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This note gives definitions and proofs of basic multiparty session type system based on the
communication typing system presented in (Coppo et al., 2014).

1. Introduction

This note is extracted from (Coppo et al., 2014). We give:

— a non-trivial example that illustrates the basic functionalities and features of the process cal-
culus that we work with.

— a definition of a calculus of asynchronous, multiparty sessions (§3) as well as a communica-
tion type system (§4) assuring that processes behave correctly with respect to the sessions in
which they are involved.

— proofs of the subject reduction theorem

2. The Three Buyer Protocol

In this section we present a simple but non-trivial example that illustrates the basic functionalities
and features of the process calculus that we work with. This example comes from a Web service
usecase in Web Service Choreography Description Language (WS-CDL) Primer 1.0 (Web Ser-
vices Choreography Working Group, 2002), capturing a collaboration pattern typical to many
business and distributed protocols (OOI, 2010; UNIFI, 2002; Scribble, 2008). The setting is that
of a system involving Alice, Bob, and Carol that cooperate in order to buy a book from a Seller.
The participants follow a protocol that is described informally below:

1 Alice sends a book title to Seller and Seller sends back a quote to Alice and Bob. Alice tells
Bob how much she can contribute.

2 If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts, then sends
his address to Seller and Seller answers with the delivery date.

3 If the price exceeds Bob’s budget, Bob asks Carol to collaborate by establishing a new ses-
sion. Bob sends Carol how much she has to contribute and delegates the remaining interac-
tions with Alice and Seller to her.

4 If Carol’s contribution is within her budget, she accepts the quote, notifies Alice, Bob and
Seller, and continues the rest of the protocol with Seller and Alice as if she were Bob. Other-
wise, she notifies Alice, Bob and Seller to quit the protocol.
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Fig. 1. An execution of the three buyer protocol.

Figure 1 depicts an execution of the above protocol where Bob asks Carol to collaborate (by
delegating the remaining interactions with Alice and Seller) and the transaction terminates suc-
cessfully.

Multiparty session programming consists of two steps: specifying the intended communication
protocols using global types and implementing these protocols using processes. The specifica-
tions of the three-buyer protocol are given as two distinct global types: one is Ga among Alice,
Bob and Seller and the other is Gb between Bob and Carol. In Ga Alice plays role 2, Bob plays
role 1, and Seller plays role 3, while in Gb Bob plays role 2 and Carol plays role 1. We annotate
the global types with line numbers (i) so that we can easily refer to the actions in them.

Ga =

(1) 2 −→ 3 : 〈string〉.
(2) 3 −→ {1,2} : 〈int〉.
(3) 2 −→ 1 : 〈int〉.
(4) 1 −→ {2,3} : {ok : 1−→ 3 : 〈string〉.
(5) 3−→ 1 : 〈date〉.end,
(6) quit : end}

Gb =

(1) 2 −→ 1 : 〈int〉.
(2) 2 −→ 1 : 〈T〉.
(3) 1 −→ 2 : {ok : end,quit : end}

T =⊕〈{2,3},{ok : !〈3,string〉.?(3,date).end,quit : end}〉
Global types provide an overall description of the two conversations, directly abstracting the

scenario of the diagram. In Ga, line (1) denotes Alice sending a string value to Seller. Line (2)

says that Seller multicasts the same integer value to Alice and Bob and line (3) says that Alice
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Seller = a [3](y).y?(2, title).y!〈{1,2},quote〉.y&(1,{ok : y?(1,address).y!〈1,date〉.0,quit : 0})

Alice = a[2](y).y!〈3,"Title"〉.y?(3,quote)).y!〈1,quotediv 2〉.y&(1,{ok : 0, quit : 0})

Bob = a[1](y).y?(3,quote).y?(2,contrib).if (quote− contrib < 100) then y⊕〈{2,3},ok〉.y!〈3,"Address"〉.y?(3,date).0
elseb [2](z).z!〈1,quote− contrib−99〉.z!〈〈1,y〉〉.z&(1,{ok : 0,quit : 0})

Carol = b[1](z).z?(2,x).z?((2, t)).if (x < 100) then z⊕〈2,ok〉.t⊕〈{2,3},ok〉.t!〈3,"Address"〉.t?(3,date).0
else z⊕〈2,quit〉.t⊕〈{2,3},quit〉.0

Table 1. Implementation of the three buyer protocol.

sends an integer to Bob. In lines (4–6) Bob sends either ok or quit to Seller and Alice. In the first
case Bob sends a string to Seller and receives a date from Seller, in the second case there are no
further communications.

Line (2) in Gb represents the delegation of a channel with the communication behaviour speci-
fied by the session type T from Bob to Carol (note that Seller and Alice in T concern the session
on a).

Table 1 shows an implementation of the three buyer protocol conforming to Ga and Gb for the
processes Seller, Alice, Bob, and Carol in the calculus that we will formally define in §3.1. The
service name a is used for initiating sessions corresponding to the global type Ga. Seller initiates a
three party session by means of the session request operation a [3](y), where the index 3 identifies
Seller. Since 3 is also the overall number of participants in this session, a occurs with an over-bar.
Alice and Bob get involved in the session by means of the session accept operations a[1](y) and
a[2](y) and the indexes 2 and 1 identify them as Alice and Bob, respectively. Once the session has
started, Seller, Alice and Bob communicate using their private channels y. Each channel y can be
interpreted as a session endpoint connecting a participant with all the others in the same session;
the receivers of the data sent on y are specified by giving the participant numbers. Line (1) of
Ga is implemented by the matching output and input actions y!〈3,"Title"〉. and y?(2, title).
Line (3) of Gb is implemented by the selection and branching actions z⊕〈2,ok〉, z⊕〈2,quit〉 and
z&(1,{ok : 0,quit : 0}).

In process Bob, if the quote minus Alice’s contribution exceeds 100, another session between
Bob and Carol is established through the shared service name b. Delegation occurs by passing
the private channel y from Bob to Carol (actions z!〈〈1,y〉〉 and z?((2, t))), so that the rest of the
session with Seller and Alice is carried out by Carol.

In this particular example no deadlock is possible, even if different sessions are interleaved
with each other and the communication topology changes because of delegation.

3. The Calculus for Multiparty Sessions

3.1. Syntax

The present calculus is a variant of the calculus in (Honda et al., 2008), as explained in §5. The
syntax of processes, ranged over by P,Q . . . , and expressions, ranged over by e,e′, . . . , is given
by the grammar in Table 2, which shows also naming conventions.

The operational semantics is defined by a set of reduction rules. In the reduction of processes
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P ::= u [p](y).P Multicast request
|| u[p](y).P Accept
|| c!〈Π,e〉.P Value sending
|| c?(p,x).P Value reception
|| c!〈〈p,c′〉〉.P Channel delegation
|| c?((q,y)).P Channel reception
|| c⊕〈Π, l〉.P Selection
|| c&(p,{li : Pi}i∈I) Branching
|| if e then P else Q Conditional
|| P | Q Parallel
|| 0 Inaction
|| (νa : G)P Service name hiding
|| def D in P Recursion
|| X〈e,c〉 Process call
|| (νs)P Session hiding
|| s : h Message queue

D ::= X(x,y) = P Declaration
E ::= [ ] || P || (νa : G)E Evaluation context

|| (νs)E || def D in E
|| E | E

a, b Service name
x Value variable

y, z, t Channel Variable
s Session name

p, q Participant number
X , Y Process variable

l Label
s[p] Channel with role

u ::= x || a Identifier
v ::= a || true Value

|| false
e ::= v || x

|| e and e′ Expression
|| not e . . .

