
On Lazy Sessions and Productive Futures

Paula Severi

University of Leicester

Betty Meeting, 17 April 2015

joint work with Mariangiola Dezani, Luca Padovani and Emilio Tuosto

Overview

Aim and Motivation

A typed lazy functional language with communication primitives
and co-inductive data types.

Lazy evaluation

Input/Output in Lazy Programming Languages

Potentially Infinite Data and Productivity

Modal operator for ensuring productivity

Contributions

Related work

Aim

A functional programming language that has

communication primitives for sending and receiving infinite data

stream processing

building infinite data structures interleaving input/output

the property of productivity

Motivation

Case Study: Pay-per-view

A customer C

1 buys TV channels streamed by S
2 watches them on her device D.

Case Study: Pay-per-view

S C D

channel
price

payment

TV show

TV show

play

BranchBranch

LoopLoop

abort

BranchBranch

Session between client and device get stuck if TV show (potentially
infinite list) not productive.

Operational semantics for infinite data?

Operational semantics for infinite data

(((((((hhhhhhhCall-by-value

LAZY EVALUATION!!!

(λx.e) f −→ e{f /x}

The argument is evaluated only when needed.

So far calculi with session types have been call-by-value.

Is (communication primitives + lazy evaluation) possible?

Separation of pure part from the input/output with side-effects

Type constructor IO from Haskell

Functions for communication are tagged with IO .

send : !t.T → t (IO T
recv : ?t.T → IO (t × T)

Type constructor IO

The type constructor IO does not have an elimination rule:

(((((((hhhhhhhelim : IO t → t

a program contaminated with input/output remains contaminated.

Only way to combine programs of type IO is to use:

bind : IO t → (t (IO s)(IO s

for sequential composition.

Notation. bind e f abbreviated as e >>= f .

bind (return e) e′ −→ e′ e

Canonical element.

return : t → IO t

Example

(send c+ 4) >>= f | (recv c−)

−→ (return c+) >>= f | return (pair 4 c−)

−→ f c+ | return (pair 4 c−)

Productivity = Infinitary Normalization

zeros → (cons 0 zeros)

→ (cons 0 (cons 0 zeros))

→ (cons 0 (cons 0 (cons 0 zeros)))

→ . . .

...

(cons 0 (cons 0 (cons 0 . . .)))

We are always producing some output.

Syntactic Criteria to ensure productivity

Guardedness Condition.
Used in the proof assistant Coq.

Recursive calls should be protected by constructors
(Coquand,Types 1993).

Example.

interleave xs ys = (head xs): (interleave ys (tail xs))

Pebbles

Based on infinitary rewriting systems (Endrullis et al TCS 2010).
Decidable.
More general than guardedness condition.
Example.

zerosprime = 0: (interleave zerosprime zerosprime)

Can we ensure infinitary normalization via typing?

Temporal Modal Operator
•A represents information that will be displayed in the next time

(in the future).

H. Nakano. LICS 2000. Krishnaswami and Benton. LICS 2011.

Typing fixed point operator:

fix : (•t → t)→ t

An argument of fix is f : (•t → t)
1 f is a “contractive function” (metric space semantics).
2 the recursive call r in the expression e of f = λr.e occurs at depth

greater or equal than 1.

Future

Way of postponing an IO action e

Operational Semantics.

x⇐ C[future e] −→ νy.(x⇐ C[return y] | y⇐ e)

Typing.

future : •n(IO t)→ IO (•nt)

Programming Example

Webcam storing a video

store x = recv x >>=

λy.split y as y1, y2 in future (store y2) >>=

λz.<(cons y1 z)>

Type of store is (SIS Nat)→ IO (Stream Nat)

(Stream t) = t × •(Stream t) Data Structure for Streams
(SIS t) = ?t.(SIS t) Session Type for Stream Process

>>= shorthand for bind

Contributions

1 Exchange data include infinite objects (big data)

2 Lazy evaluation for sessions (communication on demand)

3 Treat IO as a linear type

4 Modal operator to ensure productivity of data that contains I/O

5 Properties:

1 Productivity of data

2 Processes are always successful:
every well-typed process eventually produces some data.

Related Work

Gay and Vasconcelos JFP 2010

Similarity:

primitive functions for


sending,
receiving
opening a session

Differences:
1 Gay and Vasconcelos JFP 2010 is call-by-value

2 For us, exchange values can be infinite

Related Work

Tonhino, Caires and Pfenning TGC 2014

Calculus for data types is independent and not presented
we have a calculus where we mix data with communication

Types do not ensure productivity

their notion of productivity refers to processes (not data)

Similar differences with draft by Morris, Lindley and Wadler.

