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Abstract
We present a usage inference algorithm for the Mungo language. Mungo is an object-oriented
programming language with usage annotations describing the permitted sequence of method calls
on objects. A typestate in Mungo is a class name and a usage, and describes the type of an
object. The type system for Mungo ensures that well typed programs follows the specified usages
of all classes, and that null-dereferencing cannot occur at runtime. We show that the inference
algorithm correctly infers the principal usage, the largest usage that does not result in runtime
errors. Furthermore we show that a class is well-typed with an inferred usage. We present an
implementation of both the type system and the inference algorithm, and provide an analysis on
time and space complexity of both the algorithm and the inferred usage.
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1 Introduction

Typestates are a programming language concept introduced by Strom & Yemini in [21] that
allow us to statically verify that the order of operations on a variable is correct such that
we avoid null-dereferencing errors and other semantically undefined expressions. Typestates
were originally applied to variables as pre and postconditions. Since then typestates have
been applied in a variety of situtations. One such example is a typestate oriented program-
ming paradigm [1, 2] where objects are modelled as states in a labelled transition system,
and the transitions are defined by pre and post-conditions on methods.

In this paper, we focus on the object-oriented calculus Mungo presented by Kouzapas et
al. in [15] where classes are associated with protocols called usages, inspired by the session
types presented by Gay et al. in [9]. Usages allow programmers to specify the allowed
method call sequences for each class, as opposed to distributing the same logic across each
method using pre and postconditions. In usage definitions, we allow three behaviours. The
first is branching {mi; wi}

#»
E
i∈I where mi describe the available set of methods names along

with their remaining protocols wi. The second is choice ⟨li : ui⟩
#»
E
li∈L where li are labels

and usages ui are chosen based on the return label of a method. Finally, recursive usages
X

#»
E⊎{X=u} allow a usage variable to be used in its definition and is then unfolded to allow

recursive behaviour. The allowed behaviour is dependent on the state of an object. we call
this state a typestate and it consists of a class name and a usage.

The calculus was originally presented as part of the paper describing the tools Mungo and
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St. Mungo [15]. Their typechecker works by identifying the usage followed in the program
and then check that it is a sub-usage of the one declared for the class. Later, a different
approach to typechecking was presented by Golovanov et al. in [10] as a continuation of
the work by Bravetti et al. in [5]. In their work typechecking is done by following and
typechecking usage transitions. This way only the reachable methods are type checked. The
research on Mungo is part of the work applying typestates to mainstream programming
languages. Similarly, work in applying typestates to C# has been proposed by DeLine &
Fähndrich in [8] and to C in [7]. Bierhoff et al. proposes a typestate checker for Java
in [4]. A central difference between Mungo and these approaches is that they use pre and
postconditions, similar to the approach by Strom & Yemini [21], whereas Mungo uses usages.

In Mungo, programmers manually specify usages for each class; however, in any given
OOP program we can have a class where we only care about null-dereferencing errors and
not about following a specific protocol. For example, a simple model class that only contains
accessor methods would require a usage to include the accessor methods of each field. In
Example 1 we illustrate that usages can become large, when no particular order of method
calls is required. Usage inference allow programmers to reserve explicit usage specification
to classes where they are concerned about protocol errors, thus making typestate definitions
less intrusive in a practical setting. For the remaining classes, usage inference can ensure
that no errors captured by the type system occur, while still avoiding have to write the large
usages.

▶ Example 1. Conside the Product class below. The class has two fields with setters, and a
method for adding the product information to a catalog. We assume that the Catalog class
contains a method add that takes as arguments two initialised objects of classes String and
PInfo.

The information can be added to the product class in any order, but all information
should be available when calling addToCatalog, and afterwards the protocol is finished.

1 class Product {
2 String sku;
3 PInfo info;
4
5 void setSku(String x) { sku = x; }
6 void setInfo(PInfo x) { info = x; }
7
8 Catalog addToCatalog(Catalog c) {
9 c.add(sku, info);

10 return c;
11 }
12 }

The protocol for the Product class can be seen in Figure 1, and allows calling setSku and
setInfo in any order. This is still manageable with two fields, but if the class had many
fields, the usage would quickly become large. Generally this would happen when a class
has many linear fields that can be affected in separate methods. In this particular example,
adding one more field would result in 9 distinct states, while adding two more fields would
result in 17 distinct states. Generally for k linear fields, we have O(2kl) states where l is the
number of states in the field usages.

Another problem in the current Mungo toolchain is that we can only check our own
modules and assume external modules are safe. With usage inference we can verify the
safety of external open source modules and that our use of them is safe with regard to
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s0start s1

s2 s3 end

setSku

setInfo setInfo

setSku addToCatalog

Figure 1 Protocol for the Product class

the Mungo typesystem. This could of course also be used more generally to check external
modules, and verify the absence of run-time errors captured by the type system. This would
give guarantees that a program is safe, without the original author introducing usages to
their program.

Most work in the area of typestate and session type inference is based on extracting
constraints from the program text and then solving the constraints to create an inferred type
[22, 18, 14, 12]. For example, we can infer session types by creating pre and postconditions
for each channel and then solve the constraints defined by these conditions. For usages, we
could employ a similar approach by creating pre and postconditions for each method of a
class, however, we would run into issues concerning protocol completion. If we overwrite a
field in a method then we cannot be sure it is a terminated field since we only consider a
local aspect of the program. Since we cannot guarantee protocol completion because its a
liveness property, we cannot ensure that the inferred usage is well-typed in the type system.

We propose the following approach to usage inference that ensures protocol completion.
We start by creating a dependency graph between classes such that a class is dependent
on the classes of its fields. We require that the graph is acyclic in which case an ordering
of the acyclic graph gives us the order of inference. Once we have this order, we consider
possible field environments and how method calls could effect these environments. A field
environment contains the current typestate of all fields of the class. Calling a method of the
class can change the field environment. If the updates to the field environment, described
by the method body, are allowed with regards to field environment, then a transition is
added to the updated environment. We check every method and every field state of a class
and filter non-terminating states from the labelled transition system before creating the
usage. Creating a usage from the labelled transition system is simple since each state can
be represented as a recursion variable and transitions are paths in a branch usage for the
associated recursion variable.

We claim our contribution is a novel approach to usage inference and we prove that
inferring usages with our proposed approach guarantees that usages are principal, meaning
they can simulate any usage that can well-type a class. Furthermore, we prove that the
inferred usage is itself well-typed hence we avoid null-dereferencing errors and guarantee
protocol completion. Finally we present a prototype tool mungoi that implements the usage
inference as well as the type system for Mungo.

The remainder of the article is structured as follows: Section 2 describes the Mungo
calculus that we consider. Section 3 formally defines the inference problem and the properties
that must hold for inferred usages. Section 4 describes our approach to usage inference.
Section 5 shows an in-depth example of usage inference. In Section 6 we show that the
required properties holds for inferred usages. The implementation of the tool mungoi is
discussed in Section 7. In Section 8 we propose an extension to the type system, to allow
inferring method parameter usages. In Section 9 we discuss related work to inference of
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behavioural types. Finally, in Section 10 we discuss our findings, and presents ideas for
future work.

2 The Language

A Mungo program is a set of declarations D describing a collection a classes and enumerated
types. A class C consist of methods # »

M and private fields #»

F , and is annotated with a usage U .
The syntax with corresponding syntactic categories for the program definitions are shown
below. x ranges over method parameter names.

(Declarations) D ::= enum L { #»

l } | class C {U ,
# »

M,
#»

F }
(Fields) F ::= z f

(Methods) M ::= t m(t x){e}
(Values) v ::= unit | true | false | l | null
(References) r ::= x | f

(Expressions) e ::= v | r | new C | f = e | r.m(e) | e; e

| if (e) {e} else {e} | switchr.m (r.m(e)) {li : ei}ii∈L

| k : e | continue k

For a class defined as class C {U ,
# »

M,
#»

F } we define the following notation.

C.methods def= # »

M C.fields def= #»

F C.usage def= U

The syntax of types is shown in the following abstract syntax. We distinguish between
base types, class types and field types. Base types describe the primitives of our language,
and class types are typestates as previously introduced, and is composed of a class name C

and a usage U into a typestate C[U ]. The distinction between a field type z and a type t

is that for classes we do not consider the usage, hence a field can contain an object of the
class regardless of its usage.

(Base types) b ::= void | bool | L

(Field types) z ::= b | C

(Types) t ::= b | C[U ]

(Usages) U ::= u
#»
E

u ::= {mi; wi}i∈I | X

w ::= u | ⟨li : ui⟩li∈L

E ::= X = u

A special type ⊥ is used to represent the type of a null value. Usages, as previously
mentioned, describe the protocol of a class. Following a step of the protocol, is represented
by a transition on the usage. Table 1 shows the two kinds of transitions a usage can describe.
The rule (Branch) allows choosing one of the available methods defined in the branch usage,
while (Sel) describes choosing a remaining protocol based on the return value of a method.
Finally, (Unfold) allows recursive behaviour by replacing usage variables with the definition
of said variable. The usage end represents the finished protocol, where no more transitions
are available.
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(Branch)
j ∈ I

{mi : wi}
#»
E
i∈I

mj−−→ w
#»
E
j

(Unfold) u
#»
E∪{X=u} m−→ U

X
#»
E∪{X=u} m−→ U

(Sel) (⟨li : ui⟩li∈L)
#»
E li−→ u

#»
E
i

Table 1 Transitions for usages

In Mungo we employ a linear typing discipline, where there can be only one reference
to an object, and where the protocol of an object must be finished, before discarding the
object. To that end, we use the concept of linear types from [10].

▶ Definition 2 (Linear type). Let t be a type. We say that t is linear, written lin(t), if it a
type state with a usage different from end.

lin(t) def= ∃C,U . t = C[U ] ∧ U ̸= end.

