
Papaya: Global Typestate Analysis of Aliased Objects Extended
Version

Mathias Jakobsen

University of Glasgow

School of Computing Science

United Kingdom

m.jakobsen.1@research.gla.ac.uk

Alice Ravier

University of Glasgow

School of Computing Science

United Kingdom

2206245r@student.gla.ac.uk

Ornela Dardha

University of Glasgow

School of Computing Science

United Kingdom

ornela.dardha@glasgow.ac.uk

ABSTRACT
Typestates are state machines used in object-oriented programming

to specify and verify correct order of method calls on an object. To

avoid inconsistent object states, typestates enforce linear typing,
which eliminates—or at best limits—aliasing. However, aliasing is
an important feature in programming, and the state-of-the-art on

typestates is too restrictive if we want typestates to be adopted in

real-world software systems.

In this paper, we present a type system for an object-oriented

language with typestate annotations, which allows for unrestricted
aliasing, and as opposed to previous approaches it does not require

linearity constraints. The typestate analysis is global and tracks

objects throughout the entire program graph, which ensures that

well-typed programs conform and complete the declared protocols.

We implement our framework in the Scala programming language

and illustrate our approach using a running example that shows

the interplay between typestates and aliases.

1 INTRODUCTION
In class-based object-oriented programming languages, a class de-

fines a number of methods that can be invoked on an object of

that class. Often, however, there is an implicit order imposed on

methods, where some methods should be called before others. For

example, a server connection must be opened before sending data,

or we might want a clean-up method to be called before freeing

resources. These method orderings, or protocols, are often defined in
varying degrees of formality through documentation or comments,

which makes the process difficult and error-prone. Work has been

undertaken to include these protocols in the program itself with the

introduction of typestates for object-oriented languages [1, 3, 8, 20].
Common tomany of these approaches is that they rely on a linear

type system, where only a single reference to an object can exist,

thus eliminating–or limiting–aliasing. In Mungo [3, 20] linearity

is always enforced, whereas other approaches in languages such

as Plaid [2] and Vault [7] allow limited aliasing, while preserving

compositionality of the type system such that each class can be

type checked in isolation [11, 23]. These approaches often require

programmer annotations to deal with aliasing control or they simply

eliminate aliasing altogether.

The difficulty with aliasing in the presence of typestates is that

if multiple references exist to a single object, then operations on

one object reference can affect the type of multiple other references

as well. This is further complicated if we allow aliases to be stored

in fields on multiple objects. Consequently, operations on objects

of one class impact the well-typedness of other classes, potentially

leading to inconsistent objects’ states. Looking at the problem from

a more ‘technical’ angle, the difficulty with aliasing in the presence

of typestates is due to the discrepancy between the compositional
nature of typestate-based type systems and the global nature of
aliasing. To address aliasing one can either (i) allow limited access

to an object through aliasing control mechanisms or (ii) if we want

unrestricted aliasing then use a form of global analysis. The problem

with (i) is that it not trivial to find an alias control mechanism to

capture OO programming idioms, and for (ii) while we benefit from

the most flexible form of aliasing, the drawback is that we lose

compositionality. With the above in mind we pose our research

question:

RQ:Canwe define a typestate-based type system for object-oriented
languages that guarantees protocol conformance and completion while
allowing unrestricted aliasing?

In this paper, we answer positively our research question and

introduce a global approach to type checking object-oriented pro-

grams with typestates, which allows unrestricted aliasing, meaning

that objects can be freely aliased, and stored in fields of other objects.

This is more representative of the sort of aliasing that can occur in

real-world programs. In this work we treat typestates in a similar

fashion to the line of work on Mungo [3, 20] and along the same

lines, we introduce Papaya, an implementation of a typestate-based

type system for Scala.

Contributions. The contributions of this paper are as follows.

• Typestates for Aliased Objects. We formalise an object-

oriented language with typestate annotations.

– Section 3 presents the syntax; Section 4 presents the

type system that performs global typestate analysis of

unrestricted aliased objects and Section 5 presents the

operational semantics.

