
Multiparty protocol specification and
endpoint implementation using Scribble

Raymond Hu

Imperial College London

http://www.doc.ic.ac.uk/~rhu/betty16a.pdf

1 / 40

http://www.doc.ic.ac.uk/~rhu/betty16a.pdf


Aims

I Scribble
I Implementation and application of MPST to current practices

I Specify real-world protocols
I Implement fully interoperable endpoints in mainstream languages

2 / 40



Hello, world: HTTP (GET)

I Hypertext Transfer Protocol
I HTTP/1.1 RFCs 7230–7235 [HTTP]
I Client-server request-response “methods”

I https://tools.ietf.org/html/rfc7230#section-2.1

I (e.g. Web browser fetching a page from Web server)

[HTTP1.1] https://tools.ietf.org/html/rfc7230, . . .

3 / 40

https://tools.ietf.org/html/rfc7230#section-2.1
https://tools.ietf.org/html/rfc7230


I Protocol specification = messages + interactions
I https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/

test/scrib/demo/betty16/lec1/httpshort

// Message types
sig <java> "demo.betty16.lec1.httpshort.message.client.Request"

from "demo/betty16/httpshort/message/Request.java"
as Request;

sig <java> "demo.betty16.lec1.httpshort.message.server.Response"
from "demo/betty16/shortvers/message/Response.java"
as Response;

global protocol Http(role C, role S) {
// Interaction structure
Request from C to S;
Response from S to C;

}

4 / 40

https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/httpshort
https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/httpshort


Client implementation in Java

I For now, assume a basic fluent (call-chaining) Java API over TCP sockets
String host = "www.doc.ic.ac.uk"; int port = 80;
Buf<Response> buf = new Buf<>();

c.send(S, new Request("/~rhu/", "1.1", host))
.receive(S, Response, buf); // Received message read into buf

c.
::::
send(S, new Response("1.1", "..body.."))

.receive(S, Response, buf);

c.send(S, new Request("/~rhu/", "1.1", host))
.
::::
send(S, new Request("/~rhu/", "1.1", host))

.receive(S, Response, buf);

I ..so is that it? For a good implementation

5 / 40



Client implementation in Java

I For now, assume a basic fluent (call-chaining) Java API over TCP sockets
String host = "www.doc.ic.ac.uk"; int port = 80;
Buf<Response> buf = new Buf<>();

c.send(S, new Request("/~rhu/", "1.1", host))
.receive(S, Response, buf); // Received message read into buf

c.
::::
send(S, new Response("1.1", "..body.."))

.receive(S, Response, buf);

c.send(S, new Request("/~rhu/", "1.1", host))
.
::::
send(S, new Request("/~rhu/", "1.1", host))

.receive(S, Response, buf);

I ..so is that it? For a good implementation

5 / 40

The method send(S, Request) ... for the arguments (S, Response)



Client implementation in Java

I For now, assume a basic fluent (call-chaining) Java API over TCP sockets
String host = "www.doc.ic.ac.uk"; int port = 80;
Buf<Response> buf = new Buf<>();

c.send(S, new Request("/~rhu/", "1.1", host))
.receive(S, Response, buf); // Received message read into buf

c.
::::
send(S, new Response("1.1", "..body.."))

.receive(S, Response, buf);

c.send(S, new Request("/~rhu/", "1.1", host))
.
::::
send(S, new Request("/~rhu/", "1.1", host))

.receive(S, Response, buf);

I ..so is that it? For a good implementation

5 / 40

The method send(S, Request) is undefined for the type Http_C_2



Client implementation in Java

I For now, assume a basic fluent (call-chaining) Java API over TCP sockets
String host = "www.doc.ic.ac.uk"; int port = 80;
Buf<Response> buf = new Buf<>();

c.send(S, new Request("/~rhu/", "1.1", host))
.receive(S, Response, buf); // Received message read into buf

c.
::::
send(S, new Response("1.1", "..body.."))

.receive(S, Response, buf);

c.send(S, new Request("/~rhu/", "1.1", host))
.
::::
send(S, new Request("/~rhu/", "1.1", host))

.receive(S, Response, buf);

I ..so is that it? For a good implementation

5 / 40



Message types vs. interaction structure

I Simple interaction structure..
I ..means more work is done in message serialization/deserialization

I https://tools.ietf.org/html/rfc7230#section-3

I The call-response pattern and top-level data types are checked..
how about serialization/deserializaton?

I Specification interplay between data types and interaction structure
I Can leverage session types to expose message formatting details

6 / 40

https://tools.ietf.org/html/rfc7230#section-3


HTTP client-server conversation
I telnet www.doc.ic.ac.uk 80

GET /~rhu/ HTTP/1.1
Host: www.doc.ic.ac.uk
User-Agent: User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20
100101 Firefox/47.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-GB,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: keep-alive

...

7 / 40



HTTP client-server conversation
I telnet www.doc.ic.ac.uk 80

...
HTTP/1.1 200 OK
Date: Mon, 13 Jun 2016 19:42:34 GMT
Server: Apache
Strict-Transport-Security: max-age=31536000; preload; includeSubDomains
Strict-Transport-Security: max-age=31536000; preload; includeSubDomains
Last-Modified: Thu, 14 Apr 2016 12:46:24 GMT
ETag: "74a-53071482f6e0f"
Accept-Ranges: bytes
Content-Length: 1866
Vary: Accept-Encoding
Content-Type: text/html
Via: 1.1 www.doc.ic.ac.uk

7 / 40



Decomposing message structures..
I https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/

scrib/demo/betty16/lec1/httplong

I Client messages
sig <java> "...message.client.RequestLine" from "...message/RequestLine.java"

as RequestLine; // GET /~rhu/ HTTP/1.1
sig <java> "...message.client.Host" from "...message/Host.java"

as Host; // host: www.doc.ic.ac.uk
sig <java> "...message.client.UserAgent" from "...message/UserAgent.java"

as UserAgent; // User-Agent: Mozilla/5.0 ... Firefox/38.0
...

