
Behavioural Type Inference for
Object-Oriented Languages

Ongoing work

António Ravara
Work with Adrian Francalanza, Hans Hüttel and Mario Bravetti

NOVA LINCS and DI-FCT, Univ NOVA de Lisboa

April 17, 2015



The BETTY vision

Goal

I Behavioural types: basis for communication-intensive
distributed systems.

I Aim: certified software for global services (by automatically
checking behavioural properties of communicating systems).

I To encourage the industrial adoption of advanced
programming languages and tools.

Present situation

I Widely used programming languages still give poor support to
ensure protocol compatibility.

I Component-based software development deals with legacy
code, assembling new applications from code-bases.

I Some languages (BICA, MOOL, Plaid, SJ) already do
behavioural type-checking.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The BETTY vision

Goal

I Behavioural types: basis for communication-intensive
distributed systems.

I Aim: certified software for global services (by automatically
checking behavioural properties of communicating systems).

I To encourage the industrial adoption of advanced
programming languages and tools.

Present situation

I Widely used programming languages still give poor support to
ensure protocol compatibility.

I Component-based software development deals with legacy
code, assembling new applications from code-bases.

I Some languages (BICA, MOOL, Plaid, SJ) already do
behavioural type-checking.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The BETTY vision

Goal

I Behavioural types: basis for communication-intensive
distributed systems.

I Aim: certified software for global services (by automatically
checking behavioural properties of communicating systems).

I To encourage the industrial adoption of advanced
programming languages and tools.

Present situation

I Widely used programming languages still give poor support to
ensure protocol compatibility.

I Component-based software development deals with legacy
code, assembling new applications from code-bases.

I Some languages (BICA, MOOL, Plaid, SJ) already do
behavioural type-checking.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The BETTY vision

Goal

I Behavioural types: basis for communication-intensive
distributed systems.

I Aim: certified software for global services (by automatically
checking behavioural properties of communicating systems).

I To encourage the industrial adoption of advanced
programming languages and tools.

Present situation

I Widely used programming languages still give poor support to
ensure protocol compatibility.

I Component-based software development deals with legacy
code, assembling new applications from code-bases.

I Some languages (BICA, MOOL, Plaid, SJ) already do
behavioural type-checking.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The BETTY vision

Goal

I Behavioural types: basis for communication-intensive
distributed systems.

I Aim: certified software for global services (by automatically
checking behavioural properties of communicating systems).

I To encourage the industrial adoption of advanced
programming languages and tools.

Present situation

I Widely used programming languages still give poor support to
ensure protocol compatibility.

I Component-based software development deals with legacy
code, assembling new applications from code-bases.

I Some languages (BICA, MOOL, Plaid, SJ) already do
behavioural type-checking.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The BETTY vision

Goal

I Behavioural types: basis for communication-intensive
distributed systems.

I Aim: certified software for global services (by automatically
checking behavioural properties of communicating systems).

I To encourage the industrial adoption of advanced
programming languages and tools.

Present situation

I Widely used programming languages still give poor support to
ensure protocol compatibility.

I Component-based software development deals with legacy
code, assembling new applications from code-bases.

I Some languages (BICA, MOOL, Plaid, SJ) already do
behavioural type-checking.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The BETTY vision

Goal

I Behavioural types: basis for communication-intensive
distributed systems.

I Aim: certified software for global services (by automatically
checking behavioural properties of communicating systems).

I To encourage the industrial adoption of advanced
programming languages and tools.

Present situation

I Widely used programming languages still give poor support to
ensure protocol compatibility.

I Component-based software development deals with legacy
code, assembling new applications from code-bases.

I Some languages (BICA, MOOL, Plaid, SJ) already do
behavioural type-checking.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Classical motivational example

I A file system – no read before open – or an iterator – no next
before hasNext.

I Valid method usage sequences require a protocol, even in a
sequential setting.

I One needs to delimit the set of admissible call sequences:
protocols as (class) types.

safe use of a file: the behavioural type

1start 2

open

close

read

write

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Classical motivational example

I A file system – no read before open – or an iterator – no next
before hasNext.

I Valid method usage sequences require a protocol, even in a
sequential setting.

I One needs to delimit the set of admissible call sequences:
protocols as (class) types.

safe use of a file: the behavioural type

1start 2

open

close

read

write

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Classical motivational example

I A file system – no read before open – or an iterator – no next
before hasNext.

I Valid method usage sequences require a protocol, even in a
sequential setting.

I One needs to delimit the set of admissible call sequences:
protocols as (class) types.

safe use of a file: the behavioural type

1start 2

open

close

read

write

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Classical motivational example

I A file system – no read before open – or an iterator – no next
before hasNext.

I Valid method usage sequences require a protocol, even in a
sequential setting.

I One needs to delimit the set of admissible call sequences:
protocols as (class) types.

safe use of a file: the behavioural type

1start 2

open

close

read

write

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Classical motivational example

I A file system – no read before open – or an iterator – no next
before hasNext.

