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Distributed software systems, such as e-business and financial systems, have
often real-time constraint where exchanges of agreements and data transmissions
need to be completed within specified timeframes. The analysis of real-time
models is supported by established foundations and tools based on timed au-
tomata [1]. However, when timed automata are composed into networks and al-
lowed to communicate asynchronously via unbounded communication channels,
such as communicating time automata (CTA) [7], tractability is compromised in
the sense that, for instance, reachability is no longer decidable. Tractable veri-
fication of distributed systems can be attained using session types [9]. However,
session types typically focus on safety (e.g., ‘the server will reply with a string’ )
and not on punctuality (e.g., ‘the server will reply within 10 milliseconds’ ).

In recent work [6, 5] we extended multiparty session types (MPST) [10, 4]
with a model of time borrowed from CTA, and established a sound and com-
plete correspondence between timed MPST and a subclass of CTA that satisfies
progress. In [5] we gave, on the basis of this correspondence, decidable condi-
tions for properties on CTA that are undecidable in the general case, such as
safety (absence of orphan messages and communication mismatches), progress,
non-zenoness and eventual reception of messages sent. Moreover, in [5] we
gave a procedure and a tool to build, when possible, global timed MPST from
collections of timed automata; the resulting global specification guarantees an
well-behaved composition. The procedure given in [5] adds a timed perspective
to a line of research (e.g., [8, 11]) directed towards a flexible engineering practice:
the idea is to combine the usual top-down approach ( 1 - global type definition;
2 - projection; 3 - modular system implementation) with reverse-engineering
(i.e., combining existing parts into a well-behaved ensemble).

While formalisms and tools based on timed automata are valuable for the
analysis of real-time models, they do not provide a seamless bridge from correct
models to programs. Reversely, session types offer, in principle, a methodology
to validate programs. In [6] we gave a typing theory based on timed MPST
for static verification of real-time programs. The theory of timed MPST in [6]
abstracted programming languages as a process calculus with simple time prim-
itives; an open challenge is embedding it into concrete languages for real-time
programming and type checking tools. At present, timed MPST have then been
embedded [12] into the Scribble toolchain [13], to support the design of time-
sensitive protocols and offer a concrete tool for dynamic monitoring. Along a
similar line of research, [2] extended binary session types with time (including
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a timed notion of compliance) and embedded them into a concrete dedicated
middleware for dynamic verification [3]. The tools in [12, 3] demonstrate the
practicality of a modular approach to formal verification of timed constraints
based on session types. However, as we have shown in [12], the applicability
of run-time monitoring in time-sensitive scenarios is limited by the verifica-
tion overheads that may compromise transparency (i.e., the ability of dynamic
monitors to not interfere with well-behaved programs). We also observed that
overhead depends on factors like latency and shape of the protocol [12]. The
definition of rigorous metrics of applicability is a critical future direction.
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