We use this concept to ensure protocol completion, as we can ensure that linear objects
are not lost when overriding fields, or using objects as parameters to methods. Having only
a single reference to an object makes it possible to reason about state changes in the object,
as we know that changes can happen only through that reference. We extend this concept
to the fields of a class, and say that the class fields are terminated if the types of all fields
are non-linear.

3 The Usage Inference Problem

In this section, we define the problem of usage inference. The goal of inference is to allow
the programmer to specify the usage, only when a specific protocol is required to be followed.
If no particular protocol is required to be followed, a usage must be inferred such that no
run-time errors caught by the type system can occur. This usage must also be the most
permissible usage that will not result in errors, such that valid method call sequences are
not disallowed. This section will formalise the inference problem, as well as the properties
that inferred usages must adhere to.

To define what is meant by most permissible, we define an ordering of usages. The
intuition of this ordering is that if U ⊑ U ′ then U ′ can describe the same behaviour as U
and possibly more. We define this as a simulation ordering [20] where U ′ must be able to
match any transition sequence from U .

▶ Definition 3 (Usage subtyping). Let R ⊆ Usages×Usages. R is a usage simulation iff
for all (U1,U2) ∈ R we have that:
1. If U1

m−→ U ′
1 then U2

m−→ U ′
2 such that (U ′

1,U ′
2) ∈ R

2. If U1
l−→ U ′

1 then U2
l−→ U ′

2 such that (U ′
1,U ′

2) ∈ R

We say that U is a subusage of U ′ written U ⊑ U ′ if there exists a usage simulation R such
that (U ,U ′) ∈ R.

With the ordering relation ⊑ defined, the principal usage is the largest usage for a class
that will not experience errors caught by the type system.

▶ Definition 4 (Principal Usage). A usage U is a principal usage for class C if ⊢ #»
D class C{U

,
#»

F ,
# »

M} and for all U ′ where ⊢ #»
D class C{U ′,

#»

F ,
# »

M} we have that U ′ ⊑ U .
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The reason that we require the inferred usages to be principal is that otherwise the usage
end∅ would be a valid inferred usage for any class. The usage will result in no run-time errors,
as no method calls will be allowed, but will of course not allow any well-behaving method
call sequence either.

A consequence of inferring principal types is that inferred usages will always be recursive.
As we require protocol completion, every object will, at the end of its protocol, have only
non-linear fields. This particular state is similar to the initial object state, hence the protocol
can be followed once more. So if a class is well-typed with usage U = u

#»
E , then it will also

be well-typed with the usage u
#»
E{end / u}. The only way to capture this in the inferred

usages is to have a recursive structure, where a class can either terminate with usage end or
return to the initial usage.

We now formally define the inference problem. We allow classes to not have declared
usages, meaning that for a class C, C.usage can be undefined. The problem of usage inference
is then to define a substitution for unspecified usages with a principal usage for the given
class.

▶ Definition 5 (Inference Problem). Given a program #»

D, find for each C ∈ #»

D where C.usage
is not defined, a usage U such that U is a principal usage for C.

When inferring usages, we require that the usages of fields are known at inference time.
This has the obvious implication that inference for a class with a field of its own type, is not
supported by this type of inference. Also, we cannot infer the usages of classes that contains
fields of each other. We therefore need a way to represent dependencies between classes, in
order to ensure we only attempt to infer usages when we know the usage of each field. This
is defined formally as follows.

▶ Definition 6 (Inference Graph). An inference graph G #»
D for a program #»

D is a directed graph
and is given by G #»

D = ( #»

C, {(C2, C1)|C1, C2 ∈
#»

D∧ (C2 f) ∈ C1.fields∧C2.usage is undefined∧
C1.usage is undefined}). The order of inference is given by a topological ordering of the
vertices of G.

We only consider inference graphs which are acyclic, where there are no cyclic dependen-
cies in field usages, because all fields must be known in order to do inference. Furthermore,
edges are only added between classes with undefined usages, meaning that cycles can be
avoided by specifying the usage for one of the classes that would otherwise have a cyclic
dependency.

4 Usage Inference

To ensure that the inferred usages do not allow for null-dereferencing, we use an approach
similar to that of the original type system, to track the usages of fields. Since we do not
allow overriding linear values, we cannot use the approach from [16] where pre-conditions
are extracted right-to-left of method bodies. Instead, the idea that we employ is to scan
the method bodies left-to-right and create a transition system between object states. These
object states then act as pre-conditions for calling other methods.

Extracting the Method Availability Transition System
The first step of inferring the usage is to identify what methods are available for a class at
what times. For this we use a rooted labelled transition system (RLTS). A RLTS is a 4-tuple
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(Q, A,−→, q0) where Q is the set of states, A are the labels, −→⊆ Q×A×Q are the transitions
and q0 ∈ Q is the initial state [11].

In this transition system, we wish to reflect the change on an object caused by a method
call. For this, we use the field typing environment as defined in [10]. The effect a method
can have is a change to the fields on the object, which will be reflected by a change in type
in the field typing environment.

▶ Definition 7 (Field typing environment). The field typing environment is a partial func-
tion and maps field names to types. We write EnvTF to denote the set of all field typing
environments.

envTF : FNames ⇀ (Typestates⊥ ∪BTypes).

For the method availability transition system, the states are the field typing environments
Q = EnvTF and the labels are the method names A = {m | t m(t′ x){e} ∈ C.methods}. The
initial state is the initial field typing environment q0 = #»

F .inittypes. We define #»

F .inittypes to
be a field typing environment where fields are mapped to their initial type. For fields with
class types, the initial type is ⊥, otherwise the field of base types are simply mapped to
their base type. The transition relation −→ is given by the (Class) rule in Table 2. The −→
relation contains a transition between two states envTF

m−→ envT ′
F if calling method m in

the field typing environment envTF does not result in errors and the resulting field typing
environment is envT ′

F .

(Class)

{this 7→ envTF }; ∅ · (this, [x 7→ t]) ⊢∅ e : t′ ▷ {this 7→ envT ′
F }; ∅ · (this, [x 7→ t′′])

t′ m(t x) {e} ∈ C.methods ¬lin(t′′)

envTF
m−→ envT ′

F

Table 2 Method availability transition relation −→

The (Class) rule types an expression in its premise using the type system presented in
[10]. Here we present the intuition of the type system and defer a more detailed explanation
to Appendix A. The general intuition underlying the type system is that we follow the
usage transitions of a class, and check that each transition does not result in a protocol
error. The typing rules for classes are shown in Table 3. The judgments are of the form
Θ; envTF ⊢ #»

D C[U ] ▷ envT ′
F , and can be read as: “By following usage U starting with the

field environment envTF , the resulting field environment is envT ′
F ”. The environment Θ is

used to handle recursive usage variables in the rules (TCRec) and (TCVar). The central
rule (TCBr) checks that method sequences defined by the usage, do not lead to the errors
captured by the type system. It does so by type checking the method body of the method
specified by the usage, given the current bindings of fields in envTF . The rule (TCCh) is for
type checking choice usages and does so by verifying that no matter what branch is chosen,
the resulting method sequences will not experience errors.

Type judgements for expressions are of the form Λ; ∆ ⊢Ω e : t ▷ Λ′; ∆′ where Λ is used to
store the current field type environment, ∆ stores the current object context and parameter
bindings, and Ω stores environments used for labelled expressions.

Notice that the premise of (Class) is similar to that of (TCBr), this is the connection
between inference and the type system, where a transition is added to −→, if that same
method call would be well-typed with (TCBr).
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(TCBr)

I ̸= ∅ ∀i ∈ I . ∃envT ′′
F .

{this 7→ envTF }; ∅ · (this, [xi 7→ t′
i]) ⊢ #»

D ei : ti ▷ {this 7→ envT ′′
F }; ∅ · (this, [xi 7→ t′′

i ])
terminated(t′′

i ) ti mi(t′
i xi){ei} ∈ C.methods #»

D Θ; envT ′′
F ⊢ #»

D C[u
#»
E
i ] ▷ envT ′

F

Θ; envTF ⊢ #»
D C[{mi; ui}

#»
E
i∈I ] ▷ envT ′

F

(TCCh)
∀li ∈ L . Θ; envTF ⊢ #»

D C[u
#»
E
i ] ▷ envT ′

F

Θ; envTF ⊢ #»
D C[⟨li : ui⟩

#»
E
li∈L] ▷ envT ′

F

(TCEn) Θ; envTF ⊢ #»
D C[end

#»
E ] ▷ envTF

(TCVar) (Θ, [X 7→ envTF ]); envTF ⊢ #»
D C[X

#»
E ] ▷ envT ′

F

(TCRec)
(Θ, [X 7→ envTF ]); envTF ⊢ #»

D C[u
#»
E ] #»

D ▷ envT ′
F

Θ; envTF ⊢ #»
D C[X

#»
E⊎{X=u}] ▷ envT ′

F

Table 3 Typing class usage definitions

Usage Graph

From the method availability transition system, we create another RLTS (S, A, =⇒, s0), rep-
resenting the usage of a class. We call this transition system the usage graph. The construc-
tion of the usage graph is similar to what we presented informally in Example 1.

For simplicity, we say that all terminated field typing environments are equal. Hence if
terminated(envTF ) and terminated(envT ′

F ) then envTF = envT ′
F . This will result in smaller

inferred usages, and will not affect correctness, as all terminated field typing environments
allow the same method calls. We write envTF⊥ to indicate a terminated field typing envir-
onment.

The set of states in the usage graph is a subset of the method availability transitions,
with the addition of the state end, indicating that the usage is in the end state. end is not
a field typing environment like the remaining states and denotes the terminated protocol,
rather than a terminated field typing environment.