Π ::= {p} || {p}∪Π Set of participants
c ::= y || s[p] Channel

m ::= (q,Π,v) Message in transit
|| (q,p,s[p′])
|| (q,Π, l)

h ::= h ·m || � Queue

Table 2. Process syntax and naming conventions.

it is handy to introduce elements, like queues of messages and runtime channels, which are not
expected to occur in the source code written by users (user processes). These elements, which
are referred as runtime syntax, appear shaded .

The processes of the form u [p](y).P and u[p](y).P cooperate in the initiation of a multiparty
session through a service name identified by u, where p denotes a participant to the session.
Participants are represented by progressive numbers and are ranged over by p, q,... The barred
identifier is the one corresponding to the participant with the highest number, which also gives the
total number of participants needed to start the session. The (bound) variable y is the placeholder
for the channel that will be used in the communications. After opening a session each channel
placeholder will be replaced by a channel with role s[p], which represents the runtime channel of
the participant p in the session s.

Process communications (communications that can only take place inside initiated sessions)
are performed using the next three pairs of primitives: the sending and receiving of a value; the
channel delegation and reception (where the process performing the former action delegates to
the process receiving it the capability to participate in a session by passing a channel associated
with that session); and the selection and branching (where the former action sends one of the
labels offered by the latter). The input/output operations (including the delegation ones) specify
the channel and the sender or the receivers, respectively. Thus, c!〈Π,e〉 denotes the sending
of a value on channel c to all the participants in the non-empty set Π; accordingly, c?(p,x)
denotes the intention of receiving a value on channel c from the participant p. The same holds
for delegation/reception (but the receiver is only one) and selection/branching. We use c!〈p,e〉.P
and c⊕〈p, l〉.P as short for c!〈{p},e〉.P and c⊕〈{p}, l〉.P, as already done in previous examples.

An output action is a value sending, channel delegation or label selection: an output process
is a process whose first action is an output action. An input action is a value reception, session
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a[1](y).P1 | ... | a[n−1](y).Pn−1 | a [n](y).Pn−→
(νs)(P1{s[1]/y} | ... | Pn−1{s[n−1]/y} | Pn{s[n]/y} | s : �) [Init]

s[p]!〈Π,e〉.P | s : h−→ P | s : h · (p,Π,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉.P | s : h−→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈Π, l〉.P | s : h−→ P | s : h · (p,Π, l) [Sel]

s[p]?(q,x).P | s : (q,p,v) ·h −→ P{v/x} | s : h [Rcv]

s[p]?((q,y)).P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [SRcv]

s[p]&(q,{li : Pi}i∈I) | s : (q,p, l j) ·h −→ Pj | s : h ( j ∈ I) [Branch]

if e then P else Q−→ P (e ↓ true) if e then P else Q−→ Q (e ↓ false) [If-T, If-F]

def X(x,y) = P in (X〈e,s[p]〉 | Q) −→ def X(x,y) = P in (P{v/x}{s[p]/y} | Q) (e ↓ v) [ProcCall]

P−→ P′ ⇒ E [P]−→ E [P′] [Ctxt]

P≡ P′ and P′ −→ Q′ and Q≡ Q′ ⇒ P−→ Q [Str]

Table 3. Reduction rules.

reception or label branching: an input process is a process whose first action is an input action.
A communication action is either an output or an input action.

In the hiding of service name a, G denotes the global type of a, see next §.
For simplicity each recursively defined process has exactly one data parameter and one channel

parameter.

As usual evaluation contexts are processes with some holes.

As in (Honda et al., 2008), we use message queues in order to model TCP-like asynchronous
communications (where message order is preserved and sending is non-blocking). A message in
a queue can be a value message, (q,Π,v), indicating that the value v was sent by the participant
q and the recipients are all the participants in Π; a channel message (delegation), (q,p,s[p′]),
indicating that q delegates to p the role of p′ on the session s (represented by the channel with
role s[p′]); and a label message, (q,Π, l) (similar to a value message). The empty queue is denoted
by �. By h ·m we denote the queue obtained by concatenating m to the queue h. With some abuse
of notation we will also write m ·h to denote the queue with head element m. By s : h we denote
the queue h of the session s. Queues and channels with role are generated by the operational
semantics (described later).

We call pure a process which does not contain message queues.

There are many binders: request/accept actions bind channel variables, value receptions bind
value variables, channel receptions bind channel variables, declarations bind value and channel
variables, recursions bind process variables, hidings bind service and session names. In (νs)P
all occurrences of s[p] and the queue s inside P are bound. We say that a process is closed if the
only free names in it are service names (i.e. if it does not contain free variables or free session
names).
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P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)

(νr)P | Q≡ (νr)(P | Q) if r /∈ fn(Q)

(νr)(νr′)P≡ (νr′)(νr)P (νa : G)0≡ 0 (νs)(s : �)≡ 0

where r ::= a : G || s

def D in 0≡ 0 def D in (νr)P≡ (νr)def D in P if r /∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D′ in (def D in P) if (dpv(D)∪ fpv(D))∩dpv(D′) = dpv(D)∩ (dpv(D′)∪ fpv(D′)) = /0

s : h · (q,Π,ζ ) · (q′,Π′,ζ ′) ·h′ ≡ s : h · (q′,Π′,ζ ′) · (q,Π,ζ ) ·h′ if Π∩Π′ = /0 or q 6= q′

s : h · (q,Π,ζ ) ·h′ ≡ s : h · (q,Π′,ζ ) · (q,Π′′,ζ ) ·h′ if Π = Π′ ∪Π′′ and Π′ ∩Π′′ = /0

where ζ ::= v || s[p] || l

P≡ P′ ⇒ E [P]≡ E [P′]

Table 4. Structural equivalence.

3.2. Operational Semantics

Table 3 shows the reduction rules of processes (we use −→∗ and −→k with the expected. Rule
[Init] describes the initiation of a new session among n participants that synchronise over the
service name a. The last participant a [n](y).Pn, distinguished by the overbar on the service name,
specifies the number n of participants. After the initiation, the participants will share the private
session name s, and the queue associated to s, which is initially empty. The variable y in each
participant p will be replaced by the corresponding channel with role s[p]. The output rules
[Send], [Deleg] and [Sel] enqueue values, channels and labels, respectively, into the queue of the
session s (in rule [Send], e ↓ v denotes the evaluation of the expression e to the value v). The
input rules [Rcv], [SRcv] and [Branch] perform the corresponding complementary operations.
Note that these operations check that the sender matches, and also that the message is actually
meant for the receiver.

Processes are considered modulo structural equivalence, denoted by ≡, and defined adding
α-conversion to the rules in Table 4. By r /∈ fn(Q) we mean that a is not a free name in Q if
r = a : G and that s is not a free name in Q if r = s. The meaning of r /∈ fn(D) is similar. We
denote by dpv(D) the set of process variables declared in D and by fpv(Q) the set of process
variables which occur free in Q. Besides the standard rules (Milner, 1999), we have a rule for
rearranging messages in a queue when the senders or the receivers are not the same, and a rule
for splitting a message with more than one receiver.

4. Communication Type System for Pure Processes

This section introduces the communication type system for pure processes, by which we can
check type soundness of the communications. This type system corresponds essentially to the
one introduced in (Honda et al., 2008), but it is slightly simpler owing to the new formulation of
the calculus. We need to introduce it here since we use it for defining progress property in next
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S ::= bool | . . . | G Sorts
U ::= S | T Exchange types

Global types
G ::= p→Π : 〈S〉.G Value exchange

|| p→ p : 〈T〉.G Channel exchange
|| p→Π : {li : Gi}i∈I Branching
|| µt.G || t || end Recursion/end

Session types
T ::= !〈Π,S〉.T send value

|| !〈p,T〉.T Send channel
|| ?(p,U).T Receive
|| ⊕〈Π,{li : Ti}i∈I〉 Selection
|| &(p,{li : Ti}i∈I) Branching
|| µt.T || t || end Recursion/end

Table 5. Global and session types.