I Server messages
sig <java> "...message.server.HttpVersion" from "...message/HttpVersion.java"

as HTTPV; // HTTP/1.1
sig <java> "...message.server._200" from "...message/_200.java"

as 200; // 200 OK
sig <java> "...message.server._404" from "...message/_404.java"

as 404; // 404 Not found
...

8 / 40

https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/httplong
https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/httplong


..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {

choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;

} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {
...

} or {
Body from C to S;

}
} }

9 / 40



..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {

choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;

} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {
...

} or {
Body from C to S;

}
} }

9 / 40



..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {

choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;

} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {
...

} or {
Body from C to S;

}
} }

9 / 40



..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {

choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;

} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {
...

} or {
Body from C to S;

}
} }

9 / 40



..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {

choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;

} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {
...

} or {
Body from C to S;

}
} }

9 / 40



..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {

choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;

} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {
...

} or {
Body from C to S;

}
} }

9 / 40



..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {

choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;

} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {
...

} or {
Body from C to S;

}
} }

9 / 40



..promotes more fine-grained interaction structures
global protocol Reponse(role C, role S) {

HttpVers from S to C; // HTTP/1.1
choice at S {

200 from S to C; // 200 OK
} or {

404 from S to C; // 404 Not found
} or {

...
}

rec Y {
choice at S {

Date from S to C; // Date: Sun, 24 May 2015 21:04:36 GMT
continue Y;

} or {
Server from S to C; // Server: Apache
continue Y;

} or {
...

} or {
Body from S to C; // <html>...</html>

}
} }

9 / 40



..promotes more fine-grained interaction structures
global protocol Reponse(role C, role S) {

HttpVers from S to C; // HTTP/1.1
choice at S {

200 from S to C; // 200 OK
} or {

404 from S to C; // 404 Not found
} or {

...
}

rec Y {
choice at S {

Date from S to C; // Date: Sun, 24 May 2015 21:04:36 GMT
continue Y;

} or {
Server from S to C; // Server: Apache
continue Y;

} or {
...

} or {
Body from S to C; // <html>...</html>

}
} }

9 / 40



..promotes more fine-grained interaction structures
global protocol Reponse(role C, role S) {

HttpVers from S to C; // HTTP/1.1
choice at S {

200 from S to C; // 200 OK
} or {

404 from S to C; // 404 Not found
} or {

...
}

rec Y {
choice at S {

Date from S to C; // Date: Sun, 24 May 2015 21:04:36 GMT
continue Y;

} or {
Server from S to C; // Server: Apache
continue Y;

} or {
...

} or {
Body from S to C; // <html>...</html>

}
} }

9 / 40



Revised client code
response(request(new Http_C_1(client), "www.doc.ic.ac.uk"));

Http_C_3 request(Http_C_1 c1, String host) throws ... {
return

c1.send(S, new RequestLine("/~rhu/", "1.1"))
.send(S, new Host(host))
.send(S, new Body(""));

}

3 Formatting of request message (request line, fields) is now checked

10 / 40



Revised client code
response(request(new Http_C_1(client), "www.doc.ic.ac.uk"));

Http_C_3 request(Http_C_1 c1, String host) throws ... {
return

c1.send(S, new RequestLine("/~rhu/", "1.1"))
.send(S, new Host(host))
.send(S, new Body(""));

}

3 Formatting of request message (request line, fields) is now checked

10 / 40



Revised client code
response(request(new Http_C_1(client), "www.doc.ic.ac.uk"));

Http_C_3 request(Http_C_1 c1, String host) throws ... {
return

c1.send(S, new RequestLine("/~rhu/", "1.1"))
.send(S, new Host(host))
.send(S, new Body(""));

}

3 Formatting of request message (request line, fields) is now checked

10 / 40



Revised client code
response(request(new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {

case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;
default: throw new RuntimeException("[TODO]: " + status.op);

} }

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = c5.branch(S);
switch (cases.op) {

case DATE: responseAux(cases.receive(DATE)); break;
case SERVER: responseAux(cases.receive(SERVER)); break;
...
case BODY: { Buf<Body> buf_body = new Buf<>();

cases.receive(BODY, buf_body);
System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);
} }

10 / 40



Revised client code
response(request(new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {

case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;
default: throw new RuntimeException("[TODO]: " + status.op);

} }

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = c5.branch(S);
switch (cases.op) {

case DATE: responseAux(cases.receive(DATE)); break;
case SERVER: responseAux(cases.receive(SERVER)); break;
...
case BODY: { Buf<Body> buf_body = new Buf<>();

cases.receive(BODY, buf_body);
System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);
} }

10 / 40



Revised client code
response(request(new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {

case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;
default: throw new RuntimeException("[TODO]: " + status.op);

} }

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = c5.branch(S);
switch (cases.op) {

case DATE: responseAux(cases.receive(DATE)); break;
case SERVER: responseAux(cases.receive(SERVER)); break;
...
case BODY: { Buf<Body> buf_body = new Buf<>();

cases.receive(BODY, buf_body);
System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);
} }