S = {envTF | envTF⊥ →∗ envTF ∧ envTF →∗ envTF⊥} ∪ {end}

We require that only reachable field typing environments are used as states, furthermore we
require that any field typing environment can also execute a sequence of method calls to
return to a terminated field typing environment envTF⊥ . The reason for this is to ensure
that all method sequences allowed in the final usage can reach end.

The labels of the transition system are the method names of C, A = {m | t m(t′ x){e} ∈
C.methods} as the previous RLTS. The initial state is again s0 = #»

F .inittypes. The transition
relation =⇒ is described by the rules in Table 4. The (Trans) rule tells us that a class
usage allows a method m from environments envTF to envT ′

F if the same transition can be
extracted by rule (Class). Rule (End) handles the case where a field typing environment
has a transition to a terminated field typing environment, in which case the usage graph
should contain a transition to the end state.



I. Golovanov, M. S. Jakobsen and M. K. Kettunen 9

(Trans)
envTF

m−→ envT ′
F

envTF
m=⇒ envT ′

F

(End)
envTF

m−→ envTF⊥

envTF
m=⇒ end

Table 4 The usage graph transition relation =⇒

Generating a Usage

We now describe how to convert a usage graph to a usage that can be type checked. The
idea behind the algorithm is to represent each state of the usage graph as a usage variable.
Transitions from a state in the usage graph will be represented as a branch usage {mi; Xi}i∈I

where mi is the method name, and Xi is the usage variable of the next state in the usage
graph. We use the notation Xq to describe a usage-variable that is unique for a particular
state q ∈ S.

In Table 5 and Table 6 a declarative description of usage generation is shown. The
judgements for usage generation are of the form (S, A, =⇒, s0) ▷ U and tell us how to create
a usage from the usage graph, by extracting usage fragments and assign them to usage
variables. The judgements for usage fragment generation are of the form (S, A, =⇒, s0) ⊢ s▷w

and describe how we create individual usage fragments w with respect to a state s ∈ S.

The rule (IClass) tells us that in the context of a RLTS (S, A, =⇒, s0) we can create a
usage X

{Xsi
=Ui}

envTF⊥
if for each state si in S we can create the associated usage fragment ui.

(IClassEnd) (S, A, ∅, envTF⊥ ) ▷ end∅

(IClass)
=⇒≠ ∅ ∀si ∈ S (S, A, =⇒, envTF⊥ ) ⊢ si ▷ Ui

(S, A, =⇒, envTF⊥ ) ▷ X
{Xsi

=Ui}
envTF⊥

Table 5 Usage generation rules for constructing usage variables and assigning usage fragments
to them.

The rule (ICall) handles the case where we want to build a branch usage fragment. It
tells us that given a state envTF we can create a usage fragment {mi; Xsi}mi∈A,si∈S if a
transition exists in the transition system such that starting in envTF we can reach state
si using method mi. In (ICallE) we handle the case where the method called returns an
enum label. It works in a similar way to rule (ICall) but creates an additional choice step
with the labels of enum L. We now have a situation where a usage fragment w can non-
deterministically choose between the choice usage with the fragment {mi; ⟨lj : Xsi⟩lj∈L}, or
the usage variable with the fragment {mi; Xsi

}. There is no difference in the usage Xsi
for

each choice label, simply because imposing any constraints on one branch would make the
usage non-principal.
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(ICall)
envTF

mi=⇒ si t mi(t′ x) {e} ∈ C.methods t ̸= L

(S, A, =⇒, envTF⊥ ) ⊢ envTF ▷ {mi; Xsi }mi∈A,si∈S

(ICallE)
envTF

mi=⇒ si L mi(t′ x) {e} ∈ C.methods
(S, A, =⇒, envTF⊥ ) ⊢ envTF ▷ {mi; ⟨lj : Xsi ⟩lj ∈L mi; Xsi }mi∈A,si∈S

(IEnd) (S, A, =⇒, envTF⊥ ) ⊢ end ▷ end

Table 6 Usage generation rules for constructing usage fragments.

From the rules it can be seen that the inferred usage of a class will be on the form
X{Xi={mi;X′

i} Xj={mj ;⟨lk:X′
j⟩lk∈L mj ;X′

j}}i∈I,j∈J . In other words, each usage variable defini-
tion XenvTF

= {m; XenvT ′
F
} describes a transition envTF

m=⇒ envT ′
F in the usage graph.

The rules of Table 5 and Table 6 declaratively defines how a usage is generated from the
usage graph. Based on this, we present an imperative algorithm for generating the usage,
as shown in Algorithm 1. We use the following notation to build branch usages:

{mi : ui}i∈I ∪ {mj : uj}j∈J
def= {mi : ui mj : uj}i∈I,j∈J .

Algorithm 1 Usage Generation

1: function Infer(S, A, =⇒, envTF⊥)
2: function Reach(envTF )
3: return {envT ′

F | ∃m ∈ A.envTF
m=⇒ envT ′

F }
4: function CreateState(envTF )
5: u ← ∅
6: for all m ∈ A do
7: for all s ∈ S do
8: if envTF

m=⇒ s then
9: if s = end then

10: u ← u ∪ {m; end}
11: if L m(_ x){_} ∈ C.methods then
12: u ← u ∪ {m; ⟨li : end⟩li∈L}
13: else
14: u ← u ∪ {m; Xs}
15: if L m(_ x){_} ∈ C.methods then
16: u ← u ∪ {m; ⟨li : Xs⟩li∈L}
17: return u

18: if Reach(envTF⊥) = ∅ then
19: return end∅

20: E ← ∅
21: for all envTF ∈ S \ {end} do
22: E ← E ∪ {XenvTF

= CreateState(envTF )}
23: return XE

envTF⊥
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5 Example

In this section we show an example of how a usage is inferred. We consider a simple bank
example with two classes: Account and Customer, where the usage for the Account class
is known:

Account.Usage = {init; X}
#»
E

where

#»

E = {X = {deposit; X enoughFunds;
⟨

true : {withdraw; X}
false : X

⟩
close; end}}

It specifies that the Account class has five public methods: init, withdraw, deposit
, enoughFunds, and close. The usage defines a protocol where after initialisation the
protocol enters a recursive state where money can be added to an account or withdrawn
given there are enough funds in the account. At some point, the protocol can be finished by
closing the account.

In Listing 1 a Customer class is declared with two Account fields. Inferring a usage for
Customer proceeds by following the approach described in Section 4. The algorithm starts
by creating a method availability transition system for the class. Then non-terminating
transitions are filtered out, resulting in a usage graph. Finally, the usage graph is converted
into a usage. In the remaining part we use the abbreviations sa

def= savingsAccount,
da

def= debitAccount, and Acc
def= Account.

1 class Customer{
2 Account savingsAccount
3 Account debitAccount
4
5 void createDebitAccount(){
6 debitAccount = new Account();
7 debitAccount.init()
8 }
9 void createSavingsAccount(){

10 savingsAccount = new Account();
11 savingsAccount.init();
12 savingsAccount.deposit()
13 }
14 void transferFunds(){
15 switch(savingsAccount.enoughFunds()){
16 true: savingsAccount.withdraw();
17 debitAccount.deposit()
18 false: unit
19 }
20 }
21 void closeAccounts(){
22 debitAccount.close();
23 savingsAccount.close()
24 }
25 }

Listing 1 Customer class definition
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The algorithm starts by considering the initial field typing environment envTF = Acc

.fields.inittypes = {sa : ⊥, da : ⊥}. From envTF it then examines all methods of the class
and attempts to derive a transition to some envT ′

F using the rule (Class). For example,
Table 7 shows the derivation of a transition from envTF to envTF {da 7→ Account[X]} using
method createDebitAccount where Λ⊥ = {this 7→ envTF }.

Class

TSeq

TFld

TNew
Λ⊥; ∅ · (this, [x 7→ void]) ⊢ #»

D new Acc : Acc[Acc.Usage] ▷ Λ⊥; ∅ · (this, [x 7→ void])
¬lin(⊥) Acc = Λ(this).class agree(Acc.fields(da),Acc[Acc.Usage])

Λ⊥; ∅ · (this, [x 7→ void]) ⊢ #»
D da = new Acc : void ▷ Λ⊥{this.da 7→ Acc[Acc.Usage]}; ∅ · (this, [x 7→ void])

TCallF
Acc.Usage init−−−−→ X void init(void x) {_} ∈ Acc.methods

Λ⊥{da 7→ Acc[Acc.Usage]}; ∅ · (this, [x 7→ void]) ⊢ #»
D da.init() : void ▷ Λ⊥{this.da 7→ Acc[X]}; ∅ · (this, [x 7→ void])

Λ⊥; ∅ · (this, [x 7→ void]) ⊢ #»
D da = new Acc;da.init() : void ▷ Λ⊥{this.da 7→ Acc[X]}; ∅ · (this, [x 7→ void])

void createDebitAccount(void x){new Acc;da.init()} ∈ Acc.methods

envTF
createDebitAccount−−−−−−−−−−−−−−−−−−−→ envTF {da 7→ Acc[X]}

Table 7 Derivation for a transition from initial state using method createDebitAccount

Since a derivation from envTF to envTF {da 7→ Account[X]} with createDebitAccount

is possible, the transition is included in the method availability transition system. Continu-
ing with the same approach for every method in Customer with respect to envTF results
in the following transitions: Calling createSavingsAccount from envTF is allowed and
results in a transition to envTF {sa 7→ Account[X]}. Finally, calling transferFunds or
closeAccounts from envTF is impossible hence no transitions are added for these meth-
ods.

