
Live Sessions with Responses

Thomas Hildebrandt
Tijs Slaats

&
Marco Carbone

Consider the liveness property “every

is eventually followed by an or a ”.

(Binary)	
 Session	
 types
• Buyer:

• Seller:

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work on sessions with responses as an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are specified by anno-
tating branching and selection labels with a finite conjunction of
disjunctive responses. A disjunctive response is a finite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential infinite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types first appeared in [7] as types for abstracting commu-
nication patterns within a session. As a benefit, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such as safety (lack of communication
errors) and progress (a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning of liveness, i.e. that something
good will eventually happen, and not just something will eventually
happen.

A fundamental and very common form of liveness property is
the request-response property: ”Whenever some event a occurs,
some event b will eventually occur in the future” [2]. The request-
response property may be specified by the LTL formula G(a =)
Fb), where G is read as generally, i.e. in all future steps, and F
reads future, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as the disjunctive response property:
”Whenever some event a occurs, one event out of a given finite

set of response events {b1, . . . , bn} will eventually occur in the fu-
ture”. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulas G(a =) F⇢),
where ⇢ = �0 ^ �1 ^ . . . ^ �n�1 for �i = b1 _ . . . _ bmi .

Instead of using the LTL notation, we will use the shorter nota-
tion a •! ⇢ as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes defined as a property that can not be violated in finitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
finite executions. For instance, the request-response property can
be violated if the process terminates with an ”open” request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential infinite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the seller’s behaviour could be specified
by the following session type:

µt. &

⇢
offer :?(int). � { more : t, ok : t},
stop : t

�

The type above describes a non terminating session, where the
seller is offering the buyer two options, namely offer and stop.
If the first option is selected by the buyer then the seller expects to
receive an integer and then selects either more or ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The protocol (session) described above could be implemented
in several ways. For instance,

µX. k B

8
<

:

offer : k?(x). if (notEnough(x)) then
k /more. X else k / ok. X

stop : X

9
=

;

gives an implementation where, for some values of x, the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

µX. k B
⇢

offer : k?(x). k / ok. X

stop : X

�

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work on sessions with responses as an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are specified by anno-
tating branching and selection labels with a finite conjunction of
disjunctive responses. A disjunctive response is a finite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential infinite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types first appeared in [7] as types for abstracting commu-
nication patterns within a session. As a benefit, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such as safety (lack of communication
errors) and progress (a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning of liveness, i.e. that something
good will eventually happen, and not just something will eventually
happen.

A fundamental and very common form of liveness property is
the request-response property: ”Whenever some event a occurs,
some event b will eventually occur in the future” [2]. The request-
response property may be specified by the LTL formula G(a =)
Fb), where G is read as generally, i.e. in all future steps, and F
reads future, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as the disjunctive response property:
”Whenever some event a occurs, one event out of a given finite

set of response events {b1, . . . , bn} will eventually occur in the fu-
ture”. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulas G(a =) F⇢),
where ⇢ = �0 ^ �1 ^ . . . ^ �n�1 for �i = b1 _ . . . _ bmi .

Instead of using the LTL notation, we will use the shorter nota-
tion a •! ⇢ as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes defined as a property that can not be violated in finitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
finite executions. For instance, the request-response property can
be violated if the process terminates with an ”open” request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential infinite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the seller’s behaviour could be specified
by the following session type:

µt. &

⇢
offer :?(int). � { more : t, ok : t},
stop : t

�

The type above describes a non terminating session, where the
seller is offering the buyer two options, namely offer and stop.
If the first option is selected by the buyer then the seller expects to
receive an integer and then selects either more or ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The buyer’s behaviour could be specified by the following
(dual) session type:

µt. �
⇢

offer :!(int). &{ more : t, ok : t},
stop : t

�

The protocol (session) described above could be implemented
in several ways. For instance,

µX. k B

8
<

:

offer : k?(x). if (notEnough(x)) then
k /more. X else k / ok. X

stop : X

9
=

;