10 / 40



Revised client code
response(request(new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {

case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;
default: throw new RuntimeException("[TODO]: " + status.op);

} }

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = c5.branch(S);
switch (cases.op) {

case DATE: responseAux(cases.receive(DATE)); break;
case SERVER: responseAux(cases.receive(SERVER)); break;
...
case BODY: { Buf<Body> buf_body = new Buf<>();

cases.receive(BODY, buf_body);
System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);
} }

10 / 40



Revised client code
response(request(new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {

case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;
default: throw new RuntimeException("[TODO]: " + status.op);

} }

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = c5.branch(S);
switch (cases.op) {

case DATE: responseAux(cases.receive(DATE)); break;
case SERVER: responseAux(cases.receive(SERVER)); break;
...
case BODY: { Buf<Body> buf_body = new Buf<>();

cases.receive(BODY, buf_body);
System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);
} }

10 / 40



Hello, world: HTTP (GET)

I Rigorous specification and verification of protocols is important
(Even for a “simple” binary call-return)

I Further alternative specifications?
I Most simplified: call-return of ASCII strings
I Most detailed: towards “character-perfect” I/O?

I Similarly for the server
I All versions interoperable with (compliant) real-world implementations
I And with each other

11 / 40



Hello, world: HTTP (GET)

I Rigorous specification and verification of protocols is important
(Even for a “simple” binary call-return)

I Further alternative specifications?
I Most simplified: call-return of ASCII strings
I Most detailed: towards “character-perfect” I/O?

I Similarly for the server
I All versions interoperable with (compliant) real-world implementations
I And with each other

11 / 40



Hello, world: HTTP (GET)

I Rigorous specification and verification of protocols is important
(Even for a “simple” binary call-return)

I Further alternative specifications?
I Most simplified: call-return of ASCII strings
I Most detailed: towards “character-perfect” I/O?

I Similarly for the server
I All versions interoperable with (compliant) real-world implementations
I And with each other

11 / 40



Outline
I Scribble toolchain implementation of MPST

I Specify and check global protocol
I Check endpoint implementations follow their role in the protocol

I Remainder of this session
I Overview of the Scribble toolchain

I Illustration of correspondence between MPST and communicating FSMs
I Good and bad asynchronous multiparty protocols by example

I Next session
I Session programming in Java

I Hybrid session verification by Endpoint API generation

I (Implementation of distributed session delegation and
asynchronous interrupt messages)

12 / 40



Scribble
I Adapts and extends formal MPST as a practical language for explicit

specification of multiparty message passing protocols
I Type syntax close to [MSCS15] Coppo, Dezani-Ciancaglini, Yoshida and Padovani
I Key features build on correspondence to communicating FSM

[ESOP12] Deniélou, Yoshida
I Communication model: asynchronous, reliable, role-to-role ordering

A

C

B

1() from A to B;
2() from A to C;
3() from C to B;

I Scribble applies to sessions conducted over transports that fit this model
e.g. TCP, HTTP/TCP, . . . , (AMQP), . . . , shared memory, . . .

I Scribble protocols should be fully explicit:
no implicit messages needed to conduct a session

13 / 40



Scribble
I Adapts and extends formal MPST as a practical language for explicit

specification of multiparty message passing protocols
I Type syntax close to [MSCS15] Coppo, Dezani-Ciancaglini, Yoshida and Padovani
I Key features build on correspondence to communicating FSM

[ESOP12] Deniélou, Yoshida
I Communication model: asynchronous, reliable, role-to-role ordering

A

C

B

1() from A to B;
2() from A to C;
3() from C to B;

I Scribble applies to sessions conducted over transports that fit this model
e.g. TCP, HTTP/TCP, . . . , (AMQP), . . . , shared memory, . . .

I Scribble protocols should be fully explicit:
no implicit messages needed to conduct a session

13 / 40



Scribble
I Adapts and extends formal MPST as a practical language for explicit

specification of multiparty message passing protocols
I Type syntax close to [MSCS15] Coppo, Dezani-Ciancaglini, Yoshida and Padovani
I Key features build on correspondence to communicating FSM

[ESOP12] Deniélou, Yoshida
I Communication model: asynchronous, reliable, role-to-role ordering

A

C

B

1() from A to B;
2() from A to C;
3() from C to B;

I Scribble applies to sessions conducted over transports that fit this model
e.g. TCP, HTTP/TCP, . . . , (AMQP), . . . , shared memory, . . .

I Scribble protocols should be fully explicit:
no implicit messages needed to conduct a session

13 / 40



Scribble
I Adapts and extends formal MPST as a practical language for explicit

specification of multiparty message passing protocols
I Type syntax close to [MSCS15] Coppo, Dezani-Ciancaglini, Yoshida and Padovani
I Key features build on correspondence to communicating FSM

[ESOP12] Deniélou, Yoshida
I Communication model: asynchronous, reliable, role-to-role ordering

A

C

B

1() from A to B;
2() from A to C;
3() from C to B;

I Scribble applies to sessions conducted over transports that fit this model
e.g. TCP, HTTP/TCP, . . . , (AMQP), . . . , shared memory, . . .

