Probabilistic multiparty session types

Bogdan Aman Gabriel Ciobanu
Romanian Academy, Institute of Computer Science
Bld. Carol I, no.8, 700505, lași, România

Outline

(1) Introduction
(2) Probabilistic Multiparty Session Processes
(3) Probabilistic Multiparty Session Types
(4) Conclusion

- In general, an important feature of a probabilistic model is that it distinguishes between nondeterminism and probabilistic choice
a nondeterminism choice refers to the one made by an external process, a probabilistic choice is a choice made internally by the process, and not controlled by an external process.
- Intuitively, a probabilistic choice is given by sets of alternative transitions, each transition having a certain probability of being selected, where the sum of all probabilities of one alternative set is 1 .
- To distinguish the differences between nondeterminism and probabilistic choices, consider the following simple example: Alice wrote a manuscript and intends to submit it to a journal. There, for some journals, she has to select from several editors (say three: Bob, Carol and Diana).
- It is the author's choice to which editor to send his work. This is a probabilistic choice (as it is under his control and the preference for which to select may depend on some previous interactions).
- Then the author waits for an answer. This is a nondeterministic choice (as the choice of what kind of answer he receives is out of hi's control).
- We consider that the probabilistic choice is a choice made internally by the process, and not controlled by an external process.
- There are two possibilities for extending a model using probabilities:
to replace nondeterministic choices by probabilistic choices
to allow both probabilistic and nondeterministic choices.
- We take the second approach since when considering concurrent processes the concept of nondeterminism is necessary to describe the asynchronous character of the interleaving parallel composition.

Probabilistic Multiparty Session Processes

Syntax

Processes

:: $=$:	
,	$\sum_{p_{i}} p_{i}: s!\left\langle\tilde{e}_{i}\right\rangle ; P_{i}$	(value sending)
1	$\sum_{j \in J} s ?\left(\tilde{\sim}_{j}\right) ; P_{j}$	(value reception)
,	$\sum_{p_{i}} p_{i}: s \triangleleft l_{i} ; P_{i}$	(label selection)
।	$s \triangleright\left\{l_{j}: P_{j}\right\}_{j \in J}$	(label branching)
+		

Probabilistic Multiparty Session Processes

Syntax

- Assume Alice knows Bob with whom it already had some scientific interactions, while about Carol she heard from her articles.
- Therefore, the probability that Alice chooses Bob to handle the review of her manuscript is higher than choosing Carol.
- Even if there exists a probability to choose Diana, this is very small as Alice does not know anything about her.

Example (Probabilistic Choice)

$$
\begin{aligned}
\text { Alice } & =0.6: \text { submitB! }\langle\text { article }\rangle ; \text { AliceB } \\
& +0.3: \text { submitC! }\langle\text { article }\rangle ; \text { AliceC } \\
& +0.1: \text { submitD! }\langle\text { article }\rangle ; \text { AliceD }
\end{aligned}
$$

Probabilistic Multiparty Session Processes

Syntax

- After receiving a manuscript, an editor can perform various actions:
to accept the paper; usually the probability to accept a paper is small (e.g., 0.1);
- to reject the paper;
to propose another editor, possible from another journal, as the paper does not fit the journal aims; the probability for this to happen is very small (e.g., 0.05);

Example (Probabilistic Choice)

$$
\begin{aligned}
\text { Bob } & =0.10: s \triangleleft \text { accept; BobA } \\
& +0.85: s \triangleleft \text { reject; BobR } \\
& +0.05: s \triangleleft \text { propose; BobP }
\end{aligned}
$$

Probabilistic Multiparty Session Processes

Syntax

- After sending her manuscript Alice knows she can expect that:
- her paper is accepted;
ber paper is rejected;
- her paper is proposed to another editor;

Example (Nondeterministic Choice)