§. Instead we give the typing rules for message queues and run time processes in Appendix A,
since they are not central in our development.

4.1. Global and Session Types

Global types describe the whole conversation scenarios of multiparty session. Session types cor-
respond to projections of global types on the individual participants: they are types of pure pro-
cesses. The grammar for global and session types is given in Table 5. This grammar is slightly
more permissive than necessary, in the sense that it allows session types that cannot be obtained
as projections of global types. In practice, we are only interested in the subsets of well-formed
session types (those that can be obtained as projections of well-formed global types) and well-
formed global types (those that only contain well-formed session types). The formal notions of
global type projection and well-formed global/session types will be given in Definitions 4.1 and
4.2.

Sorts S,S′, . . . are associated to values (either base types or closed global types, ranged over by
G). Exchange types U,U ′, ... consist of sort types or closed session types, ranged over by T.

The global type p→ Π : 〈S〉.G says that participant p multicasts a value of sort S to the non-
empty set of participants Π and then the interactions described in G take place. Similarly, the
global type p→ q : 〈T〉.G says that participant p 6= q delegates a channel of type T to participant q
and the interaction continues according to G. Obviously only one receiver is expected in this case.
When it does not matter we use p→Π : 〈U〉.G to refer both to p→Π : 〈S〉.G and p→ q : 〈T〉.G.
Type p→Π : {li : Gi}i∈I says participant p multicasts one of the labels li to the set of participants
Π. If l j is sent, interactions described in G j take place. In both cases we assume p /∈ Π. Type
µt.G is a recursive type, assuming type variables (t, t′, . . . ) are guarded in the standard way, i.e.,
type variables only appear under some prefix. We take an equi-recursive view of recursive types,
not distinguishing between µt.G and its unfolding G{µt.G/t} (Pierce, 2002, §21.8). Type end

represents the termination of the session.
The send types !〈Π,S〉.T , !〈p,T〉.T express, respectively, the sending of a value of sort S to

all participants in Π or the sending of a channel of type T to participant p followed by the



N. Yoshida 8

communications described by T . The selection type⊕〈Π,{li : Ti}i∈I〉 represents the transmission
to all participants in Π of a label li chosen in the set {li | i ∈ I} followed by the communications
described by Ti. The receive and branching types are dual of send and selection types: in them
only one sender is considered. Recursion is guarded also in session types, and we consider them
modulo fold/unfold as done for global types.

As in processes, when Π = {p} is a singleton we identify Π with p.

The relation between global and session types is formalised by the notion of projection as in
(Honda et al., 2008). We use this notion also for defining when global and session types are well
formed.

Definition 4.1. The projection of a global type G onto a participant q (G � q) is defined by
induction on G:

(p→Π : 〈U〉.G′) � q=


!〈Π,U〉.(G′ � q) if q= p,

?(p,U).(G′ � q) if q ∈Π,

G′ � q otherwise.

(p→Π : {li : Gi}i∈I) � q=


⊕(Π,{li : Gi � q}i∈I) if q= p

&(p,{li : Gi � q}i∈I) if q ∈Π

Gi0 � q where i0 ∈ I if q 6= p,q 6∈Π

and Gi � q= G j � q for all i, j ∈ I.

(µt.G) � q=

{
µt.(G � q) if G � q 6= t,
end otherwise.

t � q= t end � q= end.

As an example, we list two of the projections of the global types Ga and Gb of the three-buyer
protocol in §2.

Ga � 3 = ?(2,string).!〈{1,2}, int〉;&(1,{ok :?(1,string).!〈1,date〉.end,quit : end})
Gb � 1 = ?(2, int).?(2,T).⊕〈2,{ok : end,quit : end}〉

where T is defined at page 3.

Well-formed global and session types can then be defined as the ones satisfying the following
(mutually recursive) conditions:

Definition 4.2.

1 A global type is well formed if all session types occurring in it are well formed and closed.
2 A session type is well formed if it is the projection of some well-formed global type.

Notice that a global type without occurrences of session types (i.e. without channel exchanges)
is always well formed. It is quite natural that when building a global type including the delegation
of a channel of type T, the designer has already designed the global type G which includes the
communications represented by T. In this case T is obtained from the projection of G onto one
of its participants, assuring its well-formedness.

As an example, the global types Ga, Gb and the session type T introduced in §2 are all well
formed. In fact Ga is well formed since it contains no session types, T is well formed since it
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is the projection onto participant 1 of the global type defined by lines (4), (5), and (6) of the
definition of Ga, and Gb is well formed since the exchanged type T is well formed.

According to the methodology first advocated in (Honda et al., 2008) and pursued in this work,
a distributed system is first designed in terms of global types and then implemented as a set of
processes respecting session types that are obtained as projections of such global types. For this
reason, the notion of well-formed global/session type arises naturally and is not restrictive in
such framework.

From now on we will implicitly make the assumption that all global and session types are well
formed.

4.2. Typing Rules for Pure Processes

The typing judgements for expressions and pure processes are of the shapes:

Γ ` e : S and Γ ` P.∆

where

- Γ is the standard environment which associates variables to sort types, service names to
closed global types and process variables to pairs of sort types and session types;

- ∆ is the session environment which associates channels to session types.

Formally we define:

Γ ::= /0 || Γ, x : S || Γ, a : G || Γ,X : S T and ∆ ::= /0 || ∆,c : T

assuming that we can write Γ,x : S only if x 6∈ dom(Γ), where dom(Γ) denotes the domain of Γ,
i.e., the set of identifiers which occur in Γ. We use the same convention for a : G, X : S T and
c:T (thus we can write ∆,∆′ only if dom(∆)∩dom(∆′) = /0).

Table 6 presents the typing rules for expressions and pure processes.
Rule (NAME) is standard: recall that u stands for x and a and S includes G.
Rule (MCAST) permits to type a request on a service identified by u, if the type of y is the

p-th projection of the global type G of u and the maximum participant in G (denoted by mp(G))
is p. Rule (MACC) permits to type the p-th participant identified by u, which uses the channel y,
if the type of y is the p-th projection of the global type G of u and p< mp(G).

In the typing of the example of the three-buyer protocol the types of the channels y in Seller and
z in Carol are respectively the third projection of Ga and the first projection of Gb. By applying
rule (MCAST) we can then derive a : Ga ` Seller. /0. Similarly by applying rule (MACC) we can
derive b : Gb ` Carol. /0. (The processes Seller and Carol are defined in Table 1.)

The successive six rules associate the input/output processes to the input/output types in the
expected way. For example we can derive:

` t⊕〈{2,3},ok〉.t!〈3,"Address"〉; t?(3,date).0.{t : T}

where T = ⊕〈{2,3},{ok :!〈3,string〉.?(3,date).end, quit : end}〉. Note that, according to our
notational convention on environments, in rule (DELEG) the channel which is sent cannot appear
in the session environment of the premise, i.e., c′ 6∈ dom(∆)∪{c}.