I Scribble protocols should be fully explicit:
no implicit messages needed to conduct a session

13 / 40



Scribble collaborations
I JBoss Savara (Red Hat): tool support for Testable Architecture

I http://www.jboss.org/savara

I Cognizant ZDLC: tools for governance and reverse engineering workflows
I Uses Savara for internal modelling
I http://www.cognizantzdlc.com/

I Ocean Observatories Initiative
I Python-based endpoints on an AMQP-based network

I http://oceanobservatories.org/
I https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+TV+

Conversations+and+Session+Types

I Scribble resources
I http://www.scribble.org/

(Some of the pre-built tools are based on older Scribble versions)
I Master: https://github.com/scribble/scribble-java
I Research: (used in these lectures; additional features but less stable)

https://github.com/rhu1/scribble-java/tree/rhu1-research

[FASE16] Hybrid session verification through Endpoint API generation. Hu and Yoshida.
[TGC13] The Scribble Protocol Language. Yoshida, Hu, Neykova and Ng.

14 / 40

http://www.jboss.org/savara
http://www.cognizantzdlc.com/
http://oceanobservatories.org/
https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+TV+Conversations+and+Session+Types
https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+TV+Conversations+and+Session+Types
http://www.scribble.org/
https://github.com/scribble/scribble-java
https://github.com/rhu1/scribble-java/tree/rhu1-research


Scribble: MPST adapted for run-time monitoring

Global protocol

Local
protocol

Local
protocol

Endpoint
code

Endpoint
code

Scribble
Runtime

Scribble
Runtime

Monitor Monitor

Network

Projection

. . .

Implementation (Python, Java, C, . . . )

. . .Dynamic
Verification

Specification
(Scribble)

15 / 40

I Global protocol
I Protocol validation

I Local protocols
I FSM translation

(endpoint monitor generation)

I (Heterogeneous) endpoint
programs

I Scribble session I/O API
I (Interoperable) distributed

session runtime



OOI Agent negotiation: user description
I https:

//confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Negotiate+Protocol

I https://github.com/rhu1/scribble-java/blob/rhu1-research/modules/core/src/test/

scrib/demo/betty16/lec1/nego/Negotiate.scr

16 / 40

https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Negotiate+Protocol
https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Negotiate+Protocol
https://github.com/rhu1/scribble-java/blob/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/nego/Negotiate.scr
https://github.com/rhu1/scribble-java/blob/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/nego/Negotiate.scr


OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: global protocol

type <yml> "SAPDoc1" from "SAPDoc1.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

17 / 40



OOI Agent negotiation: local projection for C

propose(SAP) to P;
rec X {

choice at P {
accpt() to C;
confirm() to P;

} or {
reject() from P;

} or {
propose(SAP) from P;
choice at C {

accpt() to P;
confirm() from P;

} or {
reject() to P;

} or {
propose(SAP) to P;
continue X;

} } }

18 / 40



OOI Agent negotiation: local projection for C

propose(SAP) to P;
rec X {

choice at P {
accpt() to C;
confirm() to P;

} or {
reject() from P;

} or {
propose(SAP) from P;
choice at C {

accpt() to P;
confirm() from P;

} or {
reject() to P;

} or {
propose(SAP) to P;
continue X;

} } }

18 / 40



OOI Agent negotiation: local projection for C

propose(SAP) to P;
rec X {

choice at P {
accpt() to C;
confirm() to P;

} or {
reject() from P;

} or {
propose(SAP) from P;
choice at C {

accpt() to P;
confirm() from P;

} or {
reject() to P;

} or {
propose(SAP) to P;
continue X;

} } }

18 / 40



OOI Agent negotiation: FSM translation for C

propose(SAP) to P;
rec X {

choice at P {
accpt() to C;
confirm() to P;

} or {
reject() from P;

} or {
propose(SAP) from P;
choice at C {

accpt() to P;
confirm() from P;

} or {
reject() to P;

} or {
propose(SAP) to P;
continue X;

} } }

19 / 40



Python Conversation API
class UserApp(BaseApp):

def start(self):
conv = Conversation.create(’Negotiate’, ’config.yml’)
with conv.join(C, ’consumer’) as c

c.send(P, ’propose’, sap)
aux(c, sap)

def aux(self, c, sap):
msg = c.recv(P) # Monitor ensures accept/propose/reject
if msg.label == ’accept’:

c.send(P, ’confirm’)
elif msg.label == ’propose’:

if isAcceptable(msg.arg[0]):
c.send(P, ’accept’)
c.receive(P, ’confirm’)

elif isNegotiable(msg.arg[0]):
sap2 = revise(msg.arg[0])
c.send(P, ’propose’, sap1)
aux(c, sap1)

else:
c.send(P, ’reject’)

I Endpoints implemented using Scribble-Python API
I Inline (“synchronous”) vs. outline (“asynchronous”) monitoring

20 / 40



MPST-based distributed protocol monitoring

I Dynamic verification of MPST communication safety
I Session fidelity: correspondence between system of monitored endpoints

and the original global specification
I Local transparency: a monitored process has equivalent behaviour to an

unmonitored but statically verified process

I Interoperability

[FMOODS13] Monitoring networks through multiparty session types. Bocchi, Chen,
Demangeon, Honda and Yoshida.

[RV13] Practical Interruptible Conversations. Hu, Neykova, Yoshida, Demangeon and
Honda.

[TGC11] Asynchronous Distributed Monitoring for Multiparty Session Enforcement. Chen,
Bocchi, Deniélou, Honda and Yoshida.

21 / 40



Exercise: refactor Negotiate

22 / 40

// Protocol decl
global protocol Proto

(role R1, role R2) {
...

