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Introduction Runtime verification (RV) is a software verification technique that complements formal static
verification (as model checking), and testing. In RV the correct behavior of a system is dynamically checked by
a monitor generated from a formal specification which defines the set of valid or invalid execution traces of the
system.

Parametricity [5] is an important feature of a monitoring system for effective RV, since, typically, a set of
property needs to be verified for a statically unknown collection of different entities (objects, threads, processes,
or agents) or resources (files, locks, etc.) that may evolve at runtime and may depend on specific data values.

In this work we propose an extension of trace expressions [3] to allow parametric specifications for RV; pre-
liminary experimental results show that the extended formalism can be effectively adopted for RV of properties
parametric in the involved entities, resources, and data values; interestingly, the formalism can be effectively
exploited also when time is one of the monitored resources, to express and dynamically check non functional
requirements such as performance and response time.

Trace expressions The formalism of trace expressions evolved from global types [2, 4, 1], which has been
initially proposed for RV of agent interactions in multiagent systems. For the purpose of RV, trace expressions
are strictly more powerful than Linear Temporal Logic [3]. Their semantics is based on a labeled transition
system defined by a simple set of rewriting rules which directly drive the behavior of monitors generated from
trace expressions.

Trace expressions are an expressive formalism based on event types and a set of operators (including pre-
fixing, concatenation, shuffle, union, and intersection) to denote finite and infinite traces of events; recursion is
supported by allowing trace expressions to be regular terms. An event type is a predicate specifying a set of
possible events. For instance, the event type safe(o) denotes all safe method invocations for a given object o;
more formally, an event e matches type safe(o) (that is, match(e, safe(o)) holds) iff e = invk(o,m) (that is, a
method named m has been called on an object o), and the method name m belongs to a given set of method
names considered harmless.

Parametric trace expressions Parametric behavior in trace expressions can be achieved by allowing event
types to contain variables that are instantiated at runtime, when events are matched against event types; to this
aim, variables are introduced together with a corresponding new construct X.7 to limit the scope of variable X
within 7.

Let us consider for instance the communication protocol consisting of an infinite sequence of interac-
tions where at each step alice sends an integer value ¢ to bob, which, in turn, is expected to reply with an
integer greater than ¢; this behavior can be specified independently of the exchanged values by the para-
metric trace expression 7 s.t. 7 = I.alice(I):bob(I):7, where the event types alice(I) and bob(I) match
iff alice sends value I to bob, and bob sends a value larger than I to alice, respectively. The trace ex-
pression 7 is a regular term which, in fact, contains infinite binders for I, hence, at each iteration in the
protocol, alice can send a different integer to bob; this is different from the trace expression I.7/, with
7' = alice(I):bob(I):7', where there exists a unique binder and, hence, alice must always send the same value
initially sent to bob; for instance, if send(s,r,c) is the event “s sends to r message content ¢”, then the event
trace send(alice, bob, 0)send(bob, alice, 1)send(alice, bob, —1)send(bob, alice,5) ... is compatible with 7, but not
with 77.

Figure 1 defines the semantics of parametric trace expressions. The main transition relation 7 < 7/, where
e is an event, is defined in terms of the auxiliary relation 7->7, o, where ¢ is the substitution generated by the
transition step.

A substitution o: Vars — Values is a partial function from variables to values defined over the finite domain
dom(o); o = match(e, ) holds iff event e matches event type ¥ with substitution o, while o = o1 U0y is verified
iff dom (o) = dom(o1)U dom(o2), and for all X € dom(c), o(X) = 01(X) if X € dom(o1), and o(X) = 02(X),
if X € dom(oz).
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Figure 1: Semantics of parametric trace expressions and empty trace containment

The notation o7 denotes the term obtained from 7 by substituting all free occurrences of X € dom(o) with
o(X): o(0:1) = (09):(07), o(T10pT2) = (07T1)0p (07T2) for op € {V, A, |,-}, 0(X.7) = X.(0\ x7); 0¥ is defined as
the homomorphic extension s.t. 0 X = o(X), if X € dom(o), and 0 X = X, if X & dom(o).

Finally, o\ x is the substitution where X is removed from the domain: o\ x = o’ iff dom(c’) = dom(o)\ {X}
and for all X € dom(o’) o/(X) = o(X).

Examples of transition steps For the trace expression 7 = I.alice(I):bob(I):7 the transition steps 7 =
71 3 7 can be derived, where e; = send(alice, bob,0), 71 = bob(0):7, and ey = send(bob, alice, 1):

(prefix)

alice(I):bob(I):m <% bob(I):7,{I — 0}
Ialice(I):bob(I):m S {I + 0}(bob(I):7),0 ) bob(0):7 3 7,0
L.alice(I):bob(I):m <5 bob(0):7 bob(0):r 5 7

(var-t)

(main)

For the trace expression 7 = O.new(O):(M.invk(O, M):e|T), the transition steps 7 3 71 3 75 2 73 A 74 can
be derived, where e; = new(o01), 11 = M.invk(o1, M):€|T, e2 = new(03), 72 = M.invk(o1, M):e| M.invk(os, M ):€|T,
es = invk(o2, m1), 73 = M.invk(o1, M ):ele|T, es = invk(o1,m2), and 74 = €|e|7, and the event type new(O)
corresponds to “new object O has been created”.
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