At this point, all methods of class Customer have been considered as transitions from
envTF . Now the same procedure is repeated for every other field typing environment. Since
we know that in the usage graph, unreachable states from envTF are filtered out, we only
consider the transitions in the reachable subgraph of the method availability transitions.
Figure 2 shows the section of the method availability transitions, reachable from envTF

where envT
(1)
F = {da : Account[X], sa : ⊥}, envT

(2)
F = {da : ⊥, sa : Account[X]}, and

envT
(3)
F = {da : Account[X], sa : Account[X]}.

envTFstart envT
(1)
F

envT
(2)
F envT

(3)
F

createDebitAccount

createSavingsAccount createSavingsAccount

createDebitAccount

transferFunds

closeAccounts

Figure 2 Method availability transition system of class Customer

The method availability transition system in Figure 2 is transformed into a usage graph
by filtering out non-terminating transitions and using the rules in Table 4. In the case of the
Customer no states from the figure is filtered, but an end state is added with a transition
from envT

(3)
F using closeAccounts as stated in rule (End).

The usage graph is then converted into an usage by using the rules in Table 5 and
Table 6. Starting from the root state of the usage graph envTF , rule (IClass) specifies
that the usage is of the form X

#»
E ′

envTF
where #»

E ′ contains a number of recursive variables
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assigned to usage fragments. Since there exists a transition from envTF to envT
(1)
F with

label createDebitAccount and from envTF to envT
(2)
F with label createSavingsAccount,

then using rule (ICall) a usage fragment

{
createDebitAccount; X

envT
(1)
F

createSavingsAccount; X
envT

(2)
F

}
is created

and assigned in #»

E ′ to variable XenvTF
by rule (IClass). The same procedure is applied for

each state in the usage graph. Finally, the inferred usage is

Customer.Usage = X
# »

E′

envTF

where

# »

E′ =



XenvTF
=

{
createDebitAccount; X

envT
(1)
F

createSavingsAccount; X
envT

(2)
F

}
X

envT
(1)
F

= {createSavingsAccount; X
envT

(3)
F

}
X

envT
(2)
F

= {createDebitAccount; X
envT

(3)
F

}

X
envT

(3)
F

=


transferFunds; X

envT
(3)
F

closeAccounts; XenvTF

closeAccounts; end




.

6 Inference Algorithm Properties

In this section, we describe the properties and prove the correctness of the inference al-
gorithm. The most interesting result is that the inferred usage is a principal usage, meaning
that it is the largest usage that makes a class well-typed.

The first property that we show is, that the inference algorithm terminates and that a
usage is returned.

▶ Lemma 8 (Inference Algorithm Termination). Given a class C, the inference algorithm
returns a usage.

Proof. By inspection of Algorithm 1 we see that all loops are bounded, hence the algorithm
will terminate and return a usage, possibly the trivial usage end∅. At the end of this section,
we provide an analysis of the runtime complexity of the algorithm.

◀

The next lemma shows the relation between the method availability transitions and the
usage graph. If a usage makes a class well-typed, then all field typing environments reachable
with that usage is present in both the method availability transition system and the usage
graph. This lemma is used in the following proofs because it shows that the interesting field
typing environments are not filtered out as part of the construction of the usage graph.

▶ Lemma 9 (RLTS Filtering). Let ⊢ #»
D class C {U ,

# »

M,
#»

F } and let m1, m2, . . . , mk be a method
sequence. If U m1−−→ · · · mk−−→ U ′ ignoring label-transitions, and envT ′′

F is the resulting field
typing environment starting from envTF⊥ , then envTF⊥

m1−−→ · · · mk−−→ envT ′′
F and envTF⊥

m1=⇒
· · · mk==⇒ envT ′′

F .

Proof. Let be C be a well typed class ⊢ #»
D class C{U ,

#»

F ,
# »

M}. Since we have that ∅; #»

F .inittypes
⊢ #»

D C[U ] ▷ envT ′
F and terminated(envT ′

F ), we can create a labelled transition system for the
class, as illustrated in Figure 3. The transitions represent following a transition of the usage,
and each node is a usage along with the corresponding field typing environment.
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#»

F .inittypes;U envT 2
F ;U2

envT 1
F ;U1

...

envT n
F ;Un

. . .

. . .

. . .

envT k
F ;Uk

envT k+1
F ;Uk+1

envT k
F ;Uk+2

. . .

. . .

envT ′
F ; end

m1

m2

m3

mk

lk

Figure 3 LTS for U

Consider the rules (TCBr) and (TCCh) in Table 8 (repeated from Table 3). Starting
from the pair ( #»

F .inittypes;U) where we know that ∅; #»

F .inittypes ⊢ #»
D C[U ] ▷ envT ′

F , the two
rules ensures that for each following state (envTF ;U ′) in the LTS we have that ∅; envTF ⊢ #»

D

C[U ′]▷envT ′
F . This gives us that if (envTF ;U ′) m−→ (envT ′′

F ;U ′′) then by (TCBr) the method
body of m is well typed, and the parameter is terminated, hence we have envTF

m−→ envT ′′
F .

Since this is the case for any pair in the graph, we have that all nodes can reach a terminated
environment envT ′

F , hence no reachable states are filtered out in the usage LTS and we have
envTF

m=⇒ envT ′′
F .

(TCBr)

I ̸= ∅ ∀i ∈ I . ∃envT ′′
F .

{this 7→ envTF }; ∅ · (this, [xi 7→ t′
i]) ⊢ #»

D ei : ti ▷ {this 7→ envT ′′
F }; ∅ · (this, [xi 7→ t′′

i ])
terminated(t′′

i ) ti mi(t′
i xi){ei} ∈ C.methods #»

D Θ; envT ′′
F ⊢ #»

D C[u
#»
E
i ] ▷ envT ′

F

Θ; envTF ⊢ #»
D C[{mi; ui}

#»
E
i∈I ] ▷ envT ′

F

(TCCh)
∀li ∈ L . Θ; envTF ⊢ #»

D C[u
#»
E
i ] ▷ envT ′

F

Θ; envTF ⊢ #»
D C[⟨li : ui⟩

#»
E
li∈L] ▷ envT ′

F

Table 8 Typing class usage definitions

◀

The following theorem proves that the usage inferred by Algorithm 1 and the rules in
Section 4, is the largest usage. This is one of the two properties that must be true, for the
inferred usage to be considered principal.

▶ Theorem 10 (Largest Usage Inferred). Let C be a class and UI be an inferred usage, then
UI must be the largest usage. In other words, we have that ∀U . ⊢ #»

D class C {U ,
#»

F ,
# »

M} =⇒
U ⊑ UI .

Proof sketch. We assume that C is well-typed with some usage U , and show that this usage
can be simulated by the inferred usage UI . To show that this is the case, we build a relation
R and show that this is a simulation, showing that U ⊑ UI .

The relation R is built iteratively, starting from the pair (U ,UI). Then each iteration
adds three types of pairs to the relation. Figure 4 illustrates the different pairs. The first



I. Golovanov, M. S. Jakobsen and M. K. Kettunen 15

type of pair, connected by dots, captures the transition caused by a method call, where the
return value is not used in a switch (i.e. the following usage is not a choice usage). The
second type of pairs, indicated by dashes, adds pairs where a method call is followed by a
choice. The final type of pairs adds pairs where a label is chosen in a choice-usage.

U

⟨li : ui⟩
# »

E′ U ′

u
# »

E′

2u
# »

E′

1 u
# »

E′

3

X
#»
E
envTF

X
#»
E
envT ′′

F
⟨li : XenvT ′′′

F
⟩

#»
E

X
#»
E
envT ′′′

F

m m′

l1 l2 l3

m′ m

li

Figure 4 Snapshot of the iterative building of simulation relation

As long as new pairs are added, the iterations continue, and when we reach a fixed-point,
the relation will be a simulation. We will always reach such a fixed-point since the usage is
finite in size, hence there will be finitely many usages it can transition to. We show that R is
a simulation by choosing an element from R and showing that transitions U m−→ U is covered
by the first type of pairs, U m−→ ⟨li : ui⟩

#»
E is covered by the second type and ⟨li : ui⟩

#»
E l−→ u

#»
E
i

is covered by the third type, in such a way that the inferred usage has matching transitions.
◀

Proof. We prove this with co-induction. Assume ⊢ #»
D class{U0,

#»

F ,
# »

M}, then we know that
∅; #»

F .inittypes ⊢ #»
D C[U0] ▷ envT ′

F and terminated(envT ′
F ).

From (IClass) we know that UI is generated s.t.

UI = X
#»
E
envTF⊥

We now define a relation R to contain all reachable usages from U0 and the corresponding
reachable usage from UI . In accordance to the proof sketch, we add three types of pairs, as
well as the initial pair (U0,UI).

R ={(U0,UI) (1a)}

∪

(U ′, X
#»
E
envT ′′

F
)

∣∣∣∣∣∣∣∣∣
(U , X

#»
E
envTF

) ∈ R (1b)
U m−→ U ′ (1c)
U ′ ̸= ⟨li : ui⟩

# »

E′

li∈L (1d)
∅; envT ′′

F ⊢ #»
D C[U ′] ▷ envT ′

F (1e)


∪

(⟨li : ui⟩
# »

E′

li∈L, ⟨li : X
#»
E
envT ′′

F
⟩li∈L)

∣∣∣∣∣∣∣
(U , X

#»
E
envTF

) ∈ R (1f)
U m−→ ⟨li : ui⟩

# »

E′

li∈L (1g)
∅; envT ′′

F ⊢ #»
D C[⟨li : ui⟩

# »

E′

li∈L] ▷ envT ′
F (1h)


∪{(u

# »

E′

i , X
#»
E ) | (⟨li : ui⟩

# »

E′

li∈L, ⟨li : X⟩
#»
E
li∈L) ∈ R (1i)} (1)
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In (1a) we see that R is non-empty and contains at least the pair (U0,UI). In (1b), (1f)
and (1i) we see that R is defined recursively, hence a solution to R is the least fixed point
of (1). We only consider the least fixed point of (1), as this already captures all reachable
usages from U . We now show that R is a usage simulation s.t. U0 ⊑ UI .