I Valid method usage sequences require a protocol, even in a
sequential setting.

I One needs to delimit the set of admissible call sequences:
protocols as (class) types.

safe use of a file: the behavioural type

1start 2

open

close

read

write

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Classical motivational example

I A file system – no read before open – or an iterator – no next
before hasNext.

I Valid method usage sequences require a protocol, even in a
sequential setting.

I One needs to delimit the set of admissible call sequences:
protocols as (class) types.

safe use of a file: the behavioural type

1start 2

open

close

read

write

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Classical motivational example

I A file system – no read before open – or an iterator – no next
before hasNext.

I Valid method usage sequences require a protocol, even in a
sequential setting.

I One needs to delimit the set of admissible call sequences:
protocols as (class) types.

safe use of a file: the behavioural type

1start 2

open

close

read

write

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The envisaged contribution

Our Goal
To infer, from “standard” (concurrent) O.-O. code, behavioural
(class) types ensuring safe interoperability.

A type inference system

A tool that takes a program written in a subset of Java and

I either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;

I or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The envisaged contribution

Our Goal
To infer, from “standard” (concurrent) O.-O. code, behavioural
(class) types ensuring safe interoperability.

A type inference system

A tool that takes a program written in a subset of Java and

I either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;

I or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The envisaged contribution

Our Goal
To infer, from “standard” (concurrent) O.-O. code, behavioural
(class) types ensuring safe interoperability.

A type inference system

A tool that takes a program written in a subset of Java and

I either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;

I or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The envisaged contribution

Our Goal
To infer, from “standard” (concurrent) O.-O. code, behavioural
(class) types ensuring safe interoperability.

A type inference system

A tool that takes a program written in a subset of Java and

I either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;

I or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The envisaged contribution

Our Goal
To infer, from “standard” (concurrent) O.-O. code, behavioural
(class) types ensuring safe interoperability.

A type inference system

A tool that takes a program written in a subset of Java and

I either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;

I or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The envisaged contribution

Our Goal
To infer, from “standard” (concurrent) O.-O. code, behavioural
(class) types ensuring safe interoperability.

A type inference system

A tool that takes a program written in a subset of Java and

I either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;

I or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Type-safety

What can go wrong?

I Why would a sequence of method calls produce an error?
One may get a null pointer exception – calling read before
open amounts to read a un-instantiated variable.
Class F{
String s;

// @req null(s) @ens !null(s)
void open(){s = ””; }

// @req !null(s) @ens !null(s)
String read(){return s; }

}
I Why would a program get stuck?

An object may not complete its protocol – a caller may wait
forever for the result of a callee that does not return.
String read(){if null(s) return s; }

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Type-safety

What can go wrong?

I Why would a sequence of method calls produce an error?
One may get a null pointer exception – calling read before
open amounts to read a un-instantiated variable.
Class F{
String s;

// @req null(s) @ens !null(s)
void open(){s = ””; }

// @req !null(s) @ens !null(s)
String read(){return s; }

}
I Why would a program get stuck?

An object may not complete its protocol – a caller may wait
forever for the result of a callee that does not return.
String read(){if null(s) return s; }

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Type-safety

What can go wrong?

I Why would a sequence of method calls produce an error?
One may get a null pointer exception – calling read before
open amounts to read a un-instantiated variable.
Class F{
String s;

// @req null(s) @ens !null(s)
void open(){s = ””; }

// @req !null(s) @ens !null(s)
String read(){return s; }

}
I Why would a program get stuck?

An object may not complete its protocol – a caller may wait
forever for the result of a callee that does not return.
String read(){if null(s) return s; }

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Type-safety

What can go wrong?

I Why would a sequence of method calls produce an error?
One may get a null pointer exception – calling read before
open amounts to read a un-instantiated variable.
Class F{
String s;

// @req null(s) @ens !null(s)
void open(){s = ””; }

// @req !null(s) @ens !null(s)
String read(){return s; }

}
I Why would a program get stuck?

An object may not complete its protocol – a caller may wait
forever for the result of a callee that does not return.
String read(){if null(s) return s; }

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



Type-safety

What can go wrong?

I Why would a sequence of method calls produce an error?
One may get a null pointer exception – calling read before
open amounts to read a un-instantiated variable.
Class F{
String s;

// @req null(s) @ens !null(s)
void open(){s = ””; }

// @req !null(s) @ens !null(s)
String read(){return s; }

}
I Why would a program get stuck?

An object may not complete its protocol – a caller may wait
forever for the result of a callee that does not return.
String read(){if null(s) return s; }

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The work plan

Type-safety

I Absence of (null pointer) exceptions.

I The protocol of critical resources is fully executed.

Procedure

1. Infer pre- and post-conditions for each method.

2. Generate a finite-state representation of all possible safe
sequences of methods calls, one for each class – its usage.