Rule (PAR) permits to put in parallel two processes only if their session environments have
disjoint domains.
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Γ,u : S ` u : S (NAME) Γ ` true, false : bool (BOOL)
Γ ` ei : bool (i = 1, 2)

Γ ` e1 and e2 : bool
(AND)

Γ ` u : G Γ ` P.∆,y : G � p p= mp(G)
(MCAST)

Γ ` u [p](y).P.∆

Γ ` u : G Γ ` P.∆,y : G � p p< mp(G)
(MACC)

Γ ` u[p](y).P.∆

Γ ` e : S Γ ` P.∆,c : T
(SEND)

Γ ` c!〈Π,e〉.P.∆,c : !〈Π,S〉.T

Γ,x : S ` P.∆,c : T
(RCV)

Γ ` c?(q,x).P.∆,c :?(q,S).T

Γ ` P.∆,c : T
(DELEG)

Γ ` c!〈〈p,c′〉〉.P.∆,c : !〈{p},T〉.T,c′ : T

Γ ` P.∆,c : T,y : T
(SRCV)

Γ ` c?((q,y)).P.∆,c :?(q,T).T

Γ ` P.∆,c : Tj j ∈ I
(SEL)

Γ ` c⊕〈Π, l j〉.P.∆,c :⊕〈Π,{li : Ti}i∈I〉

Γ ` Pi .∆,c : Ti ∀i ∈ I
(BRANCH)

Γ ` c&(p,{li : Pi}i∈I).∆,c : &(p,{li : Ti}i∈I)

Γ ` P.∆ Γ ` Q.∆
′

(PAR)
Γ ` P | Q.∆,∆′

Γ ` e : bool Γ ` P.∆ Γ ` Q.∆

(IF)
Γ ` if e then P else Q.∆

∆ end only
(INACT)

Γ ` 0.∆

Γ,a : G ` P.∆

(NRES)
Γ ` (νa : G)P.∆

Γ ` e : S ∆ end only
(VAR)

Γ,X : S T ` X〈e,c〉.∆,c : T

Γ,X : S t,x : S ` P. y : T Γ,X : S µt.T ` Q.∆

(DEF)
Γ ` def X(x,y) = P in Q.∆

Table 6. Typing rules for expressions and pure processes.

In rules (INACT) and (VAR) we take environments ∆ which associate end to arbitrary channels,
denoted by “∆ end only”.

The present formulation of rule (DEF) forces to type process variables only with µ-types,
while the formulation in (Bettini et al., 2008; Honda et al., 2008):

Γ,X : S T,x : S ` P. y : T Γ,X : S T ` Q.∆

Γ ` def X(x,y) = P in Q.∆

allows to type unguarded process variables with arbitrary types, which can be meaningless. For
example with the more permissive rule we can derive ` def X(x,y)=X(x,y) in X〈true,z〉.{z :T}
for an arbitrary closed T, while in our system we cannot type this process since its only possible
type would be µt.t, which is not guarded and then forbidden.

4.3. Subject Reduction

We end this section by formulating subject reduction for closed user processes. We clearly need
typing judgments for run time processes. In these judgments the turn style is decorated by sets
of session names, which are the names of the current queues. Reducing a closed user process
we obtain processes in which all session names are bound, so the turn style is decorated by the
empty set.
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Theorem 4.3 (Subject Reduction for Closed User Processes). If Γ ` P. /0 and P−→∗ P′, then
Γ ` /0 P′ . /0.

Appendix A gives the typing rules for run time processes and the proof of subject reduction for
arbitrary processes.

5. Related Work

Multiparty sessions. The first works on multiparty session types are (Bonelli and Compagnoni,
2008) and (Honda et al., 2008). The paper (Bonelli and Compagnoni, 2008) uses a distributed
calculus where each channel connects a master endpoint to one or more slave endpoints; instead
of global types, they solely use (recursion-free) local types. For type checking, local types are
projected to binary sessions, so that type safety is ensured using duality, but it loses sequencing
information: hence progress in a session interleaved with other sessions is not guaranteed.

The present calculus is an essential improvement and simplification of (Honda et al., 2008):
both processes and types in (Honda et al., 2008) share a vector of channels and each communica-
tion uses one of these channels. In the present work, processes and types use indexes for denoting
the participants of a session. The new communication type system improves the one of (Honda
et al., 2008) in three main technical points without sacrificing its expressivity. First, it avoids the
overhead of global linearity-check in (Honda et al., 2008) because our global types automati-
cally satisfy the linearity condition in (Honda et al., 2008) due to the limitation to bi-directional
channel communications. Second, it provides a more liberal policy in the use of variables in
delegation since we do not require to delegate a set of session channels. Finally, it implicitly
provides each participant of a service with a runtime channel indexed by its role on which he
can communicate with all other participants, therefore enabling broadcast communication in a
natural way. The use of indexed channels, moreover, allows to define light-weight interaction
type system. The global types in (Honda et al., 2008) have a parallel composition operator, but
its projectability from global to local types limits to disjoint senders and receivers; hence our
global types do not affect the expressivity.

Further works on multiparty session types include: Java protocol optimisation (Sivaramakr-
ishnan et al., 2010), a generation of multiparty cryptographic protocols (Bhargavan et al., 2009),
asynchronous commutative multiparty session types for a refinement (Mostrous et al., 2009),
parametrised global types for parallel programming and Web service descriptions (Deniélou
et al., 2012), access control and secrecy (Capecchi et al., 2010a), communication buffered anal-
ysis (Deniélou and Yoshida, 2010), extensions to the sumtype and its encoding (Nielsen et al.,
2010), applications to Healthcare (Henriksen et al., 2013) and exception handling for multiparty
conversations (Capecchi et al., 2010b). Multiparty session types can be extended with logical as-
sertions following design by contract framework (Bocchi et al., 2010). A recent work (Chen and
Honda, 2012) offers more fine-grained property analysis for multiparty session types with state-
ful logical assertions. The inference of global types from a set of local types is studied in (Lange
and Tuosto, 2012). In (Deniélou and Yoshida, 2011) roles are inhabited by an arbitrary number
of participants which can dynamically join and leave. The paper (Swamy et al., 2011) shows
that the multirole session types (Deniélou and Yoshida, 2011) can be naturally represented in a
dependent-typed language. To enhance expressivity and flexibility of multiparty session types,
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the work (Demangeon and Honda, 2012) proposes nested, higher-order multiparty session types
and the work (Castagna et al., 2012) studies a generalisation of choices and parallelism. The
paper (Carbone and Montesi, 2013) directly types a global description language (Carbone et al.,
2012) by multiparty session types without using local types. This direct approach can type pro-
cesses which are untypable in the original multiparty session types (i.e. the communication typ-
ing system in this article). The paper (Montesi and Yoshida, 2013) extends the work in (Carbone
and Montesi, 2013) to compositional global languages. The work (Deniélou and Yoshida, 2012)
gives a linkage between communicating automata (Brand and Zafiropulo, 1983) and a general
graphical version of multiparty session types, proving a one-to-one correspondence between the
properties of communicating automata and multiparty session types. The paper (Deniélou and
Yoshida, 2013) studies the sound and complete characterisation of the multiparty session types
in communicating automata and applies the result to the synthesis of the multiparty session types.
The work (Kouzapas and Yoshida, 2013) shows semantics effects of the multiparty session types
in the context of typed bisimulations and reduction-closed theories.

Implementations based on Multiparty Session Types. We are currently designing and imple-
menting a modelling and specification language with multiparty session types (Savara, 2010;
Scribble, 2008) for the standards of business and financial protocols with our industry collab-
orators (Honda et al., 2011; Honda et al., 2013). We also apply the multiparty session types to
parallel programming in C (Ng et al., 2012) and MPI (Ng and Yoshida, 2014). An artcle (Yoshida
et al., 2013) also explains the origin and recent development on Scribble.