Alice $=s \triangleright\{$ accept; AliceA reject; AliceR propose; AliceP\}

$$
\begin{array}{lc}
\sum_{p_{i}} p_{i}: s!\left\langle\tilde{e}_{i}\right\rangle ; P_{i}\left|s: \tilde{h} \rightarrow_{p_{i}} P_{i}\right| s: \tilde{h} \cdot \tilde{v}_{i} & \left(\tilde{e}_{i} \downarrow \tilde{v}_{i}\right) \\
\sum_{p_{i}} p_{i}: s \triangleleft l_{i} ; P_{i}\left|s: \tilde{h} \rightarrow_{p_{i}} P_{i}\right| s: \tilde{h} \cdot I_{i} & \text { (PROBSEND) } \\
\sum_{i \in I} s ?\left(\tilde{x}_{i}\right) ; P_{i}\left|s: \tilde{v} \cdot \tilde{h} \rightarrow_{1} P_{i}\left\{\tilde{v} / \tilde{x}_{i}\right\}\right| s: \tilde{h} & \text { (NONDETRECEIVE) } \\
s \triangleright\left\{I_{j}: P_{j}\right\}_{j \in J}\left|s: I_{i} \cdot \tilde{h} \rightarrow_{1} P_{i}\right| s: \tilde{h} \quad(i \in J) & \text { (NONDETBRANCH) } \\
P \rightarrow_{p} P^{\prime} \Rightarrow P\left|Q \rightarrow_{p} P^{\prime}\right| Q & \text { (PAR1) } \\
P \rightarrow_{p} P^{\prime} \text { and } Q \rightarrow_{q} Q^{\prime} \Rightarrow P\left|Q \rightarrow_{p \cdot q} P^{\prime}\right| Q^{\prime} & \text { (PAR2) } \\
P \equiv P^{\prime} \text { and } P^{\prime} \rightarrow_{p} Q^{\prime} \text { and } Q^{\prime} \equiv Q^{\prime} \Rightarrow P \rightarrow_{p} Q & \text { (STRUCT) }
\end{array}
$$

Probabilistic Multiparty Session Processes

Semantics

Example

- After receiving a manuscript Bob sends it to two reviewers:

Elliot $=0.15$: review! \langle accept $\rangle ;$ ElliotA +0.85 : review! \langle reject $\rangle ;$ ElliotR;
Felix $=0.05$: review! \langle accept $\rangle ;$ FelixA +0.95 : review! $\langle r e j e c t\rangle ;$ FelixR;

- using rule (PAR2) it can be noticed that all possible evolutions are:

Elliot | Felix $\rightarrow_{0.0075}$ ElliotA | FelixA, where $0.0075=0.15 * 0.05$
Elliot | Felix $\rightarrow_{0.0425}$ ElliotR | FelixA, where $0.0425=0.85 * 0.05$
Elliot \mid Felix $\rightarrow_{0.1425}$ ElliotA \mid FelixR, where $0.1425=0.15 * 0.95$
Elliot \mid Felix $\rightarrow_{0.8075}$ ElliotR | FelixR, where $0.8075=0.85 * 0.95$

- it should be noticed that the sum of the probabilities of all evolutions equals 1 , where $1=0.0075+0.0425+0.1425+0.8075$.

Probabilistic Multiparty Session Types

Global Types

$$
\begin{array}{rlr}
G:: & \sum_{p_{i} q} q \rightarrow_{p_{i}} q^{\prime}: k\left\langle S_{i}\right\rangle . G_{i} & \text { (probValues) } \\
& \| & \sum_{p_{j}} q \rightarrow_{p_{j}} q^{\prime}: k\left\{l_{j}: G_{j}\right\} \\
\text { (probBranching) }
\end{array}
$$

Local Types

$$
\begin{array}{rlrr}
T & ::= & \sum_{p_{i} p_{i}: k!\left\langle S_{i}\right\rangle . T_{i}} r & \text { (send) } \\
\vdots & \sum_{i \in 1} k ?\left(S_{i}\right) \cdot T_{i} & \text { (receive) } \\
\vdots & k \in\left\{p_{j}:\left(l_{j}: T_{j}\right)\right\}_{j \in J} & \text { (selection) } \\
& k \&\left\{l_{j}: T_{j}\right\}_{j \in J} & \text { (branching) }
\end{array}
$$

Probabilistic Multiparty Session Types
 Typing System

- We use the judgement $\Gamma \vdash P \triangleright \Delta$ which says that "under the environment Γ, process P is well-typed having typing Δ ".
- We use notation $T @ q$ (called located type) representing a local type T assigned to a participant q.