3. Since the availability of some method may depend on the
return value of the previous method, the usage language
should support both external and internal choice.

4. Type-check the main class to verify correct class usage.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The work plan

Type-safety

I Absence of (null pointer) exceptions.

I The protocol of critical resources is fully executed.

Procedure

1. Infer pre- and post-conditions for each method.

2. Generate a finite-state representation of all possible safe
sequences of methods calls, one for each class – its usage.

3. Since the availability of some method may depend on the
return value of the previous method, the usage language
should support both external and internal choice.

4. Type-check the main class to verify correct class usage.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The work plan

Type-safety

I Absence of (null pointer) exceptions.

I The protocol of critical resources is fully executed.

Procedure

1. Infer pre- and post-conditions for each method.

2. Generate a finite-state representation of all possible safe
sequences of methods calls, one for each class – its usage.

3. Since the availability of some method may depend on the
return value of the previous method, the usage language
should support both external and internal choice.

4. Type-check the main class to verify correct class usage.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The work plan

Type-safety

I Absence of (null pointer) exceptions.

I The protocol of critical resources is fully executed.

Procedure

1. Infer pre- and post-conditions for each method.

2. Generate a finite-state representation of all possible safe
sequences of methods calls, one for each class – its usage.

3. Since the availability of some method may depend on the
return value of the previous method, the usage language
should support both external and internal choice.

4. Type-check the main class to verify correct class usage.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The work plan

Type-safety

I Absence of (null pointer) exceptions.

I The protocol of critical resources is fully executed.

Procedure

1. Infer pre- and post-conditions for each method.

2. Generate a finite-state representation of all possible safe
sequences of methods calls, one for each class – its usage.

3. Since the availability of some method may depend on the
return value of the previous method, the usage language
should support both external and internal choice.

4. Type-check the main class to verify correct class usage.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



The work plan

Type-safety

I Absence of (null pointer) exceptions.

I The protocol of critical resources is fully executed.

Procedure

1. Infer pre- and post-conditions for each method.

2. Generate a finite-state representation of all possible safe
sequences of methods calls, one for each class – its usage.

3. Since the availability of some method may depend on the
return value of the previous method, the usage language
should support both external and internal choice.

4. Type-check the main class to verify correct class usage.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



State-of-the-art

Three closely related works, addressing the problem of inferring
behavioural interfaces for (sequential) object-oriented code.

I Whaley et al. consider that interfaces are just finite state
machines and do not ensure safety.

I Alur et al. start from Whaley’s paper and derive
history-dependent behavioural interfaces, but do not deal with
(inter-object) references.

I Nanda et al. improve on Alur’s work deriving the abstract
typestate graph representing the transitions of the abstract
heap state.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



State-of-the-art

Three closely related works, addressing the problem of inferring
behavioural interfaces for (sequential) object-oriented code.

I Whaley et al. consider that interfaces are just finite state
machines and do not ensure safety.

I Alur et al. start from Whaley’s paper and derive
history-dependent behavioural interfaces, but do not deal with
(inter-object) references.

I Nanda et al. improve on Alur’s work deriving the abstract
typestate graph representing the transitions of the abstract
heap state.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



State-of-the-art

Three closely related works, addressing the problem of inferring
behavioural interfaces for (sequential) object-oriented code.

I Whaley et al. consider that interfaces are just finite state
machines and do not ensure safety.

I Alur et al. start from Whaley’s paper and derive
history-dependent behavioural interfaces, but do not deal with
(inter-object) references.

I Nanda et al. improve on Alur’s work deriving the abstract
typestate graph representing the transitions of the abstract
heap state.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



State-of-the-art

Three closely related works, addressing the problem of inferring
behavioural interfaces for (sequential) object-oriented code.

I Whaley et al. consider that interfaces are just finite state
machines and do not ensure safety.

I Alur et al. start from Whaley’s paper and derive
history-dependent behavioural interfaces, but do not deal with
(inter-object) references.

I Nanda et al. improve on Alur’s work deriving the abstract
typestate graph representing the transitions of the abstract
heap state.

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages



References

Papers

I R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of
interface specifications for java classes. In POPL’05, ACM.

I M. Nanda, C. Grothoff, and S. Chandra. Deriving object type-
states in the presence of inter-object references. SIGPLAN
Not., 40(10):7796, ACM, 2005.

I J. Whaley, M. Martin, and M. Lam. Automatic extraction of
object-oriented component interfaces. In ISSTA’02, ACM.

Tools

I BICA – http://gloss.di.fc.ul.pt/bica

I MOOL – http://gloss.di.fc.ul.pt/mool

I Plaid – http://www.cs.cmu.edu/∼aldrich/plaid/

I SJ – http://www.doc.ic.ac.uk/∼rhu/sessionj.html

António Ravara Work with Adrian Francalanza, Hans Hüttel and Mario BravettiBehavioural Type Inference for Object-Oriented Languages