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k B

8
<

:

offer : k?(x). if (notEnough(x)) then
k /more. X else k / ok. X

stop : X

9
=

;

gives an implementation where, for some values of x, the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k B
⇢

offer : k?(x). k / ok. X

stop : X

�

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the specification as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that the ok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &

⇢
offer[ok _ stop] :?(int). � { more : t, ok : t},
stop : t

�

The first process above should then not be well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the ⇡-calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the definition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range over service (or public)
channels; k, k

0
, t, s, . . . over session (or private) channels; and

e, e

0
, . . . over public channels, and arithmetic and other first-order

expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a process P , denoted by fsc(P) (fv(P)), are
defined as usual.

Semantics As semantics we use the standard reduction seman-
tics ! [7] except selection reduction steps are annotated with the
selected label. This allows us to define the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr(P) refer to the set of finite and infinite traces of labels of the
process P.

Liveness We can now define the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness). Assume a disjunctive response ⇢ =
�0 ^ �1 ^ . . .^ �n�1 for �i = li,1 _ . . ._ li,mi . A trace � 2 Tr(P)
of a process P then satisfies the request-response liveness property
l •! ⇢ if for all k < |�|, if �k = l then for all i 2 {0, . . . , n� 1}
there exists j 2 {1, . . . ,mi} such that there exists k

0
> k for

which �k0 = li,j .

We say that a process P has the liveness property wrt a set of
response liveness properties P whenever each trace � of P satisfies
every property in P .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the property l •! � for
� = l1 _ . . . lm if any occurrence of the label l is eventually
followed by a label li for some i 2 {0, . . . ,m}, and in general,
a trace satisfies the property l •! ⇢ for ⇢ = �0 ^ . . . �n�1 if it
satisfies l •! �j for all j 2 {0, . . . , n� 1}.

3. Live Session Typing
Session Types with Responses. The generalization of session
types to session types with responses is given by the following
grammar:

↵ ::= ?(✓). ↵ | !(✓). ↵ | &{li[⇢i] : ↵i} | �{li[⇢i] : ↵i} |
end | µt. ↵ | t

✓ ::= S | ↵ S ::= basic | h↵i
⇢ ::= > | � | ⇢ ^ ⇢ � ::= l | � _ �

Here, ?(✓). ↵ and !(✓). ↵ denote in-session input and output
followed by the communications in ↵. The type ✓ abstracts what
is communicated: a basic value (basic denotes basic types, e.g., int
or bool), a service channel of type h↵i, or a session channel of type
↵. Finally, &{li[⇢i] : ↵i} and �{li[⇢i] : ↵i} denote branching
and selection types, and end is the inactive session. Branching
and selection have been enhanced with disjunctive responses (⇢) as
introduced in the previous section. The response > (true) represents
the empty response, and thus we will usually write l for l[>].

Typing. We can now give a typing system for typing processes in
the ⇡-calculus with sessions introduced above. Environments have
the form:

�,⇤,⇥ ` P . �

where � is the service environment, ⇤ is the process environment,
⇥ is the response environment and � is the session environment. �
and � are assignments from service and session channels respec-
tively to session types with responses. The enviornment ⇥ records
for each session k to the responses that are still pending. The envi-
ronment ⇤ maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

⇤ ::= ⇤, X : f | ;
f ::= f, k : (�,⇥) | ;

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels � = l1 ^ . . . ^ ln and a disjunctive response
⇢. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulfill) the accumulated responses. Define
⇢⇥ = ⇢1 ^ . . . ^ ⇢n if ⇥ = k : ⇢1 · . . . · k : ⇢n.

For a label l and disjunctive response ⇢ we define the operation
⇢/l inductively as follows. For the base cases, define >/l = >,
and �/l = > if � = l1 _ . . . _ ln and l = li for some i 2 n, and
�/l = � otherwise. For the inductive case define (� ^ ⇢)/l = ⇢/l,
if �/l = > and (� ^ ⇢)/l = � ^ ⇢/l otherwise.