Not only the static type checking, we are implementing a runtime monitoring to collaborate
with Ocean Observatories Initiative (OOI, 2010). The correctness of the monitoring implemen-
tation is proved in (Bocchi et al., 2013). We also extend the Python implementation to the Actor
framework (Neykova and Yoshida, 2014).
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Appendix A. Communication Type System for Processes and its Properties

This appendix completes the description of the communication type system given in §4. §A.1
starts with typing rules for run time processes. Auxiliary lemmas, in particular inversion lemmas,
are the content of §A.2. Lastly §A.3 formulates subject reduction for arbitrary processes and
proves it.

A.1. Types and Typing Rules for Processes

We now extend the communication type system to processes containing queues.

Message Types M ::= !〈Π,U〉 message send
|| ⊕〈Π, l〉 message selection
|| M;M message sequence

Generalised τ ::= T session
|| M message
|| M;T continuation

Message types are the types for queues: they represent the messages contained in the queues.
The message send type !〈Π,U〉 expresses the presence in a queue of an element of type U to
be communicated to all participants in Π. The message selection type ⊕〈Π, l〉 represents the
communication to all participants in Π of the label l and M;M represents sequencing of message
types (we assume associativity for “;”). For example ⊕〈{1,3},ok〉 is the message type for the
message (2,{1,3},ok).

A generalised type is either a session type, or a message type, or a message type followed by
a session type. Type M;T represents the continuation of the type M associated to a queue with
the type T associated to a pure process. Examples of generalised types are
⊕〈{1,3},ok〉; !〈3,string〉.?(3,date).end and⊕〈{1,3},ok〉; !〈3,string〉; ?(3,date).end, which only
differ for the replacement of the leftmost “.” by “;”. In the first the type !〈3,string〉 corresponds

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.jboss.org/savara
http://www.jboss.org/scribble
http://www.iso20022.org
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(QINIT)
Γ `{s} s : �. /0

Γ `{s} s : h.∆ Γ ` v : S
(QSEND)

Γ `{s} s : h · (q,Π,v).∆;{s[q] : !〈Π,S〉}

Γ `{s} s : h.∆

(QDELEG)
Γ `{s} s : h · (q,p,s′[p′]). (∆;{s[q] : !〈p,T〉}),s′[p′] : T

Γ `{s} s : h.∆

(QSEL)
Γ `{s} s : h · (q,Π, l).∆;{s[q] :⊕〈Π, l〉}

Table 7. Typing rules for queues.

to an output action sending a string to participant 3, while in the second type !〈3,string〉 corre-
sponds to a message for participant 3 with a value of type string. See the examples of typing
judgments at the end of this §.

We start by defining the typing rules for single queues, in which the turnstile ` is decorated
with {s} (where s is the session name of the current queue) and the session environments are
mappings from channels to message types. The empty queue has the empty session environment.
Each message adds an output type to the current type of the channel which has the role of the
message sender. Table 7 lists the typing rules for queues, where all types in session environments
are message types. The operator “;” between an arbitrary session environment and a session
environment containing only one association is defined by:

∆;{s[q] : M}=

{
∆′,s[q] : M′;M if ∆ = ∆′,s[q] : M′,

∆,s[q] : M otherwise.

For example we can derive `{s} s : (3,{1,2},ok).{s[3] :⊕〈{1,2},ok〉}.
For typing pure processes in parallel with queues, we need to use generalised types in session

environments and to add further typing rules.
In order to take into account the structural congruence between queues (see Table 4) we con-

sider message types modulo the equivalence relation ≈ induced by the rules shown in Table 8
(with \ ∈ {!,⊕} and Z ∈ {U, l}).

The equivalence relation on message types extends to generalised types by:

M ≈M′ implies M;τ ≈M′;τ

We say that two session environments ∆ and ∆′ are equivalent (notation ∆ ≈ ∆′) if c : τ ∈ ∆

and τ 6= end imply c : τ ′ ∈ ∆′ with τ ≈ τ ′ and vice versa. The reason for ignoring end types is
that rules (INACT) and (VAR) allow to freely introduce them.

In composing two session environments we want to put in sequence a message type and a
session type for the same channel with role. For this reason we define the partial composition ∗
between generalised types as:

- M; \〈Π,Z〉; \′〈Π′,Z〉;M′ ≈M; \′〈Π′,Z〉; \〈Π,Z〉;M′ if Π∩Π′ = /0

- M; \〈Π,Z〉;M′ ≈M; \〈Π′,Z〉; \〈Π′′,Z〉;M′ if Π = Π′ ∪Π′′,Π′ ∩Π′′ = /0

Table 8. Equivalence relation on message types.
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Γ ` P.∆

(GINIT)
Γ ` /0 P.∆

Γ `Σ P.∆ ∆≈ ∆
′

(EQUIV)
Γ `Σ P.∆

′

Γ `Σ P.∆ Γ `Σ′ Q.∆
′

Σ∩Σ
′ = /0

(GPAR)
Γ `Σ∪Σ′ P | Q.∆∗∆

′

Γ `Σ P.∆

(GSRES)
Γ `Σ\s (νs)P.∆\ s

Γ,a : G `Σ P.∆

(GNRES)
Γ `Σ (νa : G)P.∆

Γ,X : S t,x : S ` P.{y : T} Γ,X : S µt.T `Σ Q.∆

(GDEF)
Γ `Σ def X(x,y) = P in Q.∆

Table 9. Typing rules for processes.

τ ∗ τ ′ =

{
τ;τ ′ if τ is a message type,
τ ′;τ if τ ′ is a message type.

Notice that τ ∗ τ ′ is defined only if at least one between τ and τ ′ is a message type.
We extend ∗ to session environments as expected:

∆∗∆′ = ∆\dom(∆′)∪∆′\dom(∆)∪{c : τ ∗ τ ′ || c : τ ∈ ∆ ∧ c : τ ′ ∈ ∆′}.
Note that ∗ is commutative, i.e., ∆ ∗∆′ = ∆′ ∗∆. Also if we can derive message types only for
channels with roles, we consider channel variables in the definition of ∗ for session environments
since we want to get for example that {y : end} ∗ {y : end} is undefined (message types do not
contain end).

Table 9 lists the typing rules for processes containing queues. The judgement Γ `Σ P.∆ means
that P contains the queues whose session names are in Σ. Rule (GINIT) promotes the typing of
a pure process to the typing of an arbitrary process without session names, since a pure process
does not contain queues. When two arbitrary processes are put in parallel (rule (GPAR)) we need
to require that each session name is associated to at most one queue (condition Σ∩Σ′ = /0).

Examples of derivable judgements are:

`{s} P | s : (3,{1,2},ok).{s[3] :⊕〈{1,2},ok〉; !〈1,string〉.?(1,date).end}

where P = s[3]!〈1,"Address"〉;s[3]?(1,date);0 and

`{s} P′ | s : (3,{1,2},ok) · (3,1,"Address").{s[3] :⊕〈{1,2},ok〉; !〈1,string〉; ?(1,date).end}

where P′ = s[3]?(1,date);0. Note that

P | s : (3,{1,2},ok)−→ P′ | s : (3,{1,2},ok) · (3,1,"Address")

A.2. Auxiliary Lemmas

We start with inversion lemmas which can be easily shown by induction on derivations.