$$
\begin{gathered}
\frac{\forall i . \Gamma \vdash P_{i} \triangleright \Delta, \tilde{s}: T_{i} @ q \quad i \in J \quad \sum_{i} p_{i}=1}{\Gamma \vdash \sum_{p_{i}} p_{i}: s_{k} \triangleleft l_{i} ; P_{i} \triangleright \Delta, \tilde{s}: k \oplus\left\{p_{i}:\left(l_{i}: T_{i}\right)\right\}_{i \in J} @ q} \quad \text { (TSelect) } \\
\frac{\forall j . \Gamma \vdash P_{j} \triangleright \Delta, \tilde{s}: T_{j} @ q}{\Gamma \vdash s_{k} \triangleright\left\{I_{j} ; P_{j}\right\}_{j \in J} \triangleright \Delta, \tilde{s}: k \&\left\{I_{j}: T_{j}\right\}_{j \in J} @ q} \quad \text { (TBranch) }
\end{gathered}
$$

Probabilistic Multiparty Session Processes

Semantics

Definition (Evolution probability)

If $P \rightarrow_{p_{1}} P_{1} \rightarrow_{p_{2}} P_{2} \ldots \rightarrow_{p_{k}} Q$ then the probability to reach from P to Q equals $p=p_{1} * p_{2} * \ldots * p_{k}$. We denote this by $\operatorname{prob}(P, Q)=p$.

Proposition

If we denote by reach (P) all processes reachable from a well-typed process P that cannot further evolve, then

$$
\sum_{Q \in \operatorname{reach}(P)} \operatorname{prob}(P, Q)=1
$$

Probabilistic Multiparty Session Processes
 Typing System

As processes interact, their dynamics is formalised by a type reduction relation \Rightarrow on typing Δ :

- $\tilde{s}:\left\{\sum_{p_{i}} p_{i}: k!\left\langle\tilde{S}_{i}\right\rangle ; T_{i} @ q_{1}, \sum_{i^{\prime} \in I^{\prime}} k ?\left(\tilde{S_{i^{\prime}}}\right) ; T_{i^{\prime}} @ q_{2}, \ldots\right\}$

$$
\Rightarrow_{p_{i}} \tilde{s}:\left\{T_{j} @ q_{1}, T_{j^{\prime}} @ q_{2}, \ldots\right\}, \text { for } j \in I, j^{\prime} \in I^{\prime}, S_{j}=S_{j^{\prime}}
$$

- $\tilde{s}:\left\{k \oplus\left\{p_{i}:\left(I_{i}: T_{i}\right)\right\}_{i \in I} @ q_{1}, k \&\left\{l_{i^{\prime}}: T_{i^{\prime}}\right\}_{i^{\prime} \in I^{\prime}} @ q_{2}, \ldots\right\}$

$$
\Rightarrow_{p_{i}} \tilde{s}:\left\{T_{j} @ q_{1}, T_{j} @ q_{2}, \ldots\right\}, \text { for } j \in I \cap I^{\prime} .
$$

- $\Delta \Rightarrow_{p} \Delta^{\prime}$ and $\Delta^{\prime} \Rightarrow_{q} \Delta^{\prime \prime}$ implies $\Delta \Rightarrow_{p \cdot q} \Delta^{\prime \prime}$

Theorem (subject congruence and reduction)
(1) $\Gamma \vdash P \triangleright \Delta$ and $P \equiv P^{\prime}$ imply $\Gamma \vdash P^{\prime} \triangleright \Delta$.
(2) $\Gamma \vdash P \triangleright \Delta$ and $P \rightarrow_{p_{i}} P^{\prime}$ imply $\Gamma \vdash P^{\prime} \triangleright \Delta^{\prime}$, where $\Delta=\Delta^{\prime}$ or $\Delta \Rightarrow p_{p_{i}} \Delta^{\prime}$.

- By using probabilities we are able to describe complex processes in which some behaviours are more likely to happen than others.
- An illustrative example is presented.
- Our approach is sound.
- Discussions:

Thank you!