Let (U , X
#»
E
envTF

) ∈ R be a pair from R and U m−→ U ′. First we consider the case where
U ′ ̸= ⟨li : ui⟩

#»
E
li∈L. We must then show that X

#»
E
envTF

m−→ X
#»
E
envT ′′

F
and (U ′, X

#»
E
envT ′′

F
) ∈ R.

We know that ∅; envTF ⊢ #»
D C[U ] ▷ envT ′

F . Since we have that U m−→ U ′ this must have
been concluded using (TCBr), hence we have that

{this 7→ envTF }; ∅ · (this, [x 7→ t′]) ⊢ #»
D e : t ▷ {this 7→ envT ′′

F }; ∅ · (this, [x 7→ t′′])

We also know that terminated(t′′) and, hence we can conclude with (Class) that envTF
m−→

envT ′′
F . From Lemma 9 we know that envTF

m=⇒ envT ′′
F . From (IClass) and (ICall) we

can conclude that X
#»
E
envTF

m−→ X
#»
E
envT ′′

F
.

Since we know from (TCBr) that ∅; envT ′′
F ⊢ #»

D C[U ′] ▷ envT ′
F , we have from (1) that

(U ′, X
#»
E
envT ′′

F
) ∈ R.

Now we consider the case where U ′ = ⟨li : ui⟩
# »

E′

li∈L. We must show that X
#»
E
envTF

m−→ ⟨li :
XenvT ′′

F
⟩

#»
E
li∈L and that (⟨li : ui⟩

# »

E′

li∈L, ⟨li : XenvT ′′
F
⟩

#»
E
li∈L) ∈ R.

Since (U , X
#»
E
envTF

) ∈ R we know that ∅; envTF ⊢ #»
D C[U ] ▷ envT ′

F . Since U m−→ U ′ we must
have from (TCBr) that

{this 7→ envTF }; ∅ · (this, [x 7→ t′]) ⊢ #»
D e : t ▷ {this 7→ envT ′′

F }; ∅ · (this, [x 7→ t′′]).

From (Class) we know that envTF
m−→ envT ′′

F and from Lemma 9 we know that
envTF

m=⇒ envT ′′
F . From (IClass) and (ICallE) we know that X

#»
E
envTF

= {m; XenvT ′′
F

m; ⟨li :
XenvT ′′

F
⟩li∈L}

#»
E , hence X

#»
E
envTF

m−→ ⟨li : XenvT ′′
F
⟩

#»
E .

We also know that ∅; envT ′′
F ⊢ #»

D C[⟨li : ui⟩
#»
E
li∈L]▷envT ′

F . But then from (1) we must have
that (⟨li : ui⟩

# »

E′

li∈L, ⟨li : XenvT ′′
F
⟩

#»
E
li∈L) ∈ R.

Now let (U ,UI) ∈ R be a pair from R and U l−→ U ′, hence U = ⟨li : ui⟩
# »

E′

li∈L. We know
from (1) that UI must be on the form ⟨li : XenvT ′′

F
⟩

#»
E
li∈L. Hence we know that all transitions

in U can be matched by UI .
From (1i) we know directly that (u

# »

E′

i , X
#»
E
envT ′′

F
) ∈ R.

We have now shown that R is a usage simulation where (U0,UI), hence we know that
U0 ⊑ UI . ◀

The remaining property that must hold for the inferred usage to be principal, is that the
usage makes the class well-typed.

▶ Lemma 11 (Usage Inference Well-typedness). Let C be a class and UI be an inferred usage,
then ⊢ #»

D class C {UI ,
#»

F ,
# »

M}

Proof. This follows trivially from the construction of the inference. A transition X
#»
E
envTF

m−→
X

#»
E
envT ′

F
requires the transition envTF

m=⇒ envT ′
F which in turns require envTF

m−→ envT ′
F .

From (Call) we know that this means calling m will not result in errors as the method
body is well typed, given starting environment envTF . Since we have that a terminated
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environment must be reachable from any state in our usage RLTS, we know that the usage
can reach end, meaning that the typing rules are terminated with (TCEn).

For a l-transition, UI −→∗ U ′′
I

m−→ U ′
I

l−→ X
#»
E
qi

this transition must have been introduced by
the (ICallE) rule, and U ′′

I must have been on the form U ′′
I = {mi; ⟨lj : Xqi⟩lj∈L mi; Xqi}

#»
E
i∈I

(where U ′
I = ⟨lj : Xqk

⟩
#»
E
lj∈L) for some k ∈ I. From the previous case we have that the call of

m is well-typed, and that following method calls are also well-typed. But then it will also
be the case for the l-transition, since the field typing environment remains the same when
selecting in a choice-usage, hence by using (TCCh) once, we return to the previous case of
typing method bodies with (TCBr), which are known to be well-typed. ◀

It now only remains to conclude that the inferred usage is, in fact, a principal usage for
a class.

▶ Theorem 12 (Principal Usage Inference). Let C be a class and UI be an inferred usage,
then UI is a principal usage for C.

Proof. Follows directly from Theorem 10 and Lemma 11. ◀

6.1 Complexity Analysis of Algorithm
We end this section with a worst-case complexity analysis of the inference algorithm, in
terms of space and time.

In the following sections, we use the notation |U| to mean the maximum size (the max-
imum number of distinct states) of a usage in our program, |f | to mean the maximum
number of fields of any class in the program similarly, |m| to mean the maximum number
of methods of any class, |e| to mean the maximum size of a method body in our program
and finally, |L| to mean the maximum number of labels of an enum in our program.

Space Complexity
We analyse the space complexity of the algorithm, by analysing the size of the labelled
transition systems that are constructed during the inference algorithm. This will give an
upper bound for the space required to run the algorithm.

Method Availability Transitions

As evident by the typing rules in Table 12, Table 13 and Table 14, the size of the derivation
tree is linear in the size of the expression and the size of the field typing environment
which is the number of fields multiplied by the size of the usages. We get that the space
requirement of the type system is O(|e| + |f | · |U|) by a nondeterministic algorithm. Using
Savitch’s Theorem we have that the space requirements for a deterministic algorithm are
O((|e|+ |f | · |U|)2).

The number of states in the labelled transition system is bounded by the number of field
typing environments. Since a field typing environment maps fields to typestates1, we have
that the size of |Q| = O(2|f |·|U|) where Q is the set of states in the RLTS. The number of
edges | −→ | is bounded by O(|Q|2 · |m|) = O(|m| · 22·|f |·|U|) since the (Call) rule runs the

1 A field can also be an enum type or a boolean, we disregard those for simplicity, since the number of
typestates will be much larger than the number of enums
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type system on each method body in the class and each state can have a non-deterministic
transition to the initial state.

The total space complexity for the RLTS extraction is

O((|e|+ |f | · |U|)2 + 2|f |·|U| + |m| · 22·|f |·|U|)

= O((|e|+ |f | · |U|)2 + 22·|f |·|U| · |m|)

Usage Graph Construction

From the definition of the usage graph (S, A, =⇒, envTF⊥) we see that the size is bounded
by the size of the method availability transition system. Similarly, the size of the resulting
usage generated by Algorithm 1 is also bounded by the size of method availability transition
system. Hence the total amount of space required is O((|e|+ |f | · |U|)2 + 22·|f |·|U| · |m|).

This also means that the size of the inferred usages is exponential in the number of fields
and field usages.

Runtime Complexity

First, we analyse the runtime complexity of creating the method availability transitions
using Algorithm 2 in Appendix B. The algorithm is a naive implementation. We only
consider the statements which are not in constant time. On line 3 there is an implicit loop
over methods bounded by |m|. On line 4 and 5 we have two loops both bounded by |S|.
The innermost loop on line 6, bounded by |m|. The if-statement on line 7 runs in O(|e|)
time when using non-determinism, converting it to deterministic time it is bounded by 2|e|.
Combining all bounds, we end up with O(|s|2 · |m| · 2|e|). Creating the set of states S can be
completed in O(2|f |·|u|) by enumerating all possible states. The runtime can be simplified
to O(22·|f |·|u| · |m| · 2|e|).

We now conduct a complexity analysis for the runtime of Algorithm 1. First, we analyse
the function Reach on lines 2-3. The runtime is O(| =⇒ |) as it considers all transitions in
=⇒.

Now we analyse the function CreateState on lines 4-17, we assume that the updates
to u and the comparisons in the if-statements happen in constant time, hence we only look
at the interesting part of the algorithm. On line 6, we have a loop bounded by |A| and on
line 7 we have a loop bounded by |S| iterations. Both branches of the if statement on line 9,
are equivalent in the number of steps. On line 12 and 16, we have an implicit loop bounded
by |L|. This gives the function a runtime of O(|S| · |A| · |L|).

Lastly, we analyse the entire outer function Infer. On line 18 the comparison happens
in constant time and the function call is bounded by O(| =⇒ |), as previously shown. On
line 21 we have a loop bounded by |S| steps. On line 22 we have the call to CreateState,
which was analysed to be O(|S| · |A| · |L|). This gives us the combined runtime Infer to
be O(| =⇒ |+ |S| · (|S| · |A| · |L|)), which can be simplified to O(| =⇒ | · |L|). By substituting
| =⇒ | for the size earlier identified, we see that the runtime complexity can be represented
as O(((|e|+ |f | · |U|)2 + 22·|f |·|U| · |m|) · |L|).