Lemma A.1 (Inversion Lemma for Pure Processes).
1 If Γ ` u : S, then u : S ∈ Γ.
2 If Γ ` true : S, then S = bool.
3 If Γ ` false : S, then S = bool.
4 If Γ ` e1 and e2 : S, then Γ ` e1 : bool and Γ ` e2 : bool and S = bool.
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5 If Γ ` a [p](y).P.∆, then Γ ` a : G and Γ ` P.∆,y : G � p and p= mp(G).
6 If Γ ` a[p](y).P.∆, then Γ ` a : G and Γ ` P.∆,y : G � p and p< mp(G).
7 If Γ ` c!〈Π,e〉.P.∆, then ∆ = ∆′,c : !〈Π,S〉.T and Γ ` e : S and Γ ` P.∆′,c : T .
8 If Γ ` c?(q,x).P.∆, then ∆ = ∆′,c :?(q,S).T and Γ,x : S ` P.∆′,c : T .
9 If Γ ` c!〈〈p,c′〉〉.P.∆, then ∆ = ∆′,c : !〈p,T〉.T,c′ : T and Γ ` P.∆′,c : T .
10 If Γ ` c?((q,y)).P.∆, then ∆ = ∆′,c :?(q,T).T and Γ ` P.∆′,c : T,y : T.
11 If Γ ` c⊕〈Π, l j〉.P.∆, then ∆ = ∆′,c :⊕〈Π,{li : Ti}i∈I〉 and Γ ` P.∆′,c : Tj and j ∈ I.
12 If Γ ` c&(p,{li : Pi}i∈I).∆, then ∆ = ∆′,c : &(p,{li : Ti}i∈I) and Γ ` Pi .∆′,c : Ti ∀i ∈ I.
13 If Γ ` P | Q.∆, then ∆ = ∆′,∆′′ and Γ ` P.∆′ and Γ ` Q.∆′′.
14 If Γ ` if e then P else Q.∆, then Γ ` e : bool and Γ ` P.∆ and Γ ` Q.∆.
15 If Γ ` 0.∆, then ∆ end only.
16 If Γ ` (νa : G)P.∆, then Γ,a : G ` P.∆.
17 If Γ ` X〈e,c〉.∆, then Γ = Γ′,X : S T and ∆ = ∆′,c : T and Γ ` e : S and ∆′ end only.
18 If Γ ` def X(x,y) = P in Q.∆, then Γ,X : S t,x : S ` P.{y : T} and Γ,X : S µt.T ` Q.∆.

Lemma A.2 (Inversion Lemma for Processes).

1 If Γ `Σ P.∆ and P is a pure process, then Σ = /0 and Γ ` P.∆.
2 If Γ `Σ s : h.∆, then Σ = {s}.
3 If Γ `{s} s : �.∆, then ∆ end only.
4 If Γ `{s} s : h · (q,Π,v).∆, then ∆≈ ∆′;{s[q] : !〈Π,S〉} and Γ `{s} s : h.∆′ and Γ ` v : S.
5 If Γ `{s} s : h · (q,p,s′[p′]).∆, then ∆≈ (∆′;{s[q] : !〈p,T〉}),s′[p′] : T and Γ `{s} s : h.∆′.
6 If Γ `{s} s : h · (q,Π, l).∆, then ∆≈ ∆′;{s[q] :⊕〈Π, l〉} and Γ `{s} s : h.∆′.
7 If Γ `Σ P | Q .∆, then Σ = Σ1 ∪Σ2 and Σ1 ∩Σ2 = /0 and ∆ = ∆1 ∗∆2 and Γ `Σ1 P .∆1 and

Γ `Σ2 Q.∆2.
8 If Γ `Σ (νs)P.∆, then Σ = Σ′ \ s and ∆ = ∆′ \ s and co(∆′,s) and Γ `Σ′ P.∆′.
9 If Γ `Σ (νa : G)P.∆, then Γ,a : G `Σ P.∆.
10 If Γ `Σ def X(x,y) = P in Q.∆, then Γ,X : S t,x : S ` P. y : T and Γ,X : S µt.T `Σ Q.∆.

The following lemma allows to characterise the types due to the messages which occur in
queues. The proof is standard by induction on the lengths of queues.

Lemma A.3.

1 If Γ`{s} s : h1 ·(q,Π,v) ·h2.∆, then ∆=∆1∗{s[q] : !〈Π,S〉}∗∆2 and Γ`{s} s : hi.∆i (i= 1,2)
and Γ ` v : S.
Vice versa Γ `{s} s : hi .∆i (i = 1,2) and Γ ` v : S imply
Γ `{s} s : h1 · (q,Π,v) ·h2 .∆1 ∗{s[q] : !〈Π,S〉}∗∆2.

2 If Γ `{s} s : h1 · (q,p,s′[p′]) ·h2 .∆, then ∆ = (∆1 ∗{s[q] : !〈p,T〉}∗∆2),s′[p′] : T and
Γ `{s} s : hi .∆i (i = 1,2).
Vice versa Γ `{s} s : hi .∆i (i = 1,2) imply
Γ `{s} s : h1 · (q,p,s′[p′]) ·h2 . (∆1 ∗{s[q] : !〈p,T〉}∗∆2),s′[p′] : T.

3 If Γ `{s} s : h1 · (q,Π, l) · h2 . ∆, then ∆ = ∆1 ∗ {s[q] : ⊕〈Π, l〉} ∗ ∆2 and Γ `{s} s : hi . ∆i

(i = 1,2).
Vice versa Γ `{s} s : hi .∆i (i = 1,2) imply
Γ `{s} s : h1 · (q,Π, l) ·h2 .∆1 ∗{s[q] :⊕〈Π, l〉}∗∆2.
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We end this § with two classical results: type preservation under substitution and under equiv-
alence of processes.

Lemma A.4 (Substitution lemma).

1 If Γ,x : S ` P.∆ and Γ ` v : S, then Γ ` P{v/x}.∆.
2 If Γ ` P.∆,y : T , then Γ ` P{s[p]/y}.∆,s[p] : T .

Proof. Standard induction on type derivations, with a case analysis on the last applied rule.

Theorem A.5 (Type Preservation under Equivalence). If Γ `Σ P.∆ and P≡ P′, then
Γ `Σ P′ .∆.

Proof. By induction on ≡. We only consider some interesting cases (the other cases are
straightforward).

— P | 0 ≡ P. First we assume Γ `Σ P .∆. From Γ ` /0 0 . /0 by applying (GPAR) to these two
sequents we obtain Γ `Σ P|0.∆.
For the converse direction assume Γ `Σ P|0.∆. Using A.2(7) we obtain: Γ `Σ1 P.∆1,
Γ `Σ2 0.∆2, where ∆ = ∆1 ∗∆2, Σ = Σ1∪Σ2 and Σ1∩Σ2 = /0. Using A.2(1) we get Σ2 = /0,
which implies Σ = Σ1, and Γ ` 0 . ∆2. Using A.1(15) we get ∆2 end only which implies
∆1 ≈ ∆1 ∗∆2, so we conclude Γ `Σ P.∆1 ∗∆2 by applying (EQUIV).

— P | Q≡ Q | P. By the symmetry of the rule we have to show only one direction. Suppose
Γ `Σ P | Q.∆. Using A.2(7) we obtain Γ `Σ1 P.∆1, Γ `Σ2 Q.∆2, where ∆ = ∆1 ∗∆2,
Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 = /0. Using (GPAR) we get Γ `Σ Q | P .∆2 ∗∆1. Thanks to the
commutativity of ∗, we get ∆2 ∗∆1 = ∆ and so we are done.

— P | (Q | R)≡ (P | Q) | R. Suppose Γ `Σ P | (Q | R).∆. Using A.2(7) we obtain Γ `Σ1 P.∆1,
Γ `Σ2 Q | R .∆2, where ∆ = ∆1 ∗∆2, Σ = Σ1 ∪Σ2 and Σ1 ∩Σ2 = /0. Using A.2(7) we obtain
Γ `Σ21 Q.∆21, Γ `Σ22 R.∆22 where ∆2 = ∆21 ∗∆22, Σ2 = Σ21∪Σ22 and Σ21∩Σ22 = /0. Using
(GPAR) we get Γ `Σ1∪Σ21 P | Q.∆1 ∗∆21. Using (GPAR) again we get
Γ `Σ (P | Q) | R .∆1 ∗∆21 ∗∆22 and so we are done by the associativity of ∗. The proof for
the other direction is similar.

