has
approximation ratio,

2k + 3c

k + 2c
=

2(k + 2c) − c

k + 2c
= 2 − c

k + 2c
= 2 − 4c

n + 2c

An example of G[c, k] is given in Figure 40 with c = 2 and k = 1.
This example describes two maximal matchings of G[2, 1], one, a minimum
maximal matching with size 5, while the other is the result of a worst case
execution of ApproxMMM3 with size 8. In both cases, the matching edges
are specified in bold.

Our approach of using brute force to improve on an approximation algo-
rithm is applicable beyond MMM. To illustrate this, we briefly sketch new
approximation algorithms for MVC and maximum satisfiability (MS).

Recall that the MVC problem for a graph G = (V, E) is to find a minimum
cardinality subset C of V such that every edge in E is covered by some
vertex in C. It follows that for each edge e = {u, v}, u or v must be in
some minimum vertex cover. The new approximation algorithm, ApproxVC,
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C6 C6 P4 C6 C6 P4

Figure 40: G[2, 1] - a worst case graph for ApproxMMM3, with r = 2.

exploits this property by recursively constructing two vertex covers - one for
u and one for v. The correctness and analysis of ApproxVC is essentially the
same as for ApproxMMM3, so we only remark that by using Halperin’s (2−
2lnln(n)

ln(n)
(1− o(1))-approximation algorithm [32] as the basis r-approximation,

ApproxVC is the best known vertex cover approximation. The algorithm is
given in Figure 41, where we use the term cov(v) to denote the set of all
edges incident to v ∈ V .

ApproxVC(G = (V,E), c, rApproxVC)
if E = ∅ return ∅;
if c = 0 return rApproxVC(G);
e = {u, v} := any edge in E;
Cu := {u}∪ ApproxVC(G′ = (V,E\cov(u)), c − 1, rApproxVC);
Cv := {v}∪ ApproxVC(G′ = (V,E\cov(v)), c − 1, rApproxVC);
return smaller of Cu and Cv;

Figure 41: Improved approximation algorithm for minimum vertex cover.

maximum satisfiability (MAX-SAT) is the optimization version of the
first known NP-complete problem, satisfiability [14]. In these problems,
we are given a set V of variables, and a collection C of disjunctive clauses,
each of which consists of a set of variables or their negations. The aim of
MAX-SAT is to find a truth assignment for V that maximizes the number of
clauses that subsequently evaluate to true. For any variable v and some truth
assignment A, v is either assigned true or false in A. As in the previous two
examples, we can recursively try both options, removing any true clauses,
and removing from all remaining clauses any instances of v or the negation
of v. Again, the correctness and analysis of this approach is essentially the
same as for ApproxMMM3, and so we only remark that by using as the basis
algorithm the 1.2746-approximation given in [6], we achieve the best known
approximation for MAX-SAT.
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7.2.4 Conclusions and Open Problems

In this section, we have presented three new approximation algorithms for
MMM. The first algorithm uses reducing paths, which are analogues of clas-
sical augmenting paths. The last two algorithms use a restricted brute force
approach to improve on existing approximation algorithms. These algorithms
may be viewed as weaker forms of polynomial-time approximation schemes,
where the approximation guarantee converges to some constant greater than
1.

There are a number of avenues for future work. For example, it may
be possible to place the last two algorithms into a more general theory of
approximation, in which we extend the definition of a polynomial-time ap-
proximation scheme. Also, the time complexity of finding a reducing path,
or determining that no such path exists, is open. However, we conjecture
that the problem is polynomial-time solvable.
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[48] D.F. Manlove. Stable marriage with ties and unacceptable partners.
Technical Report TR-1999-29, University of Glasgow, Department of
Computing Science, January 1999.

[49] D.F. Manlove. The structure of stable marriage with indifference. Dis-
crete Applied Mathematics, 122(1-3):167–181, 2002.

[50] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard
variants of stable marriage. Technical Report TR-1999-43, University of
Glasgow, Department of Computing Science, September 1999.

101



[51] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita.
Hard variants of stable marriage. Theoretical Computer Science, 276(1-
2):261–279, 2002.

[52] K. O. May. Intransitivity, utility, and the aggregation of preference
patterns. Econometrica, 22:1–13, 1954.

[53] D. McVitie and L. B. Wilson. The stable marriage problem. Commu-
nications of the A.C.M, 14:486–490, 1971.

[54] S. Micali and V. Vazirani. An o(v1/2e) algorithm for finding a maximum
matching in general graphs. In Proceedings of the 21st Symposium on
the Foundations of Computer Science, pages 17–27, 1980.

[55] S. Mitchell and S. Hedetniemi. Edge domination in trees. In Proceedings
of the 8th Southeastern Conference. on Combinatorics, Graph Theory,
and Computing, pages 489–509, 1977.

[56] C. Ng and D.S. Hirschberg. Lower bounds for the stable marriage prob-
lem and its variants. SIAM Journal on Computing, 19:71–77, 1990.

[57] http://www.natmatch.com (National Matching Services).

[58] R.Z. Norman and M.O. Rabin. An algorithm for a minimum cover of a
graph. Proceedings of the American Mathematical Society, 10:315–319,
1959.

[59] http://www.nada.kth.se/∼viggo/problemlist/compendium.html

(A Compendium of NP Optimization Problems).

[60] A. Romero-Medina. Implementation of stable solutions in a restricted
matching market. Review of Economic Design, 3:137–147, 1998.

[61] E. Ronn. NP-complete stable matching problems. Journal of Algorithms,
11:285–304, 1990.

[62] A.E. Roth. The evolution of the labor market for medical interns and
residents: a case study in game theory. Journal of Political Economy,
92(6):991–1016, 1984.

[63] A.E. Roth. On the allocation of residents to rural hospitals: a general
property of two-sided matching markets. Econometrica, 54:425–427,
1986.

102



[64] A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in
game-theoretic modeling and analysis, volume 18 of Econometric Society
Monographs. Cambridge University Press, 1990.

[65] P. Sokkalingem, R. Ahuja, and J. Orlin. New polynomial-time cycle-
cancelling algorithm for minimum-cost flows. Networks, 36:53–63, 2000.

[66] B. Spieker. The set of super-stable marriages forms a distributive lattice.
Discrete Applied Mathematics, 58:79–84, 1995.

[67] W.T. Tutte. The factorizations of linear graphs. Journal of the London
Mathematical Society, 22:107–111, 1947.

[68] http://www.uac.com.au/admin/selection.html (Universities Ad-
missions Centre, NSW Australia).

[69] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM
Journal on Applied Mathematics, 18(1):364–372, 1980.

[70] M. Zito. Randomised Techniques in Combinatorial Algorithms. PhD
thesis, University of Warwick, Department of Computer Science, 1999.

[71] M. Zito. Small maximal matchings in random graphs. Theoretical Com-
puter Science, 297:487–507, 2003.

103