}

// Message passing
123(T) from R1 to R2;

// Located choice
choice at R {

...
} or {

...
}

// "Subprotocol"
do Proto(R1, R2);



Exercise: refactor Negotiate

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {

choice at P {
accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
propose(SAP) from P to C;
choice at C {

accpt() from C to P;
confirm() from P to C;

} or {
reject() from C to P;

} or {
propose(SAP) from C to P;
continue X;

} } } }

22 / 40

// Protocol decl
global protocol Proto

(role R1, role R2) {
...

}

// Message passing
123(T) from R1 to R2;

// Located choice
choice at R {

...
} or {

...
}

// "Subprotocol"
do Proto(R1, R2);



Exercise: refactor Negotiate
global protocol Negotiate(role C, role P) {

propose(SAP) from C to P;
do Aux(P, C);

}

global protocol Aux(role A, role B) {
choice at A {

accpt() from A to B;
confirm() from B to A;

} or {
reject() from A to B;

} or {
propose(SAP) from A to B;
do Aux(B, A);

}
}

23 / 40



Exercise: refactor Negotiate
global protocol Negotiate(role C, role P) {

propose(SAP) from C to P;
do Aux(P, C);

}

global protocol Aux(role A, role B) {
choice at A {

accpt() from A to B;
confirm() from B to A;

} or {
reject() from A to B;

} or {
propose(SAP) from A to B;
do Aux(B, A);

}
}

23 / 40



Exercise: refactor Negotiate
global protocol Negotiate(role C, role P) {

propose(SAP) from C to P;
do Aux(P, C);

}

global protocol Aux(role A, role B) {
choice at A {

accpt() from A to B;
confirm() from B to A;

} or {
reject() from A to B;

} or {
propose(SAP) from A to B;
do Aux(B, A);

}
}

23 / 40



Exercise: refactor Negotiate
global protocol Negotiate(role C, role P) {

propose(SAP) from C to P;
choice at P {

accpt() from P to C;
confirm() from C to P;

} or {
reject() from P to C;

} or {
do Negotiate(P, C);

}
}

24 / 40



Good/bad MPST by example

I Core Scribble constructs (review)
I Further illustration of endpoint FSMs

I MPST safety and liveness errors (informally)
I What can go wrong in a “bad” session type?
I How are they ruled out in formal MPST (syntactically)

I https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/

scrib/demo/betty16/lec1/misc

25 / 40

https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/misc
https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/misc


Role-to-role message passing

123(Int, String) from A to B;

I Message signature
I Operator (header, label, . . . )
I Payload types

() from A to B;

I Empty operator and/or payload OK

26 / 40



Choice

I “Located” multiparty choice
choice at A {

1() from A to B;
2() from A to C;

} or {
3() from A to B;
4() from A to C;

}

I Internal choice by global choice subject
I External choice for all other involved roles

I Only enabled roles can send messages in choice paths
I Subject starts enabled; others disabled
I A disabled role is enabled by receiving a message from an enabled role

27 / 40



Choice

I “Located” multiparty choice
choice at A {

1() from A to B;
2() from A to C;

} or {
3() from A to B;
4() from A to C;

}

I Internal choice by global choice subject
I External choice for all other involved roles

I Only enabled roles can send messages in choice paths
I Subject starts enabled; others disabled
I A disabled role is enabled by receiving a message from an enabled role

27 / 40



Choice

I “Located” multiparty choice
choice at A {

1() from A to B;
2() from A to C;

} or {
4() from A to C;
3() from A to B;

}

I Internal choice by global choice subject
I External choice for all other involved roles

I Only enabled roles can send messages in choice paths
I Subject starts enabled; others disabled
I A disabled role is enabled by receiving a message from an enabled role

27 / 40



“Located” choice

choice at A {
buyer1(Int) from A to B; // Total to pay
(Int) from B to A; // B will pay this much
buyer2(Int) from A to C; // C pays remainder

} or {
buyer1(Int) from A to C; // Total to pay
(Int) from C to A; // C will pay this much
buyer2(Int) from A to B; // B pays remainder

}

I More “flexible” than “directed” choice

I Branching via messages with identical payloads OK (cf. [POPL11])

choice at A { 1() from A to B; } or { 1(Int) from A to B; } 7

28 / 40



“Located” choice

choice at A {
buyer1(Int) from A to B; // Total to pay
(Int) from B to A; // B will pay this much
buyer2(Int) from A to C; // C pays remainder

} or {
buyer1(Int) from A to C; // Total to pay
(Int) from C to A; // C will pay this much
buyer2(Int) from A to B; // B pays remainder

}

I More “flexible” than “directed” choice

I Branching via messages with identical payloads OK (cf. [POPL11])

choice at A { 1() from A to B; } or { 1(Int) from A to B; } 7

28 / 40



Exercise: role enabling

I Only enabled roles can send messages in choice paths
I Subject starts enabled; others disabled
I A disabled role is enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;

} or {
2() from B to A;
choice at B {

2() from B to C;
} or {

3() from B to C;
}

}

I Syntactic Scribble error?
I What actually “goes wrong”?

I MPST safety errors: receptions errors, orphan messages, deadlock
29 / 40



Exercise: role enabling

I Only enabled roles can send messages in choice paths
I Subject starts enabled; others disabled
I A disabled role is enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;

} or {
2() from B to A;
choice at B {

2() from B to C;
} or {

3() from B to C;
}

}

I Syntactic Scribble error? B not enabled (“mixed choice” protocol states)
I What actually “goes wrong”?