We then use (>, ⇢⇥) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then define the accumulation operator (used in the T-BRA and T-
SEL rules) X : (�, (�, ⇢))⌦(l,⇢0) = X : (�, (� ^ l, ⇢ ^ ⇢

0)). and
extend it inductively to process environments in the obvious way.

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k B

8
<

:

offer : k?(x). if (notEnough(x)) then
k /more. X else k / ok. X

stop : X

9
=

;

gives an implementation where, for some values of x, the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k B
⇢

offer : k?(x). k / ok. X

stop : X

�

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the specification as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that the ok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &

⇢
offer[ok _ stop] :?(int). � { more : t, ok : t},
stop : t

�

The first process above should then not be well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the ⇡-calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the definition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range over service (or public)
channels; k, k

0
, t, s, . . . over session (or private) channels; and

e, e

0
, . . . over public channels, and arithmetic and other first-order

expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a process P , denoted by fsc(P) (fv(P)), are
defined as usual.

Semantics As semantics we use the standard reduction seman-
tics ! [7] except selection reduction steps are annotated with the
selected label. This allows us to define the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr(P) refer to the set of finite and infinite traces of labels of the
process P.

Liveness We can now define the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness). Assume a disjunctive response ⇢ =
�0 ^ �1 ^ . . .^ �n�1 for �i = li,1 _ . . ._ li,mi . A trace � 2 Tr(P)
of a process P then satisfies the request-response liveness property
l •! ⇢ if for all k < |�|, if �k = l then for all i 2 {0, . . . , n� 1}
there exists j 2 {1, . . . ,mi} such that there exists k

0
> k for

which �k0 = li,j .

We say that a process P has the liveness property wrt a set of
response liveness properties P whenever each trace � of P satisfies
every property in P .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the property l •! � for
� = l1 _ . . . lm if any occurrence of the label l is eventually
followed by a label li for some i 2 {0, . . . ,m}, and in general,
a trace satisfies the property l •! ⇢ for ⇢ = �0 ^ . . . �n�1 if it
satisfies l •! �j for all j 2 {0, . . . , n� 1}.

3. Live Session Typing
Session Types with Responses. The generalization of session
types to session types with responses is given by the following
grammar:

↵ ::= ?(✓). ↵ | !(✓). ↵ | &{li[⇢i] : ↵i} | �{li[⇢i] : ↵i} |
end | µt. ↵ | t

✓ ::= S | ↵ S ::= basic | h↵i
⇢ ::= > | � | ⇢ ^ ⇢ � ::= l | � _ �

Here, ?(✓). ↵ and !(✓). ↵ denote in-session input and output
followed by the communications in ↵. The type ✓ abstracts what
is communicated: a basic value (basic denotes basic types, e.g., int
or bool), a service channel of type h↵i, or a session channel of type
↵. Finally, &{li[⇢i] : ↵i} and �{li[⇢i] : ↵i} denote branching
and selection types, and end is the inactive session. Branching
and selection have been enhanced with disjunctive responses (⇢) as
introduced in the previous section. The response > (true) represents
the empty response, and thus we will usually write l for l[>].

Typing. We can now give a typing system for typing processes in
the ⇡-calculus with sessions introduced above. Environments have
the form:

�,⇤,⇥ ` P . �

where � is the service environment, ⇤ is the process environment,
⇥ is the response environment and � is the session environment. �
and � are assignments from service and session channels respec-
tively to session types with responses. The enviornment ⇥ records
for each session k to the responses that are still pending. The envi-
ronment ⇤ maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

⇤ ::= ⇤, X : f | ;
f ::= f, k : (�,⇥) | ;

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels � = l1 ^ . . . ^ ln and a disjunctive response
⇢. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulfill) the accumulated responses. Define
⇢⇥ = ⇢1 ^ . . . ^ ⇢n if ⇥ = k : ⇢1 · . . . · k : ⇢n.

