
Session Types for Time-Sensitive Protocols

Laura Bocchi1, Julien Lange2, Rumyana Neykova2, and Nobuko
Yoshida2

1University of Kent, UK
2Imperial College London, UK

Distributed software systems, such as e-business and financial systems, have
often real-time constraint where exchanges of agreements and data transmissions
need to be completed within specified timeframes. The analysis of real-time
models is supported by established foundations and tools based on timed au-
tomata [1]. However, when timed automata are composed into networks and al-
lowed to communicate asynchronously via unbounded communication channels,
such as communicating time automata (CTA) [7], tractability is compromised in
the sense that, for instance, reachability is no longer decidable. Tractable veri-
fication of distributed systems can be attained using session types [9]. However,
session types typically focus on safety (e.g., ‘the server will reply with a string’)
and not on punctuality (e.g., ‘the server will reply within 10 milliseconds’).

In recent work [6, 5] we extended multiparty session types (MPST) [10, 4]
with a model of time borrowed from CTA, and established a sound and com-
plete correspondence between timed MPST and a subclass of CTA that satisfies
progress. In [5] we gave, on the basis of this correspondence, decidable condi-
tions for properties on CTA that are undecidable in the general case, such as
safety (absence of orphan messages and communication mismatches), progress,
non-zenoness and eventual reception of messages sent. Moreover, in [5] we
gave a procedure and a tool to build, when possible, global timed MPST from
collections of timed automata; the resulting global specification guarantees an
well-behaved composition. The procedure given in [5] adds a timed perspective
to a line of research (e.g., [8, 11]) directed towards a flexible engineering practice:
the idea is to combine the usual top-down approach (1 - global type definition;
2 - projection; 3 - modular system implementation) with reverse-engineering
(i.e., combining existing parts into a well-behaved ensemble).

While formalisms and tools based on timed automata are valuable for the
analysis of real-time models, they do not provide a seamless bridge from correct
models to programs. Reversely, session types offer, in principle, a methodology
to validate programs. In [6] we gave a typing theory based on timed MPST
for static verification of real-time programs. The theory of timed MPST in [6]
abstracted programming languages as a process calculus with simple time prim-
itives; an open challenge is embedding it into concrete languages for real-time
programming and type checking tools. At present, timed MPST have then been
embedded [12] into the Scribble toolchain [13], to support the design of time-
sensitive protocols and offer a concrete tool for dynamic monitoring. Along a
similar line of research, [2] extended binary session types with time (including

1

a timed notion of compliance) and embedded them into a concrete dedicated
middleware for dynamic verification [3]. The tools in [12, 3] demonstrate the
practicality of a modular approach to formal verification of timed constraints
based on session types. However, as we have shown in [12], the applicability
of run-time monitoring in time-sensitive scenarios is limited by the verifica-
tion overheads that may compromise transparency (i.e., the ability of dynamic
monitors to not interfere with well-behaved programs). We also observed that
overhead depends on factors like latency and shape of the protocol [12]. The
definition of rigorous metrics of applicability is a critical future direction.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126:183–235,
1994.

[2] M. Bartoletti, T. Cimoli, M. Murgia, A. Podda, and L. Pompianu. Compli-
ance and subtyping in timed session types. In FMOODS/FORTE, LNCS
9039. Springer, 2015.

[3] M. Bartoletti, T. Cimoli, M. Murgia, A. S. Podda, and L. Pompianu. A
contract-oriented middleware. In FACS, volume 9539 of Lecture Notes in
Computer Science, pages 86–104. Springer, 2015.

[4] L. Bettini et al. Global progress in dynamically interleaved multiparty
sessions. In CONCUR, LNCS 5201. Springer, 2008.

[5] L. Bocchi, J. Lange, and N. Yoshida. Meeting deadlines together. In
CONCUR, LIPIcs 42. Schloss Dagstuhl LZI, 2015.

[6] L. Bocchi, W. Yang, and N. Yoshida. Timed multiparty session types. In
CONCUR, LNCS 8704. Springer, 2014.

[7] L. Clemente, F. Herbreteau, A. Stainer, and G. Sutre. Reachability of
communicating timed processes. In FOSSACS, LNCS 7794. 2013.

[8] P.-M. Deniélou and N. Yoshida. Multiparty compatibility in communicat-
ing automata: Characterisation and synthesis of global session types. In
ICALP, volume 7966 of LNCS, pages 174–186, 2013.

[9] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type
discipline for structured communication-based programming. In ESOP,
LNCS 1381. Springer, 1998.

[10] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session
types. In POPL’14, volume 43. ACM, 2008.

[11] J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to
graphical choreographies. In POPL, pages 221–232, 2015.

[12] R. Neykova, L. Bocchi, and N. Yoshida. Timed runtime monitoring for
multiparty conversations. In BEAT, EPTCS 162, 2014.

[13] Scribble Project homepage. www.scribble.org.

2

www.scribble.org