I MPST safety errors: receptions errors, orphan messages, deadlock
29 / 40



Exercise: role enabling

I Only enabled roles can send messages in choice paths
I Subject starts enabled; others disabled
I A disabled role is enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;

} or {
2() from B to A;
choice at B {

2() from B to C;
} or {

3() from B to C;
}

}

I Syntactic Scribble error? B not enabled (“mixed choice” protocol states)
I What actually “goes wrong”?

I MPST safety errors: receptions errors, orphan messages, deadlock
29 / 40



Exercise: role enabling

I Only enabled roles can send messages in choice paths
I Subject starts enabled; others disabled
I A disabled role is enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;
1() from C to A;

} or {
2() from B to A;
choice at B {

2() from B to C;
} or {

3() from B to C;
}
4() from C to A;

}

I Syntactic Scribble error? B not enabled (“mixed choice” protocol states)
I What actually “goes wrong”?

I MPST safety errors: receptions errors, orphan messages, deadlock
29 / 40



Exercise: role enabling

I Only enabled roles can send messages in choice paths
I Subject starts enabled; others disabled
I A disabled role is enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;
1() from C to A;

} or {
2() from B to A;
choice at B {

2() from B to C;
} or {

3() from B to C;
}
4() from C to A;

}

I Syntactic Scribble error? B not enabled (“mixed choice” protocol states)
I What actually “goes wrong”?

I MPST safety errors: receptions errors, orphan messages, deadlock
29 / 40



Is this choice OK? 1/4

choice at A {
1() from A to B;
3() from B to C; 7
4() from C to A;

} or {
2() from A to B;
3() from B to C; 7
5() from C to A;

}

I “Ambiguous” choice to C
I Should C send a 4 or a 5 to A?
I Potential reception errors (4, 5), if interpreted non-deterministically

I Non-det external choice at C inconsistent with original internal choice by A
I Not “mergeable” in syntactic projection

(Need to merge continuations: undefined for distinct outputs)

I Simple fix: distinguish the 3’s (distinct external choice ops mergeable)

30 / 40



Is this choice OK? 1/4

choice at A {
1() from A to B;
3() from B to C; 7
4() from C to A;

} or {
2() from A to B;
3() from B to C; 7
5() from C to A;

}

I “Ambiguous” choice to C
I Should C send a 4 or a 5 to A?
I Potential reception errors (4, 5), if interpreted non-deterministically

I Non-det external choice at C inconsistent with original internal choice by A
I Not “mergeable” in syntactic projection

(Need to merge continuations: undefined for distinct outputs)

I Simple fix: distinguish the 3’s (distinct external choice ops mergeable)

30 / 40



Is this choice OK? 1/4

choice at A {
1() from A to B;
3() from B to C; 7
4() from C to A;

} or {
2() from A to B;
3() from B to C; 7
5() from C to A;

}

I “Ambiguous” choice to C
I Should C send a 4 or a 5 to A?
I Potential reception errors (4, 5), if interpreted non-deterministically

I Non-det external choice at C inconsistent with original internal choice by A
I Not “mergeable” in syntactic projection

(Need to merge continuations: undefined for distinct outputs)

I Simple fix: distinguish the 3’s (distinct external choice ops mergeable)

30 / 40



Is this choice OK? 1/4

choice at A {
1() from A to B;
3() from B to C; 7
4() from C to A;

} or {
2() from A to B;
3() from B to C; 7
5() from C to A;

}

I “Ambiguous” choice to C
I Should C send a 4 or a 5 to A?
I Potential reception errors (4, 5), if interpreted non-deterministically

I Non-det external choice at C inconsistent with original internal choice by A
I Not “mergeable” in syntactic projection

(Need to merge continuations: undefined for distinct outputs)

I Simple fix: distinguish the 3’s (distinct external choice ops mergeable)

30 / 40



Is this choice OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
4() from A to C;

} or {
2() from A to B;
3() from B to C;
4() from A to C;

}

I Duplicate cases inherently mergeable, e.g. [POPL11]

31 / 40



Is this choice OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
4() from A to C; 3

} or {
2() from A to B;
3() from B to C;
4() from A to C; 3

}

I Duplicate cases inherently mergeable, e.g. [POPL11]

31 / 40



Is this choice OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
do Merge(A, C);

} or {
2() from A to B;
3() from B to C;
do Merge(A, C);

}

global protocol Merge(role A, role C) {
4() from A to C;

}

I Duplicate cases inherently mergeable, e.g. [POPL11]

31 / 40



Is this choice OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
do Merge(A, C);

} or {
2() from A to B;
3() from B to C;
do Merge(A, C);

}

global protocol Merge(role A, role C) {
4() from C to A;

}

I Duplicate cases inherently mergeable, e.g. [POPL11]

31 / 40



Is this choice OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
do Merge(A, C);

} or {
2() from A to B;
3() from B to C;
do Merge(A, C);

}

global protocol Merge(role A, role C) {
choice at A {

4() from A to C;
} or {

5() from A to C;
} }

I Duplicate cases inherently mergeable, e.g. [POPL11]

31 / 40



Is this choice OK? 3/4

choice at A {
1a() from A to B;
2() from A to C; 7
3() from B to C;
4() from C to A;

} or {
1b() from A to B;
3() from B to C; 7
4() from C to A;

}

I “Race condition” in choice to C due to asynchrony
I What should C do after receiving a 3?
I Potential orphan message (2), if intepreted as “multi-queue FIFO”