Combining the two parts of the algorithm, the complexity becomes

O(((|e|+ |f | · |U|)2 + 22·|f |·|U| · |m|) · |L|+ 22·|f |·|u| · |m| · 2|e|)
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7 Implementation

We present the tool mungoi. mungoi is a prototype implementation of the work presented
in this article. It is an implementation of the type system for Mungo, as well as an inference
module. The syntax of the language is a slightly modified version of the calculus presented
in this article, as opposed to the original Mungo tool that works on a subset of Java. In
this section, we describe the tool and the most interesting technical details and discuss
the implications of the implementation. The implementation can be found in a GitHub
repository on https://github.com/MungoTypesystem/Mungo-Typechecker.

mungoi implements the static phases of a compiler for the language and does not contain
any run-time system. The goal of the implementation is to serve as a proof-of-concept that
this type system is feasible in practice, and not to provide a compiler for an actual program-
ming language. As shown in [10] the type system is enough to provide guarantees about the
run-time execution of the programs, therefore we do not consider run-time semantics in our
implementation.

The type system in [10] support generic classes, while the language and type system
presented in this article does not. The addition of generics does not make the inference
problem more interesting, so for readability of the typing rules, we omit generic classes. The
implementation of the type system does, however, support generics. This support of generic
classes in the type system, due to the tight coupling of the type system and the inference
module, carries over to the inference module, so we can infer usages for generic classes as well.
Furthermore the language also supports an integer base type, as well as boolean expressions.
Again the typing rules for these extensions does not make the type system more interesting,
and has been omitted from our presentation of the type system.

The goal of mungoi is to verify statically that classes written in the Mungo language
do not experience null-dereferences and protocol errors. Furthermore, the tool should auto-
matically infer missing usages, wherever possible. The sequence of operations of mungoi is
to parse the Mungo program, then infer the missing usages before type checking all classes.
This is reflected in the three modules of mungoi, the parsing module, the inference module
and the type checking module. We now describe each module in turn.

Parsing
The parser is implemented using parsec, a monadic parser combinator library [17]. Parsec
provides many higher order functions to drive the parsing, so that is it only necessary to
write code for parsing the smallest constituents of a program.

A Mungo program is a file containing a collection of enum declarations, followed by a
number of class definitions. The structure of a class definition is illustrated below.

1 class C {
2 // Usage
3 {m; <l1 : end l2 : {n; X}>}[X = {o; end}]
4
5 // Fields
6 bool f1
7 OtherClass f2
8
9 // Methods

10 State m(void x) { ...; l1 }
11 void n(void x) { ... }
12 void o(void x) { ... }

https://github.com/MungoTypesystem/Mungo-Typechecker
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13 }

The class contains the usage on the form u[Xi = ui]i∈I . The syntax is only slightly adapted
from the normal u

#»
E for writability.

Usage Inference
The usage inference module first identifies the dependencies between classes, as described in
Definition 6. The program graph in Listing 2 is not acyclic, as illustrated in Figure 5, hence
mungoi cannot infer the usages. It can become acyclic by specifying the usage for class C
or B. If class C is specified manually, the inference order will be B before inferring A.

1 class A {infer[] B f1 }
2 class B {infer[] C f1 }
3 class C {infer[] B f2 }

Listing 2 Invalid program for inference

A B C

Figure 5 Cycle in inference graph for classes A, B and C

The inference algorithm follows the process defined in Section 4. We define the method
availability transitions, the labelled transition systems between field typing environments.
As earlier described, we collapse all terminated field typing environments under a single
state envTF⊥ to reduce the size of the resulting usage. After this LTS has been created, the
filtering step is performed by graph operations, where reachability is checked between states,
and the states that are reachable from the initial field typing environment and can reach a
terminated field typing environments are preserved in the filtered LTS.

The inferred usage is displayed to the user and used directly in the remaining inference
and type checking.

Type Checking
Type checking is an essential part of mungoi in terms of ensuring correctness of the pro-
grams written in Mungo. The type system is split into two components, as indicated by
the typing rules. One component type checks the individual expressions, while the other
component implements the typestate checking with the rules presented earlier in Section 4.
The expression checking component is used by the typestate checking component, but also
in the inference module to extract the method availability transitions by use of the (Class)
rule.

The typestate checking module takes a class C {U ,
#»

F ,
# »

M} and follows the transitions of
usage U from the initial field typing environment. It checks that we can reach a terminated
field typing environment and that for all transitions of usage U , the class remains well-typed.

We describe the implementation of type checking with an example. Consider field f

in Figure 6 with class C2 and usage X{X={m2;end m2;X}}. Let the class of method m1

have the usage {m1; end}, the method body of m1 assigns a new object to field f and calls
method m2 on f. As previously discussed, the type system is nondeterministic, and in this
case calling m2 can result in f being in two different states, illustrated in Figure 6b. The
implementation represents non-determinism using a set of states. It is implemented using
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the monad presented in Listing 3. The monad works by simulating procedural code, by
having a state explicitly passed from one function to the next. States which experience
errors are filtered by the Either monad, it represents errors as Left values and results as
Right values.

1 data MState s a = MState { runState :: s -> Either String (a, s)}
2 | MStateError String

Listing 3 Specialized state monad for handling non-determinism

Two instances of the monad are created, one to handle non-determinism and one for de-
terminism, as shown in Listing 4. Non-determinism is handled by NDTypeSystem through
having a list of states and return types from the latest method invocation. DTypeSystem is
the deterministic counterpart, used for type-checking an expression with a state, which is
Configuration × Expression → P(Configuration) where the result is the set of states which
can be reached. To combine the non-deterministic and deterministic monad, we created the
function:

1 forAll :: DTypeSystem [(MyState, Type)] -> NDTypeSystem ()

The function, when given a deterministic type system that returns a list of states and types,
gives us a non-deterministic type system, it works by running the deterministic type system
on all current states then filters the states that experience errors.

1 type NDTypeSystem a = MState [(MyState, Type)] a
2 type DTypeSystem a = MState (MyState, Type) a

Listing 4 The two uses of the MState data type

Finally, type-checking is done by starting at the terminated environment and checking that
there exists a reachable state, which is terminated if none is found the program is rejected.

The type system has been used on several examples. In Section 5, we present a class
which models a Customer, this example has been modified such that it switches on a enum
instead of a boolean as that is a requirement for the type system and with the change, the
example is accepted.

In the worst case, the type system is going to have an exponential runtime. However, in
preliminary testing, the exponential runtime is hardly seen. The only way we have found
to slow down the type-checker is by writing non-deterministic usages in which a branch
is rejected late and thus the type-checker needs to check all possible states, hence it is
exponential. This has only been observed in usages written such that they exploit this
weakness of the implementation. The reason for this is that lazy evaluation in Haskell
typically does not evaluate all possible states as it only needs one accepting path through
the type system, which often happens to be one of the first paths it checks. We expect
non-determinism in usages to be used sparsely, hence the amount of branches to check does
not become too big to type check.
8 Method Signature Inference

A current limitation is related to usages of parameters, which we cannot infer at this stage.
This makes it difficult to use inferred classes as parameters to methods since the usage
cannot be specified. We propose an extension to Mungo to overcome this limitation. The
idea is to extend the language with ad hoc polymorphism using method overloading, where
multiple method signatures can share the same method name and implementation. Then
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1 void m1(void x) {
2 f = new C2;
3 f.m2(unit)
4 }

(a) Calling a method on a class

{f 7→ ⊥}

{f 7→ C2[X
#»
E ]}

{f 7→ C2[end]}

m1

m1

(b) Possible states reachable by the call

Figure 6 Type checking a method call

the goal is to infer the possible method signatures so that it is not necessary to specify the
usage for a class when used as a method parameter. This has not been integrated into the
main body of this article, as it introduces changes to the type system, hence it is not directly
applicable to previous results shown about the type system.

First, we update the syntax of method declarations, to allow multiple method signatures
for the same body.

M ::= #        »
t −→ t m(x) {e}

We also extend the branch usage to be annotated with the method signature. The reason
for this is because the parameter could be written to a field, hence based on the usage of
the parameters different methods become available. Only with the annotation of a method
signature, can we tell the initial type of the parameter, and track further updates to the
type.

u ::= {(mt−→t)i; wi}i∈I | X

The change to the type system is minor, as the usage of an object will specify the exact
method signature to be used. The rule (TCBr) is updated to type check given the method
signature by the usage. The rules (TCallF) and (TCallP) are updated to use the method
signature according to the type of the actual parameter. The updated rules are shown in
Table 9.

(TCBr)

I ̸= ∅ ∀i ∈ I . ∃envT ′′
F .

