
Reactive Sessions

Mauricio Cano
University of Groningen, The Netherlands

http://www.mcanog.info

Jorge A. Pérez
University of Groningen, The Netherlands

http://www.jperez.nl

Widely studied programming models for communication-based systems, such
as the π-calculus [7], tend to be overly rigid, in that they do not naturally cap-
ture the reactive behavior of such software systems. Reactive behavior is critical
for modern autonomous agents which can automatically engage in communica-
tion protocols in our behalf (e.g. financial transactions). In communication-
based systems, reactive behavior encompasses several features and constructs,
including time, exception handling and dynamic reconfiguration. Although all
of these features have been studied as (isolated) extensions/variants of the ses-
sion π-calculus (cf. [3, 2]), the resulting models are often convoluted, which
limits its potential for reasoning about communicating systems.

Given the relevance of reactive behavior, in ongoing work we have been ex-
ploring a fresh look at programming models for communication-based concur-
rency. We have focused on the family of synchronous programming languages
(SRP) [1], as a foundational model for communication-based systems. SRP is an
event-based model of computation optimized for programming reactive systems.
It is based on the hypothesis of perfect synchrony: reactive programs react in-
stantaneously and produce their outputs synchronously with their input. An
SRP program evolves deterministically as an (infinite) sequence of reactions,
indexed by a logical clock.

Our work focuses on ReactiveML, a particular synchronous programming
language supported on formal foundations [6, 5]. In ReactiveML inputs are
defined as signals, which can be emitted at any time in execution. Time units
correspond to a series of internal computations, whose execution is stopped
when there are no further signals to be emitted. A distinguishing feature of
ReactiveML is that reactions to the absence of signals only take place at the
end of the time unit.

We have encoded the basic structures of session-based communication (e.g.
input/output, branch/selection) into ReactiveML. This encoding is based on
two main notions: (1) each synchronization corresponds to a single time unit,
and (2) a disciplined use of a continuation-passing style representation of ses-

1

http://www.mcanog.info
http://www.jperez.nl


sions (following [4]) enables to represent the linearity and polymorphism of
communication channels. An associated operational correspondence result for-
mally guarantees that the communication primitives are modeled correctly in
ReactiveML.

The talk will present the current status of our work on session-based con-
currency in ReactiveML. We will also discuss directions for future work, aimed
at us- ing the encoding (and its ReactiveML implementation) to exploit impor-
tant verification techniques (e.g., type-checking, monitors, runtime checking).
The ultimate goal is to certify correctness in scenarios in which reactivity plays
an important role in structured communications, such as the hot-swapping of
web-services and modules.

References

[1] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and
R. de Simone. The synchronous languages 12 years later. Proceedings of the
IEEE, 91(1):64–83, 2003.

[2] L. Bocchi, W. Yang, and N. Yoshida. Timed multiparty session types. In
Proc. of CONCUR’14, volume 8704, pages 419–434. Springer, 2014.

[3] M. Carbone. Session-based choreography with exceptions. Electr. Notes
Theor. Comput. Sci., 241:35–55, 2009.

[4] O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In Proc.
of PPDP’12, pages 139–150, 2012.

[5] L. Mandel and C. Pasteur. Reactivity of Cooperative Systems - Application
to ReactiveML. In M. Müller-Olm and H. Seidl, editors, Static Analysis -
21st International Symposium, SAS 2014, Munich, Germany, September 11-
13, 2014. Proceedings, volume 8723 of Lecture Notes in Computer Science,
pages 219–236. Springer, 2014.

[6] L. Mandel and M. Pouzet. ReactiveML: a reactive extension to ML. In Proc.
of PPDP’05, pages 82–93. ACM, 2005.

[7] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992.

2