I Inconsistent external choice subjects
I (Trivially non-mergeable in standard MPST)
I A role must be enabled by the same role in all choice paths

32 / 40



Is this choice OK? 3/4

choice at A {
1a() from A to B;
2() from A to C; 7
3() from B to C;
4() from C to A;

} or {
1b() from A to B;
3() from B to C; 7
4() from C to A;

}

I “Race condition” in choice to C due to asynchrony
I What should C do after receiving a 3?
I Potential orphan message (2), if intepreted as “multi-queue FIFO”

I Inconsistent external choice subjects
I (Trivially non-mergeable in standard MPST)
I A role must be enabled by the same role in all choice paths

32 / 40



Is this choice OK? 3/4

choice at A {
1a() from A to B;
2() from A to C; 7
3() from B to C;
4() from C to A;

} or {
1b() from A to B;
3() from B to C; 7
4() from C to A;

}

I “Race condition” in choice to C due to asynchrony
I What should C do after receiving a 3?
I Potential orphan message (2), if intepreted as “multi-queue FIFO”

I Inconsistent external choice subjects
I (Trivially non-mergeable in standard MPST)
I A role must be enabled by the same role in all choice paths

32 / 40



Is this choice OK? 3/4

choice at A {
1a() from A to B;
2() from A to C; 7
3() from B to C;
4() from C to A;

} or {
1b() from A to B;
3() from B to C; 7
4() from C to A;

}

I “Race condition” in choice to C due to asynchrony
I What should C do after receiving a 3?
I Potential orphan message (2), if intepreted as “multi-queue FIFO”

I Inconsistent external choice subjects
I (Trivially non-mergeable in standard MPST)
I A role must be enabled by the same role in all choice paths

32 / 40



Is this choice OK? 4/4

choice at A {
1() from A to B;
2() from A to C; 7

} or {
3() from A to B;

} 7

I “Unrealisable” choice for C
I No implicit messages can be assumed, e.g., end-of-session
I How can C locally determine if no message is coming?
I Potential deadlock (C waiting-for A), or potential orphan (2),

depending on interpretation
I Empty action option to terminal state

I Cannot merge end type with anything else

33 / 40



Is this choice OK? 4/4

choice at A {
1() from A to B;
2() from A to C; 7

} or {
3() from A to B;

} 7

I “Unrealisable” choice for C
I No implicit messages can be assumed, e.g., end-of-session
I How can C locally determine if no message is coming?
I Potential deadlock (C waiting-for A), or potential orphan (2),

depending on interpretation
I Empty action option to terminal state

I Cannot merge end type with anything else

33 / 40



Is this choice OK? 4/4

choice at A {
1() from A to B;
2() from A to C; 7

} or {
3() from A to B;

} 7

I “Unrealisable” choice for C
I No implicit messages can be assumed, e.g., end-of-session
I How can C locally determine if no message is coming?
I Potential deadlock (C waiting-for A), or potential orphan (2),

depending on interpretation
I Empty action option to terminal state

I Cannot merge end type with anything else

33 / 40



Is this choice OK? 4/4

choice at A {
1() from A to B;
2() from A to C; 7

} or {
3() from A to B;

} 7

I “Unrealisable” choice for C
I No implicit messages can be assumed, e.g., end-of-session
I How can C locally determine if no message is coming?
I Potential deadlock (C waiting-for A), or potential orphan (2),

depending on interpretation
I Empty action option to terminal state

I Cannot merge end type with anything else

33 / 40



Recursion

rec X {
choice at A {

1() from A to B;
continue X;
2() from A to B; 7

} or {
3() from A to B;

}
4() from A to B; 7

}
5() from A to B;

I Tail recursion within recursive scopes
I Rechability of protocol states (no “dead code”)
I Regular interaction structure at endpoints (CFSM model)

34 / 40



Recursion

rec X {
choice at A {

1() from A to B;
continue X;
2() from A to B; 7

} or {
3() from A to B;

}
4() from A to B; 7

}
5() from A to B;

I Tail recursion within recursive scopes
I Rechability of protocol states (no “dead code”)
I Regular interaction structure at endpoints (CFSM model)

34 / 40



Recursion

rec X {
choice at A {

1() from A to B;
continue X;
2() from A to B; 7

} or {
3() from A to B;

}
4() from A to B; 7

}
5() from A to B;

I Tail recursion within recursive scopes
I Rechability of protocol states (no “dead code”)
I Regular interaction structure at endpoints (CFSM model)

34 / 40



Recursion

rec X {
1() from A to B;
continue X;

}
2() from A to B; 7

rec X {
1() from A to B;
continue X;

}
2() from C to D; 3

I Reachability of protocol states checked via projections
I (Reachability wrt. “per-role” protocol flow)

35 / 40



Recursion

rec X {
1() from A to B;
continue X;

}
2() from A to B; 7

rec X {
1() from A to B;
continue X;

}
2() from C to D; 3

I Reachability of protocol states checked via projections
I (Reachability wrt. “per-role” protocol flow)

35 / 40



Recursion

rec X {
1() from A to B;
continue X;

}
2() from A to B; 7

rec X {
1() from A to B;
continue X;

}
2() from C to D; 3

I Reachability of protocol states checked via projections
I (Reachability wrt. “per-role” protocol flow)

35 / 40



Recursion

rec X {
1() from A to B;
continue X;

}
2() from A to B; 7

rec X {
1() from A to B;
continue X;

}
2() from C to D; 3

I Reachability of protocol states checked via projections
I (Reachability wrt. “per-role” protocol flow)

35 / 40



Recursion

rec X {
1() from A to B;
continue X;

}
2() from A to B; 7

rec X {
1() from A to B;
continue X;

}
2() from C to D; 3

I Reachability of protocol states checked via projections
I (Reachability wrt. “per-role” protocol flow)

35 / 40



Is this protocol OK? 1/2

choice at A {
rec X {

1() from A to B;
1() from B to C;
continue X;

}
} or {

2() from A to B;
2() from B to C;

}

I Safety errors? (reception errors, orphan messages, deadlock) no
I Endpoint FSM for A?
I How about now?
I But is this a “good” protocol?