— s : h1 · (q,Π,v) · (q′,Π′,v′) ·h2 ≡ s : h1 · (q′,Π′,v′) · (q,Π,v) ·h2 where Π∩Π′ = /0 or q 6= q′.
We assume Π∩Π′ = /0 and q = q′, the proof in the case q 6= q′ being similar and sim-
pler. If Γ `Σ s : h1 · (q,Π,v) · (q,Π′,v′) ·h2 .∆, then Σ = {s} by Lemma A.2(2). This implies
∆=∆1∗{s[q] : !〈Π,S〉; !〈Π′,S′〉}∗∆2 and Γ`{s} s : hi.∆i (i= 1,2) and Γ` v : S and Γ` v′ : S′

by Lemma A.3(1). By the same lemma we can derive
Γ `{s} s : h1 · (q,Π′,v′) · (q,Π,v) ·h2 .∆1 ∗{s[q] : !〈Π′,S′〉; !〈Π,S〉}∗∆2,

and we conclude using rule (EQUIV), since by definition ∆1 ∗{s[q] : !〈Π′,S′〉; !〈Π,S〉}∗∆2 ≈
∆.

— s : h1 · (q,Π,v) ·h2 ≡ s : h1 · (q,Π′,v) · (q,Π′′,v) ·h2 where Π = Π′∪Π′′ and Π′∩Π′′ = /0. If
Γ `Σ s : h1 · (q,Π,v) ·h2 .∆, then Σ = {s} by Lemma A.2(2). This implies

∆ = ∆1 ∗{s[q] : !〈Π,S〉}∗∆2 and Γ `{s} s : hi .∆i (i = 1,2) and Γ ` v : S
by Lemma A.3(1). By the same lemma we can derive

Γ `{s} s : h1 · (q,Π′,v) · (q,Π′′,v) ·h2 .∆1 ∗{s[q] : !〈Π′,S〉; !〈Π′′,S〉}∗∆2,
and we conclude using rule (EQUIV), since by definition ∆1∗{s[q] : !〈Π′,S〉; !〈Π′′,S〉}∗∆2≈
∆.
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A.3. Subject Reduction

We first introduce consistency of session environments, which assures that each pair of partic-
ipants in a multiparty conversation performs their mutual communications in a consistent way.
Consistency is defined using the notions of projection of generalised types and of duality, given
respectively in Definitions A.6 and A.7.

Definition A.6. The projection of the generalised type τ onto q, denoted by τ � q, is defined by:

(!〈Π,U〉.T ) � q=

{
!U.T � q if q ∈Π,

T � q otherwise.
(?(p,U).T ) � q=

{
?U.T � q if p= q,

T � q otherwise.

( !〈Π,U〉;τ ′) � q=

{
!U ;τ ′ � q if q ∈Π,

τ ′ � q otherwise.
(⊕〈Π, l〉;τ ′) � q=

{
⊕l;τ ′ � q if q ∈Π,

τ ′ � q otherwise.

(⊕〈Π,{li : Ti}i∈I〉) � q=

{
⊕{li : Ti � q}i∈I if q ∈Π,

T1 � q if q 6∈Π and Ti � q= Tj � q for all i, j ∈ I.

(&(p,{li : Ti}i∈I)) � q=

{
&{li : Ti � q}i∈I if q= p,

T1 � q if q 6= p and Ti � q= Tj � q for all i, j ∈ I.

(µt.T ) � q=

{
µt.(T � q) if T � q 6= t,
end otherwise.

t � q= t end � q= end

Definition A.7. The duality relation between projections of generalised types (./) is the minimal
symmetric relation which satisfies:

end ./ end t ./ t T ./ T′ =⇒ µt.T ./ µt.T′

T ./ T′ =⇒ !U.T ./ ?U.T′ T ./ T′ =⇒ !U ;T ./ ?U.T′

∀i ∈ I Ti ./ T
′
i =⇒ ⊕{li : Ti}i∈I ./ &{li : T′i}i∈I

∃i ∈ I l = li ∧ T ./ Ti =⇒ ⊕l;T ./ &{li : Ti}i∈I

where T ranges over projections of generalised types.

Definition A.8. A session environment ∆ is consistent if s[p] : τ ∈ ∆ and s[q] : τ ′ ∈ ∆ imply
τ � q ./ τ ′ � p.

It is easy to check that projections of a same global type are always dual.

Proposition A.9. Let G be a global type and p 6= q. Then (G � p) � q ./ (G � q) � p.

This proposition assures that session environments obtained by projecting global types are always
consistent.

The vice versa is not true, i.e. there are consistent session environments which are not projec-
tions of global types. An example is:

{s[1] :?(2,bool).!〈3,bool〉.end,s[2] :?(3,bool).!〈1,bool〉.end,s[3] :?(1,bool).!〈2,bool〉.end}

Note that for sessions with only two participants, instead, all consistent session environments are
projections of global types.
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Since session environments represent the forthcoming communications, by reducing processes
session environments can change. This can be formalised as in (Honda et al., 2008) by introduc-
ing the notion of reduction of session environments, whose rules are:

— {s[p] : M; !〈Π,U〉.T} ⇒ {s[p] : M; !〈Π,U〉;T}
— {s[p] : !〈q,U〉;τ,s[q] : M; ?(p,U).T} ⇒ {s[p] : τ,s[q] : M;T}
— {s[p] : M;⊕〈Π,{li : Ti}i∈I〉} ⇒ {s[p] : M;⊕(Π, l j);Tj} for j ∈ I
— {s[p] :⊕〈q, l〉;τ,s[q] : M;&(p,{li : Ti}i∈I)} ⇒ {s[p] : τ,s[q] : M;Ti} if l = li
— ∆,∆′′ ⇒ ∆′,∆′′ if ∆ ⇒ ∆′

where M can be missing and message types are considered modulo the equivalence relation of
Table 8.
The first rule corresponds to putting in a queue a message with sender p, set of receivers Π and
content of type U . The second rule corresponds to reading from a queue a message with sender p,
receiver q and content of type U . The third and fourth rules are similar, but a label is transmitted.

The main result concerning the communication type system is the subject reduction theo-
rem. Since session types are behavioural types subject reduction only assures that well-typed
processes remain well typed during reduction. In fact communication actions consume the cor-
responding types (as represented by the ⇒ relation). Consistency of environments assures
that all communications, when they can take place, are performed in a correct way. The subject
reduction for closed user processes (Theorem 4.3 ) follows immediately.

Theorem A.10 (Subject Reduction). If Γ `Σ P.∆ with ∆ consistent and P−→∗ P′, then
Γ `Σ P′ .∆′ for some consistent ∆′ such that ∆ ⇒∗ ∆′. Moreover ∆ closed implies ∆′ closed.

Proof. By induction on a derivation of P−→∗ P′, with a case analysis on the final rule (using
Theorem A.5 for the structural equivalence). We only consider some paradigmatic cases.