#              »

t′
p −→ t′

r mi(xi){ei} ∈ C.methods #»
D

{this 7→ envTF }; ∅ · (this, [xi 7→ (tp)i]) ⊢ #»
D ei : (tr)i ▷ {this 7→ envT ′′

F }; ∅ · (this, [xi 7→ t′
i])

terminated(t′
i) ((tp)i −→ (tr)i) ∈

#              »

t′
p −→ tr Θ; envT ′′

F ⊢ #»
D C[u

#»
E
i ] ▷ envT ′

F

Θ; envTF ⊢ #»
D C[{(m

tp−→tr
)i; ui}

#»
E
i∈I ] ▷ envT ′

F

(TCallF)

Λ; ∆ · (o, S) ⊢ e : t ▷ Λ′{o.f 7→ C[U ]}; ∆′ · (o, S′)
#              »

tp −→ tr m(x){e′} ∈ C.methods #»
D (t −→ t′) ∈ #              »

tp −→ tr U
m

t−→t′−−−−−→ W
Λ; ∆ · (o, S) ⊢ f.m(e) : t′ ▷ Λ′{o.f 7→ C[W]}; ∆′ · (o, S′)

(TCallP)

Λ; ∆ · (o, S) ⊢ #»
D e : t ▷ Λ′; ∆′ · (o, [x 7→ C[U ]])

#              »

tp −→ tr m(x){e′} ∈ C.methods #»
D (t −→ t′) ∈ #              »

tp −→ tr U
m

t−→t′−−−−−→ W
Λ; ∆ · (o, S) ⊢ #»

D x.m(e) : t′ ▷ Λ′; ∆′ · (o, [x 7→ C[W]])

Table 9 Updated rules for method overloading

Consider a method m with method body e and a parameter of class C. The available
method signatures are the ones where the parameter has type C[U ] where U is reachable



I. Golovanov, M. S. Jakobsen and M. K. Kettunen 23

from the initial state, and the method body does not experience errors. We can formally
define this, and state that the available method signatures #              »

tp −→ tr are defined as:

(C[U ] −→ tr)

∣∣∣∣∣∣
∃Λ.Λ; ∅ · (this, [x 7→ C[U ]]) ⊢ #»

D e : tr ▷ Λ′; ∅ · (this, [x 7→ t])
C.usage −→∗ U
terminated(t)


With this extension, we can allow the programmer to omit writing the specific usage for

method parameters of class types, hence it is possible to use classes with inferred usages as
method parameters, even if the inferred usage is unknown to the programmer when writing
the program.

9 Related Work

In this section, we describe relevant work for both behavioural types and usage inference.
Behavioural types have over the years been studied in different contexts and using various
approaches [13]. We focus on two forms of behaviour types; namely, typestates and session
types since these two approaches most closely resemble the work of this article.

9.1 Behavioural Types
In [9] Gay et al. extend session types to object oriented programming by combining session
types and typestates. Here they specify a single typestate abstracting over a session type,
for each classes, instead of annotating each method with pre and postconditions.

In [15] Kouzapas et al. use a similar approach but for typestate definitions to avoid
null-dereferencing errors. Furthermore, they improve the implementation by inferring the
sequence of method calls to remove the need for type declarations on parameters and return
types. Typestate declarations on classes are still necessary since they check that the inferred
sequence of method calls are a subtype of the declared typestate. Finally in [10], Golovanov
et al. presents a type system for Mungo where the type checking of typestates is performed
entirely by the type system without inference. This is an extension to the work by Bravetti
et al. in [5]. The work in this article improve on this approach by allowing optional typestate
declarations and typestates are inferred for classes without one. Our approach to inference
is different from the one by Kouzapas et al. since we infer the principal usage and do not
require a class explicitly to have a declared a usage.

9.2 Usage Inference
There is currently not a lot of work available for usages, however, the problem of inferring
usages is not entirely new either. A similar problem appears in the context of session types.
The main difference between inference in the context of session types and usages is that for
session types we infer the order of channel messages to check that the order is correct between
two or more endpoints. In the context of usage types, we infer the order of operations to
ensure that we avoid null-dereferencing similar to pre and postconditions from typestates
[21].

In [6] Collingbourne & Kelly present an algorithm to infer session types from program
control flow. In this work, the authors start by simplifying the program text such as loops
and conditional statements. Then they build a graph from the communication statements,
where equal nodes are unified. Afterwards the graph is converted into a DFA. Our inference
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algorithm has a resemblance to this work since their communication statements are opera-
tions on session types and in our case method calls are operations on usages, in both cases a
graph is built from the state transitions. The inferred type in their case is checked against a
specified or likewise inferred dual session type to ensure the correctness of an implementation
with respect to a communication protocol. A limitation of their approach is that they have
to infer the type of each session instance. This would be a problem in our setting since we
can have several instances of classes that are used distinctly and an inferred usage should
cover all cases. This is why we infer a principal usage instead of inferring a usage for each
instantiation of a class.

The most recent work is [19] where Padovani presents an inference algorithm for context-
free session types is presented. They come across unique challenges in terms of sequential
composition for session types and polymorphic recursion which they overcome by introducing
a higher-order combinator. Their type system allows context-free session types to be checked
and inferred using the type checker and parametric polymorphism implementation of the
host programming language. Since we use Haskell we could also have exploited its parametric
polymorphism to infer usages. The main disadvantage of using the type system of Haskell
as part of the algorithm is that it becomes less general, in the sense that the implementation
is tied to languages whose type system support parametric polymorphism. In contrast, our
inference algorithm can be applied in other implementations of Mungo; in particular, the
Mungo toolchain [15].

10 Discussion and Future Work

The main contribution of this paper is a usage inference algorithm for Mungo that extends
the applicability of usages in practical settings. Usage inference ensures that programs do
not produce null-dereferencing errors and allows programmers to express tighter protocol
control over class methods when needed, hence we decrease the overhead and increase the
maintainability of working with usages by not requiring each usage to be written by hand.

We have shown that any inferred usage by our algorithm is the most general usage that
avoids null-dereferencing and protocol errors by proving that the inferred usage can simulate
every usage that can well-type a class. Furthermore, we have shown that the inferred usage
is itself guaranteed to be well-typed in the Mungo type system. This would not have been
the case if we employed the approaches of previous work in this area since they could not
guarantee protocol completion. We achieve this by considering the state of fields in a class
as a state in a method availability transition system where a class method is a transition
if given a field state the method is well-typed. From this transition system, we remove all
non-terminating paths and include an end state resulting in a usage graph. Finally, an actual
usage is constructed from this usage graph. We have demonstrated our approach with an
example and described our Haskell implementation. By implementing a prototype version
of the inference algorithm, we have illustrated that an implementation is possible, and that
that it could be added to the Mungo and St. Mungo toolchain, making the toolchain more
practical to use.

The usage inference algorithm has three current limitations. One is complexity since we
both have non-determinism and usages can themselves become exponential in size, but we
cannot necessarily improve on this limitation since the nature of principal usages results in
exponential worst-case size and non-determinism is needed to handle protocol completion.
The second limitation is that it is difficult to use classes with inferred usages as method
parameters, as the usage cannot be easily specified. We have proposed a solution for this,
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as an extension to the language in Section 8. The final limitation is the linear typing
discipline since it restricts the use of Mungo in general-purpose programming. It also hinders
the applications of usage inference as a safety checker of open source modules which is a
significant motivating factor for implementing usage inference. As future work, we intend
to implement the parameter usage inference extension and prove the necessary properties.
Another line of future work should be on loosening the restrictions of linear typing either by
adopting access-permissions similar to [3] or by finding a novel approach.

Finally, given that our inference approach uses type rules for expressions to extract
method availability transitions, we can exchange the type rules with a different set and still
infer usages. This allows our usage inference to be applied in contexts outside our mungoi
tool. For example, we could use the type rules for expressions from the original Mungo paper
[15] and our parameter extension to, in theory, enable usage inference in their Mungo tool.
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A Type System

In the following section, we include the typing environments and other definitions from [10].
To ensure protocol completion, we introduce the concept of linear types. We say that a

type is linear if it is a class type, with a usage different from end. In other words, a type is
linear if its protocol is not finished.

▶ Definition 13 (Linear type).
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We also introduce field typing environments to map the fields of a class to the current
type state. We then extend the concept of linear types to field typing environments, and say
that a field typing environment is terminated if all fields in the environment are non-linear.

▶ Definition 14 (Field type environment). The field type environment is used to store the
type information for fields, and is a partial function

envTF : FNames ⇀ (Typestates⊥ ∪BTypes).

Table 10 describes the rules for typing programs. The rule (TProg) say that a program
is well-typed if all its declarations are well-typed. (TClass) type checks a class declaration
and describes that a class is well-typed if its usage is well-typed and the associated field typ-
ing environment is terminated. Requiring that the final environment is terminated, ensures
protocol completion for all fields, since all fields of class-types, must be non-linear.

(TProg)
∀D ∈ #»

D . ⊢ #»
D D

⊢ D

(TClass)

∅; #»
F .inittypes #»

D ⊢ #»
D C[U ] ▷ envTF

terminated(envTF )
⊢ #»

D class C{U ,
#»
F ,

# »
M}

Table 10 Typing program and class definitions

In order to type check a class we follow its usage transitions and the type rules describing
how to type these transitions are defined in Table 11. The central rule is (TCBr) it tells
us that a branch usage is well-typed if the initial method of each branch is declared in the
class and its method body is well-typed. Furthermore, the remaining usage after the method
call is also well-typed in the updated field typing environment. The (TCCh) rule says that
a choice usage is well-typed if the usage associated with each label is well-typed and the
resulting environments are the same.

To type check recursive usages, we use an environment to keep track of field typing
environments, as defined below.

▶ Definition 15 (Usage variable environment). The environment Θ is an environment used
to keep track of recursive usage variables, and is a partial function

Θ : UVars ⇀ EnvTF

The rules (TCVar) and (TCRec) handle recursive usages. (TCRec) handles the case
where a recursive variable is encountered for the first time, it maps the variable to a field
typing environment and substitutes the variable for the associated usage and it is well-typed
if the class with the substituted usage is well-typed. Finally, (TCVar) handles the case
where a recursive variable, that we have already handled with (TCRec), appears again.
In that case (TCVar) tells us such a usage is well-typed with an arbitrary resulting field
typing environment, since the resulting environment depends on rule (TCRec).

The (TCBr) rule checks the method bodies, in accordance with the current field typing
environment. We define typing judgments for expressions of the form Λ; ∆ ⊢Ω e : t ▷ Λ′; ∆′.

The first environment Λ denotes a object field environment as defined below.
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(TCBr)

I ̸= ∅ ∀i ∈ I . ∃envT ′′
F .