For a label l and disjunctive response ⇢ we define the operation
⇢/l inductively as follows. For the base cases, define >/l = >,
and �/l = > if � = l1 _ . . . _ ln and l = li for some i 2 n, and
�/l = � otherwise. For the inductive case define (� ^ ⇢)/l = ⇢/l,
if �/l = > and (� ^ ⇢)/l = � ^ ⇢/l otherwise.

We then use (>, ⇢⇥) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then define the accumulation operator (used in the T-BRA and T-
SEL rules) X : (�, (�, ⇢))⌦(l,⇢0) = X : (�, (� ^ l, ⇢ ^ ⇢

0)). and
extend it inductively to process environments in the obvious way.

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k B

8
<

:

offer : k?(x). if (notEnough(x)) then
k /more. X else k / ok. X

stop : X

9
=

;

gives an implementation where, for some values of x, the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k B
⇢

offer : k?(x). k / ok. X

stop : X

�

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the specification as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that the ok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &

⇢
offer[ok _ stop] :?(int). � { more : t, ok : t},
stop : t

�

The first process above should then not be well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the ⇡-calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the definition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range over service (or public)
channels; k, k

0
, t, s, . . . over session (or private) channels; and

e, e

0
, . . . over public channels, and arithmetic and other first-order

expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a process P , denoted by fsc(P) (fv(P)), are
defined as usual.

Semantics As semantics we use the standard reduction seman-
tics ! [7] except selection reduction steps are annotated with the
selected label. This allows us to define the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr(P) refer to the set of finite and infinite traces of labels of the
process P.

Liveness We can now define the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness). Assume a disjunctive response ⇢ =
�0 ^ �1 ^ . . .^ �n�1 for �i = li,1 _ . . ._ li,mi . A trace � 2 Tr(P)
of a process P then satisfies the request-response liveness property
l •! ⇢ if for all k < |�|, if �k = l then for all i 2 {0, . . . , n� 1}
there exists j 2 {1, . . . ,mi} such that there exists k

0
> k for

which �k0 = li,j .

We say that a process P has the liveness property wrt a set of
response liveness properties P whenever each trace � of P satisfies
every property in P .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the property l •! � for
� = l1 _ . . . lm if any occurrence of the label l is eventually
followed by a label li for some i 2 {0, . . . ,m}, and in general,
a trace satisfies the property l •! ⇢ for ⇢ = �0 ^ . . . �n�1 if it
satisfies l •! �j for all j 2 {0, . . . , n� 1}.

3. Live Session Typing
Session Types with Responses. The generalization of session
types to session types with responses is given by the following
grammar:

↵ ::= ?(✓). ↵ | !(✓). ↵ | &{li[⇢i] : ↵i} | �{li[⇢i] : ↵i} |
end | µt. ↵ | t

✓ ::= S | ↵ S ::= basic | h↵i
⇢ ::= > | � | ⇢ ^ ⇢ � ::= l | � _ �

Here, ?(✓). ↵ and !(✓). ↵ denote in-session input and output
followed by the communications in ↵. The type ✓ abstracts what
is communicated: a basic value (basic denotes basic types, e.g., int
or bool), a service channel of type h↵i, or a session channel of type
↵. Finally, &{li[⇢i] : ↵i} and �{li[⇢i] : ↵i} denote branching
and selection types, and end is the inactive session. Branching
and selection have been enhanced with disjunctive responses (⇢) as
introduced in the previous section. The response > (true) represents
the empty response, and thus we will usually write l for l[>].