I Liveness errors
I Role progress
I Message liveness

36 / 40



Is this protocol OK? 1/2

choice at A {
rec X {

1() from A to B;
1() from B to C;
continue X;

}
} or {

2() from A to B;
2() from B to C;

}

I Safety errors? (reception errors, orphan messages, deadlock) no
I Endpoint FSM for A?
I How about now?
I But is this a “good” protocol?

I Liveness errors
I Role progress
I Message liveness

36 / 40



Is this protocol OK? 1/2

choice at A {
rec X {

1() from A to B;
//1() from B to C;
continue X;

}
} or {

2() from A to B;
2() from B to C;

}

I Safety errors? (reception errors, orphan messages, deadlock) no
I Endpoint FSM for A?
I How about now?
I But is this a “good” protocol?

I Liveness errors
I Role progress
I Message liveness

36 / 40



Is this protocol OK? 1/2

choice at A {
rec X {

1() from A to B;
//1() from B to C;
continue X;

}
} or {

2() from A to B;
2() from B to C;

}

I Safety errors? (reception errors, orphan messages, deadlock) no
I Endpoint FSM for A?
I How about now?
I But is this a “good” protocol?

I Liveness errors
I Role progress
I Message liveness

36 / 40



Is this protocol OK? 1/2

choice at A {
rec X {

1() from A to B;
//1() from B to C;
continue X;

}
} or {

2() from A to B;
2() from B to C; 7

}

I Safety errors? (reception errors, orphan messages, deadlock) no
I Endpoint FSM for A?
I How about now?
I But is this a “good” protocol?

I Liveness errors
I Role progress
I Message liveness

36 / 40



Is this protocol OK? 1/2

choice at A {
rec X {

1() from A to B;
//1() from B to C;
continue X;

}
} or {

2() from A to B;

}
2() from C to B; 7

I Safety errors? (reception errors, orphan messages, deadlock) no
I Endpoint FSM for A?
I How about now?
I But is this a “good” protocol?

I Liveness errors
I Role progress
I Message liveness

36 / 40



Is this protocol OK? 2/2

rec X {
choice at A {

1() from A to B;
continue X;

} or {
2() from A to B;
2() from B to C;

}
}

I Is this a good protocol?
I Depends on... fairness of output choice

I Session subtyping vs. fairness [MSCS16]

[MSCS16] Fair subtyping for multi-party session types. L. Padovani.

37 / 40



Is this protocol OK? 2/2

rec X {
choice at A {

1() from A to B;
continue X;

} or {
2() from A to B;
2() from B to C; ?

}
}

I Is this a good protocol?
I Depends on... fairness of output choice

I Session subtyping vs. fairness [MSCS16]

[MSCS16] Fair subtyping for multi-party session types. L. Padovani.

37 / 40



Is this protocol OK? 2/2

rec X {
choice at A {

1() from A to B;
continue X;

} or {
2() from A to B;
2() from B to C; ?

}
}

I Is this a good protocol?
I Depends on... fairness of output choice

I Session subtyping vs. fairness [MSCS16]

[MSCS16] Fair subtyping for multi-party session types. L. Padovani.

37 / 40



Is this protocol OK? 2/2

rec X {
choice at A {

1() from A to B;
continue X;

} or {
2() from A to B;
2() from B to C; ?

}
}

I Is this a good protocol?
I Depends on... fairness of output choice

I Session subtyping vs. fairness [MSCS16]

[MSCS16] Fair subtyping for multi-party session types. L. Padovani.

37 / 40



Homework

rec X {
choice at A {

1() from A to B;
2() from B to C;
3() from C to B;

} or {
4() from A to C;
5() from C to B;

}
continue X;

}

I Why does Scribble not allow this protocol?
I What can “go wrong”?

38 / 40



Implementing session delegation

I Type safe connection dynamics
I Transparent to the “passive party”

I Asynchrony modelled by decoupling input/output via (global) queue
I All messages “rerouted” in transit

39 / 40



Implementing session delegation

I Type safe connection dynamics
I Transparent to the “passive party”

I Asynchrony modelled by decoupling input/output via (global) queue
I All messages “rerouted” in transit

39 / 40



Implementing session delegation

I Type safe connection dynamics
I Transparent to the “passive party”

I Asynchrony modelled by decoupling input/output via (global) queue
I All messages “rerouted” in transit

39 / 40



Is this protocol OK?

rec X {
choice at A {

1() from A to B;
continue X;

} or {
1() from A to B;

}
}

I Potential deadlock or orphans
I (This example is invalid branch/select syntax in standard MPST)

40 / 40



Is this protocol OK?

rec X {
choice at A {

1() from A to B;
continue X;

} or {
1() from A to B;

}
}

I Potential deadlock or orphans
I (This example is invalid branch/select syntax in standard MPST)

40 / 40