— [Init] a[1](y).P1 | ... | a [n](y).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/y} | s : �).
By hypothesis Γ `Σ a[1](y).P1 | a[2](y2).P2 | . . . | a [n](y).Pn .∆; then, since the redex is a
pure process, Σ = /0 and Γ ` a[1](y).P1 | a[2](y2).P2 | . . . | a [n](y).Pn .∆ by Lemma A.2(1).
Using Lemma A.1(13) on all the processes in parallel we have

Γ ` a[i](y).Pi .∆i (1≤ i≤ n−1) (1)

Γ ` a [n](y).Pn .∆n (2)

where ∆ =
⋃n

i=1 ∆i. Using Lemma A.1(6) on (1) we have

Γ ` a : G

Γ ` Pi .∆i,y : G � i (1≤ i≤ n−1). (3)

Using Lemma A.1(5) on (2) we have

Γ ` a : G

Γ ` Pn .∆n,y : G � n (4)

and mp(G) = n. Using Lemma A.4(2) on (4) and (3) we have

Γ ` Pi{s[i]/y}.∆i,s[i] : G � i (1≤ i≤ n). (5)
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Using (PAR) on all the processes of (5) we have

Γ ` P1{s[1]/y}|...|Pn{s[n]/y}.
n⋃

i=1

(∆i,s[i] : G � i). (6)

Note that
⋃n

i=1(∆i,s[i] : G � i) = ∆,s[1] : G � 1, . . . ,s[n] : G � n. Using (GINIT), (QINIT) and
(GPAR) on (6) we derive

Γ `{s} P1{s[1]/y}|...|Pn{s[n]/y} | s : �.∆,s[1] : G � 1, . . . ,s[n] : G � n. (7)

Using (GSRES) on (7) we conclude

Γ ` /0 (νs)(P1{s[1]/y}|...|Pn{s[n]/y} | s : �).∆

since {s[1] : G � 1, . . . ,s[n] : G � n} is consistent and (∆,s[1] : G � 1, . . . ,s[n] : G � n)\ s = ∆.

— [Send] s[p]!〈Π,e〉.P | s : h−→ P | s : h · (p,Π,v) (e ↓ v).
By hypothesis, Γ `Σ s[p]!〈Π,e〉.P | s : h . ∆. Using Lemma A.2(7), (1), and (2) we have
Σ = {s} and

Γ ` s[p]!〈Π,e〉.P.∆1 (8)

Γ `{s} s : h.∆2 (9)

where ∆ = ∆2 ∗∆1. Using A.1(7) on (8) we have

∆1 = ∆
′
1,s[p] : !〈Π,S〉.T

Γ ` e : S (10)

Γ ` P.∆
′
1,s[p] : T. (11)

From (10) by subject reduction on expressions we have

Γ ` v : S. (12)

Using (QSEND) on (9) and (12) we derive

Γ `{s} s : h · (q,Π,v).∆2;{s[p] : !〈Π,S〉}. (13)

Using (GINIT) on (11) we derive

Γ ` /0 P.∆
′
1,s[p] : T (14)

and then using (GPAR) on (14), (13) we conclude

Γ `{s} P | s : h · (q,Π,v). (∆2;{s[p] : !〈Π,S〉})∗ (∆′1,s[p] : T ).

Note that ∆2 ∗ (∆′1,s[p] : !〈Π,S〉.T ) ⇒ (∆2;{s[p] : !〈Π,S〉})∗ (∆′1,s[p] : T ).

— [Rcv] s[p]?(q,x).P | s : (q,{p},v) ·h−→ P{v/x} | s : h.
By hypothesis, Γ `Σ s[p]?(q,x).P | s : (q,{p},v) · h .∆. By Lemma A.2(7), (1), and (2) we
have Σ = {s} and

Γ ` s[p]?(q,x).P.∆1 (15)

Γ `{s} s : (q,{p},v) ·h.∆2 (16)
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where ∆ = ∆2 ∗∆1. Using Lemma A.1(8) on (15) we have

∆1 = ∆
′
1,s[p] :?(q,S).T

Γ,x : S ` P.∆
′
1,s[p] : T (17)

Using Lemma A.3(1) on (16) we have

∆2 = {s[q] : !〈{p},S′〉}∗∆
′
2

Γ `{s} s : h.∆
′
2 (18)

Γ ` v : S′. (19)

The consistency of ∆ implies S = S′. Using Lemma A.4(1) from (17) and (19) we get
Γ ` P{v/x}.∆′1,s[p] : T , which implies by rule (GINIT)

Γ ` /0 P{v/x}.∆
′
1,s[p] : T. (20)

Using rule (GPAR) on (20) and (18) we conclude

Γ `{s} P{v/x} | s : h.∆
′
2 ∗ (∆′1,s[p] : T ).

Note that ({s[q] : !〈{p},S〉}∗∆′2)∗ (∆′1,s[p] :?(q,S);T ) ⇒ ∆′2 ∗ (∆′1,s[p] : T ).

— [Sel] s[p]⊕〈Π, l〉.P | s : h−→ P | s : h · (p,Π, l).
By hypothesis, Γ `Σ s[p]⊕〈Π, l〉.P | s : h .∆. Using Lemma A.2(7), (1), and (2) we have
Σ = {s} and

Γ ` s[p]⊕〈Π, l〉.P.∆1 (21)

Γ `{s} s : h.∆2 (22)

where ∆ = ∆2 ∗∆1. Using Lemma A.1(11) on (21) we have for l = l j ( j ∈ I):

∆1 = ∆
′
1,s[p] :⊕〈Π,{li : Ti}i∈I〉

Γ ` P.∆
′
1,s[p] : Tj. (23)

Using rule (QSEL) on (22) we derive

Γ `{s} s : h · (p,Π, l).∆2;{s[p] :⊕〈Π, l〉}. (24)

Using (GPAR) on (23) and (24) we conclude

Γ `{s} P | s : h · (p,Π, l). (∆2;{s[p] :⊕〈Π, l〉})∗ (∆′1,s[p] : Tj).

Note that ∆2 ∗ (∆′1,s[p] :⊕〈Π,{li : Ti}i∈I〉) ⇒ (∆2;{s[p] :⊕〈Π, l〉})∗ (∆′1,s[p] : Tj).

— [Branch] s[p]&(q,{li : Pi}i∈I) | s : (q,{p}, l j) ·h−→ Pj | s : h.
By hypothesis, Γ `Σ s[p]&(q,{li : Pi}i∈I) | s : (q,{p}, l j) · h .∆. Using Lemma A.2(7), (1),
and (2) we have Σ = {s} and

Γ ` s[p]&(q,{li : Pi}i∈I).∆1 (25)

Γ `{s} s : (q,{p}, l j) ·h.∆2 (26)
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where ∆ = ∆2 ∗∆1. Using Lemma A.1(12) on (25) we have

∆1 = ∆
′
1,s[p] : &(q,{li : Ti}i∈I)

Γ ` Pi .∆
′
1,s[p] : Ti ∀i ∈ I. (27)

Using Lemma A.3(3) on (26) we have

∆2 = {s[q] :⊕〈p, l j〉}∗∆
′
2

Γ `{s} s : h.∆
′
2. (28)

Using (GPAR) on (27) and (28) we conclude

Γ `{s} Pj | s : h.∆
′
2 ∗ (∆′1,s[p] : Tj).

Note that for j ∈ I

({s[q] :⊕〈p, l j〉}∗∆
′
2)∗ (∆′1,s[p] : &(q,{li : Ti}i∈I)) ⇒ ∆

′
2 ∗ (∆′1,s[p] : Tj).

A simple example showing that consistency is necessary for subject reduction is the process:

P = s[1]!〈2, true〉.s[1]?(2,x).0 | s[2]?(1,x′).s[2]!〈1,x′+1〉.0

which can be typed with the non consistent session environment

{s[1] :!〈2,bool〉.?(2,nat).end,s[2] :?(1,nat).!〈1,nat〉.end}

In fact P reduces to the process

s[1]?(2,x).0 | s[2]!〈1, true+1〉.0

which cannot be typed and it is stuck.

All processes considered in this article can be typed in the communication type system with
consistent session environments.

Note that communication safety (Honda et al., 2008, Theorem 5.5) is a corollary of Theorem
A.10.
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