Typing. We can now give a typing system for typing processes in
the ⇡-calculus with sessions introduced above. Environments have
the form:

�,⇤,⇥ ` P . �

where � is the service environment, ⇤ is the process environment,
⇥ is the response environment and � is the session environment. �
and � are assignments from service and session channels respec-
tively to session types with responses. The enviornment ⇥ records
for each session k to the responses that are still pending. The envi-
ronment ⇤ maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

⇤ ::= ⇤, X : f | ;
f ::= f, k : (�,⇥) | ;

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels � = l1 ^ . . . ^ ln and a disjunctive response
⇢. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulfill) the accumulated responses. Define
⇢⇥ = ⇢1 ^ . . . ^ ⇢n if ⇥ = k : ⇢1 · . . . · k : ⇢n.

For a label l and disjunctive response ⇢ we define the operation
⇢/l inductively as follows. For the base cases, define >/l = >,
and �/l = > if � = l1 _ . . . _ ln and l = li for some i 2 n, and
�/l = � otherwise. For the inductive case define (� ^ ⇢)/l = ⇢/l,
if �/l = > and (� ^ ⇢)/l = � ^ ⇢/l otherwise.

We then use (>, ⇢⇥) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then define the accumulation operator (used in the T-BRA and T-
SEL rules) X : (�, (�, ⇢))⌦(l,⇢0) = X : (�, (� ^ l, ⇢ ^ ⇢

0)). and
extend it inductively to process environments in the obvious way.

2

Live	
 Sessions	
 with	
 Responses

• We propose annotating branching labels in e.g.

by disjunctive responses:

gives an implementation where, for some values of x, the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k B
⇢

offer : k?(x). k / ok. X

stop : X

�

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the specification as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that the ok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &

⇢
offer[ok _ stop] :?(int). � { more : t, ok : t},
stop : t

�

The first process above should then not be well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the ⇡-calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the definition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range over service (or public)
channels; k, k

0
, t, s, . . . over session (or private) channels; and

e, e

0
, . . . over public channels, and arithmetic and other first-order

expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a process P , denoted by fsc(P) (fv(P)), are
defined as usual.

Semantics As semantics we use the standard reduction seman-
tics ! [7] except selection reduction steps are annotated with the
selected label. This allows us to define the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr(P) refer to the set of finite and infinite traces of labels of the
process P.

Liveness We can now define the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness). Assume a disjunctive response ⇢ =
�0 ^ �1 ^ . . .^ �n�1 for �i = li,1 _ . . ._ li,mi . A trace � 2 Tr(P)
of a process P then satisfies the request-response liveness property
l •! ⇢ if for all k < |�|, if �k = l then for all i 2 {0, . . . , n� 1}
there exists j 2 {1, . . . ,mi} such that there exists k

0
> k for

which �k0 = li,j .
We say that a process P has the liveness property wrt a set of

response liveness properties P whenever each trace � of P satisfies
every property in P .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the property l •! � for
� = l1 _ . . . lm if any occurrence of the label l is eventually

followed by a label li for some i 2 {0, . . . ,m}, and in general,
a trace satisfies the property l •! ⇢ for ⇢ = �0 ^ . . . �n�1 if it
satisfies l •! �j for all j 2 {0, . . . , n� 1}.

3. Live Session Typing
Session Types with Responses. The generalization of session
types to session types with responses is given by the following
grammar:

↵ ::= ?(✓). ↵ | !(✓). ↵ | &{li[⇢i] : ↵i} | �{li[⇢i] : ↵i} |
end | µt. ↵ | t

✓ ::= S | ↵ S ::= basic | h↵i
⇢ ::= > | � | ⇢ ^ ⇢ � ::= l | � _ �

Here, ?(✓). ↵ and !(✓). ↵ denote in-session input and output
followed by the communications in ↵. The type ✓ abstracts what
is communicated: a basic value (basic denotes basic types, e.g., int
or bool), a service channel of type h↵i, or a session channel of type
↵. Finally, &{li[⇢i] : ↵i} and �{li[⇢i] : ↵i} denote branching
and selection types, and end is the inactive session. Branching
and selection have been enhanced with disjunctive responses (⇢) as
introduced in the previous section. The response > (true) represents
the empty response, and thus we will usually write l for l[>].

