
Deadlock detection of Java Bytecode

Abel Garcia Elena Giachino Cosimo Laneve
Dept. of Computer Science and Engineering, University of Bologna – INRIA FOCUS

Deadlocks are a common threat of concurrent programs, which occur when a
set of threads are blocked, due to each attempting to acquire a lock held by
another. Such errors are difficult to detect or anticipate, since they may not
occur during every execution, and may have catastrophic effects for the overall
functionality of the software system.

At the time of writing this paper, the Oracle Bug Database1 reports more
than 40 unresolved bugs due to deadlocks, while the Apache Issue Tracker2 re-
ports around 400 unresolved deadlock bugs. These two applications are written
in Java, a mainstream programming language in a lot of domains, ranging from
system applications and databases to web and cloud applications.

The objective of our research is to design and implement a technique capable
of detecting potential deadlock bugs at compilation time and, to this aim, we
propose an end-to-end automatic static analysis tool for deadlock detection of
Java programs. Our implementation handles all the features of Java, includ-
ing threads, constructors, arrays, exceptions, static fields, interfaces, runtime
downcasts, and dynamic data types.

Deadlock detection of Java programs is an hard and titanic task. It is
hard because concurrency in Java is modelled by threads that may perform
read/write operations over shared variables. The order in which concurrent
operations of this kind are scheduled depends on the scheduling strategy imple-
mented in the Java Virtual Machine (JVM). Therefore deadlocks may not occur
during every execution. It is titanic because Java is a full-fledged programming
language without a reference formal semantics, it is verbose, and it has a lot of
libraries that are written directly in machine code.

To reduce the complexity of our work, we decided not to address the Java

language, but to consider the Java bytecode, namely 198 instructions that are
the compilation target of every Java application. Java bytecode is quite simple
and has a reference semantics that is defined by the JVM behaviour. Type
systems for Java bytecode have been studied in the past for demonstrating the
correctness of the bytecode verifier [4, 1, 3].

We have defined an inference system that extracts abstract models out of
Java bytecodes. This inference system consists of a number of rules which are
identical for most of the instructions, these rules differ mainly for the opera-
tions that have effects in the synchronization process, namely invocations, locks
acquisition and release, object manipulation and control flow operations.

1http://bugs.java.com/
2https://issues.apache.org/jira

1



Abstract models extracted from Java bytecodes are infinite state models
that define dependencies between threads. In [2] we demonstrated that dead-
lock detection in these models is decidable and we also designed an algorithm.
This algorithm and the inference system compose our tool, which we are exper-
imenting on a number of Java libraries.

The technique is complemented by a prototype that also exhibits the execu-
tions causing deadlock and allows us to analyse false positives.

References

[1] Stephen N. Freund and John C. Mitchell. A type system for the java byte-
code language and verifier. J. Autom. Reasoning, 30(3-4):271–321, 2003.

[2] Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. Deadlock analysis of
unbounded process networks. In Proceedings of 25th International Confer-
ence on Concurrency Theory CONCUR 2014, volume 8704 of Lecture Notes
in Computer Science, pages 63–77. Springer, 2014.

[3] Cosimo Laneve. A type system for JVM threads. Theoretical Computer
Science, 290(1):741 – 778, 2003.

[4] Raymie Stata and Martin Abadi. A type system for Java bytecode sub-
routines. ACM Transactions on Programming Languages and Systems,
21(1):90–137, January 1999.

2