{this 7→ envTF }; ∅ · (this, [xi 7→ t′
i]) ⊢ #»

D ei : ti ▷ {this 7→ envT ′′
F }; ∅ · (this, [xi 7→ t′′

i ])
terminated(t′′

i ) ti mi(t′
i xi){ei} ∈ C.methods #»

D Θ; envT ′′
F ⊢ #»

D C[u
#»
E
i ] ▷ envT ′

F

Θ; envTF ⊢ #»
D C[{mi; ui}

#»
E
i∈I ] ▷ envT ′

F

(TCCh)
∀li ∈ L . Θ; envTF ⊢ #»

D C[u
#»
E
i ] ▷ envT ′

F

Θ; envTF ⊢ #»
D C[⟨li : ui⟩

#»
E
li∈L] ▷ envT ′

F

(TCEn) Θ; envTF ⊢ #»
D C[end

#»
E ] ▷ envTF

(TCVar) (Θ, [X 7→ envTF ]); envTF ⊢ #»
D C[X

#»
E ] ▷ envT ′

F

(TCRec)
(Θ, [X 7→ envTF ]); envTF ⊢ #»

D C[u
#»
E ] #»

D ▷ envT ′
F

Θ; envTF ⊢ #»
D C[X

#»
E⊎{X=u}] ▷ envT ′

F

Table 11 Typing class usage definitions

▶ Definition 16 (Object field environment). Λ is an object field typing environment used to
store pairs of class names and field type environments, and is a partial function

Λ : ONames ⇀ (CNames×Types)×EnvTF

It is an approximation of the run-time heap, and maps objects to field typing environment.
When type checking classes, only a single object, this, is present in the environment.

The second environment, ∆ = envTO · envTS , encapsulates an object type environment
used as environment to temporary store object types, and an parameter stack type environ-
ment which is an approximation of the run-time stack.

▶ Definition 17 (Object type environment). envTO is an object type environment used to
store the type of objects, and is a partial function

envTO : ONames ⇀ Typestates

▶ Definition 18 (Parameter stack type environment). envTS is a parameter type environment
used to store a sequence of pairs (o, S) where o is an objects and S is a parameter binding
[x 7→ t]

envTS :
#                                                                                                                                      »

ONames× (PNames× (Typestates⊥ ∪BTypes))

The judgement is read as evaluating an expression e in a heap approximated by Λ and
a stack approximated by ∆ results in updated environments Λ′ and ∆′. The environment
Ω is used for typing labelled expressions, and will be omitted in all rules except (Lab) and
(Con).

▶ Definition 19 (Label environment). Ω is a label environment used to map a label to a pair
of environments (Λ, ∆)

Ω : Labels ⇀ Λ×∆

Table 12 shows the typing rules for values, which are all simple as they do not change
any fields. The rule (TObj) tells us that typing an object removes it from the environment
which is done to enforce linearity.
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(TLit) l ∈ L

Λ; ∆ ⊢ #»
D l : L ▷ Λ; ∆

(TVoid) Λ; ∆ ⊢ #»
D unit : void ▷ Λ; ∆

(TNew) Λ; ∆ ⊢ #»
D new C : C[C.usage] ▷ Λ; ∆ (TBot) Λ; ∆ ⊢ #»

D null : ⊥ ▷ Λ; ∆

(TObj)
envTO = envT ′

O, o 7→ t

Λ; envTO · envTS ⊢ #»
D o : t ▷ Λ; envT ′

O · envTS

(TBool)
v ∈ {true, false}

Λ; ∆ ⊢ #»
D v : Bool ▷ Λ; ∆

Table 12 Typing rules for values

Table 13 shows the rules that interact with the field typing environment. The rules
(TLinPar) and (TLinFld) handle dereferencing linear fields, in both rules the bindings
are updated to ⊥ after reading, so that we ensure that only one reference to the object is
present. Rule (TFld) tell us that assignment to a field requires that the field is unrestricted.
Here we also use the helper function agree to ensure that the type of the value is compatible
with the type of the field.

▶ Definition 20 (Agree predicate).

agree(b, b) agree(C, C[W])

Finally, rule (TCallF) and (TCallP) say that method calls on fields or object ref-
erences are well-typed if the associated usage allows the method call and the usage in the
environment is updated with the usage following the transition.

Lastly Table 14 shows the typing rules for the composite expressions, which are all similar
to those found in [10]. As in the previous work, we require that resulting environments of
if-cases and switch-expressions all match.

B Extracting Method Availability Transitions

Algorithm 2 shows a naive implementation of method availability transition system. While
the worst-case complexity would remain the same, a better implementation would be to
only consider the reachable states from envTF⊥ , since all other states are filtered out in the
construction of the usage graph.

Algorithm 2 Extracting the method availability transitions

1: function MthdAvailTrans(C)
2: −→ ← ∅
3: A ← {m | (t m(t′ x){e}) ∈ C.methods}
4: for all envTF ∈ EnvTF do
5: for all envT ′

F ∈ EnvTF do
6: for all (t m(t′ x){e}) ∈ C.methods do
7: if {this 7→ envTF }; ∅·(this, [x 7→ t′]) ⊢ #»

D e : t▷{this 7→ envT ′
F }; ∅·(this, [x 7→

t′′]) ∧ ¬lin(t′′) then
8: −→ ← −→ ∪{(envTF , envT ′

F , m)}
return (EnvTF, A,−→, envTF⊥)
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(TLinPar)
lin(t)

Λ; ∆ · (o, [x 7→ t]) ⊢ #»
D x : t ▷ Λ; ∆ · (o, [x 7→ ⊥])

(TNoLPar)
¬lin(t)

Λ; ∆ · (o, [x 7→ t]) ⊢ #»
D x : t ▷ Λ; ∆ · (o, [x 7→ t])

(TLinFld)
t = Λ(o).f lin(t)

Λ; ∆ · (o, S) ⊢ #»
D f : t ▷ Λ{o.f 7→ ⊥}; ∆ · (o, S)

(TNoLFld)
¬lin(t)

Λ{o.f 7→ t}; ∆ · (o, S) ⊢ #»
D f : t ▷ Λ{o.f 7→ t}; ∆ · (o, S)

(TFld)

C = Λ(o).class agree(C.fields #»
D(f), t′)

Λ; ∆ · (o, S) ⊢ e : t′ ▷ Λ′, o.f 7→ t; ∆′ · (o, S′) ¬lin(t)
Λ; ∆ · (o, S) ⊢ #»

D f = e : void ▷ Λ′{o.f 7→ t′}; ∆′ · (o, S′)

(TCallF)

Λ; ∆ · (o, S) ⊢ e : t ▷ Λ′{o.f 7→ C[U ]}; ∆′ · (o, S′)
t′ m(t x){e′} ∈ C.methods #»

D U m−→ W
Λ; ∆ · (o, S) ⊢ f.m(e) : t′ ▷ Λ′{o.f 7→ C[W]}; ∆′ · (o, S′)

(TCallP)

Λ; ∆ · (o, S) ⊢ #»
D e : t ▷ Λ′; ∆′ · (o, [x 7→ C[U ]])

t′ m(t x){e′} ∈ C.methods #»
D U m−→ W

Λ; ∆ · (o, S) ⊢ #»
D x.m(e) : t′ ▷ Λ′; ∆′ · (o, [x 7→ C[W]])

Table 13 Typing expressions
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(TRet)
Λ; ∆ ⊢ #»

D e : t ▷ Λ′; ∆′ ∆′ = ∆′′ · (o′, [x 7→ t′]) terminated(t’)
Λ; ∆ · (o, S) ⊢ #»

D return{e} : t ▷ Λ′; ∆′′ · (o, S)

(TSeq)
Λ; ∆ ⊢ #»

D e : t ▷ Λ′′; ∆′′ ¬lin(t) Λ′′; ∆′′ ⊢ #»
D e′ : t′ ▷ Λ′; ∆′

Λ; ∆ ⊢ #»
D e; e′ : t′ ▷ Λ′; ∆′

(TIf)

Λ; ∆ ⊢ #»
D e : Bool ▷ Λ′′; ∆′′

Λ′′; ∆′′ ⊢ #»
D e′ : t ▷ Λ′; ∆′ Λ′′; ∆′′ ⊢ #»

D e′′ : t ▷ Λ′; ∆′

Λ; ∆ ⊢ #»
D if (e) {e′} else {e′′} : t ▷ Λ′; ∆′

(TSwP)

Λ; ∆ · (o, S) ⊢ #»
D e : L ▷ Λ′′; ∆′′ · (o, [x 7→ C[(⟨li : ui⟩li∈L)

#»
E ]])

∀li ∈ L. Λ′′; ∆′′ · (o, [x 7→ C[u
#»
E
i ]]) ⊢ #»

D ui : t ▷ Λ′; ∆′ · (o, S′)
Λ∆ · (o, S) ⊢ #»

D switchx.m (e){li : ui}li∈L : t ▷ Λ′; ∆′ · (o, S′)

(TSwF)

Λ; ∆ · (o, S) ⊢ #»
D e : L ▷ Λ′′, o.f 7→ C[(⟨li : ui⟩li∈L)

#»
E ]]; ∆′′

∀li ∈ L. Λ′′, o.f 7→ C[u
#»
E
i ]; ∆′′ ⊢ #»

D ei : t ▷ Λ′; ∆′ · (o, S′)
Λ; ∆ · (o, S) ⊢ #»

D switchf.m (e){li : ei}li∈L : t ▷ Λ′; ∆′ · (o, S′)

(TLab)
Ω′ = Ω, k : (Λ, ∆) Λ; ∆ ⊢Ω′

#»
D

e : void ▷ Λ; ∆

Λ; ∆ ⊢Ω
#»
D

k : e : void ▷ Λ; ∆

(TCon)
Ω′ = Ω, k : (Λ, ∆)

Λ; ∆ ⊢Ω′
#»
D

continue k : void ▷ Λ; ∆
-

Table 14 Typing rules for composite expressions
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