Typing. We can now give a typing system for typing processes in
the ⇡-calculus with sessions introduced above. Environments have
the form:

�,⇤,⇥ ` P . �

where � is the service environment, ⇤ is the process environment,
⇥ is the response environment and � is the session environment. �
and � are assignments from service and session channels respec-
tively to session types with responses. The enviornment ⇥ records
for each session k to the responses that are still pending. The envi-
ronment ⇤ maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

⇤ ::= ⇤, X : f | ;
f ::= f, k : (�,⇥) | ;

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels � = l1 ^ . . . ^ ln and a disjunctive response
⇢. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulfill) the accumulated responses. Define
⇢⇥ = ⇢1 ^ . . . ^ ⇢n if ⇥ = k : ⇢1 · . . . · k : ⇢n.

For a label l and disjunctive response ⇢ we define the operation
⇢/l inductively as follows. For the base cases, define >/l = >,
and �/l = > if � = l1 _ . . . _ ln and l = li for some i 2 n, and
�/l = � otherwise. For the inductive case define (� ^ ⇢)/l = ⇢/l,
if �/l = > and (� ^ ⇢)/l = � ^ ⇢/l otherwise.

We then use (>, ⇢⇥) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then define the accumulation operator (used in the T-BRA and T-
SEL rules) X : (�, (�, ⇢))⌦(l,⇢0) = X : (�, (� ^ l, ⇢ ^ ⇢

0)). and
extend it inductively to process environments in the obvious way.

The typing rules are given in Figure ??. Since we treat � and
� similarly to standard session typing [7], we only comment those
rules relevant for the property we wish to ensure.

Properties of Live Session Typing We now give a series of results
guaranteed by the presented typing system. The first two results are
an adaptation of [7].

2

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work on sessions with responses as an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are specified by anno-
tating branching and selection labels with a finite conjunction of
disjunctive responses. A disjunctive response is a finite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential infinite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types first appeared in [7] as types for abstracting commu-
nication patterns within a session. As a benefit, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such as safety (lack of communication
errors) and progress (a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning of liveness, i.e. that something
good will eventually happen, and not just something will eventually
happen.

A fundamental and very common form of liveness property is
the request-response property: ”Whenever some event a occurs,
some event b will eventually occur in the future” [2]. The request-
response property may be specified by the LTL formula G(a =)
Fb), where G is read as generally, i.e. in all future steps, and F
reads future, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as the disjunctive response property:
”Whenever some event a occurs, one event out of a given finite

set of response events {b1, . . . , bn} will eventually occur in the fu-
ture”. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulas G(a =) F⇢),
where ⇢ = �0 ^ �1 ^ . . . ^ �n�1 for �i = b1 _ . . . _ bmi .

Instead of using the LTL notation, we will use the shorter nota-
tion a •! ⇢ as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes defined as a property that can not be violated in finitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
finite executions. For instance, the request-response property can
be violated if the process terminates with an ”open” request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential infinite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the seller’s behaviour could be specified
by the following session type:

µt. &

⇢
offer :?(int). � { more : t, ok : t},
stop : t

�

The type above describes a non terminating session, where the
seller is offering the buyer two options, namely offer and stop.
If the first option is selected by the buyer then the seller expects to
receive an integer and then selects either more or ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The protocol (session) described above could be implemented
in several ways. For instance,

µX. k B

8
<

:

offer : k?(x). if (notEnough(x)) then
k /more. X else k / ok. X

stop : X

9
=

;

gives an implementation where, for some values of x, the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

µX. k B
⇢

offer : k?(x). k / ok. X

stop : X

�

Work	
 in	
 progress

• Soundness and Completeness of typing rules

• Complexity - and type inference

• Progress & more general properties

• Extending calculus (parametrized recursion,
bounded loops, fairness,time)

• Multiparty Session Types