– Section 6 covers the meta-theory of our formalisation

and we show that our type system is safe by proving

subject reduction (Theorem 1), progress (Theorem 2),

protocol conformance (Corollary 1) and protocol com-

pletion (Lemma 2).

• Papaya Tool. Section 7 presents the Papaya tool, an im-

plementation of our type system for Scala. Protocols are

expressed as Scala objects and are added to Scala classes

with the @Typestate annotation. Following the formali-

sation, our implementation allows for unrestricted aliasing,

where objects are checked if they conform and complete

their declared protocols.

• The BankAccount Example.We illustrate our work with

a running example (starting in Section 2), which features

aliasing. We show how the program is typed in our type

https://orcid.org/0000-0002-6128-7004
https://orcid.org/0000-0001-9927-7875

Mathias Jakobsen, Alice Ravier, and Ornela Dardha

system (from Section 4) and we implement it in Scala (in

Section 7) where use Papaya to perform typestate checking.

In Section 8 we discuss related work on typestates and aliasing.

Finally, in Section 9 we conclude the paper and present ideas for

future work.

2 OVERVIEW
We introduce our approach with an example, which is inspired by

[19]. The example is shown using the calculus that will be defined

in Section 3 with the addition of some base types and operations

on those. For completeness, since the calculus requires a formal

parameter for all methods, one could pass the unit value as an

argument. For readability we omit the argument instead.

Consider the class BankAccount shown in Listing 1. It is a

simple wrapper class around a field storing an amount of money.

Notice that there is an implicit ordering of method calls, which the

programmer might assume will be followed when using the class:

the amount of money should be set prior to using the value of the

field, and interest should be applied after setting the money; finally,

the money variable should only be read after both setting the money

and applying the interest has occurred, so that an intermediate value

is not returned.

1 class BankAccount[{setMoney;

2 {applyInterest;

3 {getMoney; end}}}] {

4 val amount:float;

5 fun setMoney(d:float):void {

6 this.amount = d;

7 }

8 fun getMoney():float {

9 this.amount;

10 }

11 fun applyInterest(rate:float) {

12 this.amount = this.amount * rate;

13 }

14 }

Listing 1: Wrapper class around an amount of money

We can express this implicit order of method calls as an explicit

usage:

{setMoney; {applyInterest; {getMoney; end}}}

where {𝑚𝑖 ;𝑤𝑖 }𝑖∈𝐼 denotes that a method 𝑚 𝑗 where 𝑗 ∈ 𝐼 can

be called, with the continuation usage 𝑤 𝑗 . This usage states that

the first method called should be setMoney, followed by a call to

applyInterest and finally one to getMoney.
We introduce two additional classes as shown in Listings 2 and 3.

The SalaryManager class adds money to a BankAccount and

applies a fixed interest rate. The DataStorage class fetches the

value of a BankAccount and stores it in a database.

15 class SalaryManager[{setAccount;

16 {addSalary; end}}] {

17 val account:BankAccount

18 fun setAccount(ms:BankAccount):void {

19 this.account = ms;

20 }

21 fun addSalary(amount:float) {

22 this.account.setMoney(amount);

23 this.account.applyInterest(1.05);

24 }

25 }

Listing 2: Salary manager that adds funds to a BankAccount
object

26 class DataStorage[{setAccount;

27 {store; end}}] {

28 val account:BankAccount

29 fun setAccount(ms:BankAccount):void {

30 this.account = ms;

31 }

32 fun store() {

33 this.account.getMoney();

34 // store value in database

35 }

36 }

Listing 3: Data storage class that reads the funds of a
BankAccount object

Note that in the three classes we defined so far, there is no explicit

mentioning of possible aliasing. However, as shown in Listing 4, an

instance of classBankAccount can be aliased and shared between

the manager and data store, as long as the joined operations on the

instance respect its usage.

37 account = new BankAccount;

38 manager = new SalaryManager;

39 db = new DataStorage;

40

41 manager.setAccount(account);

42 db.setAccount(account);

43

44 manager.addSalary(100.0);

45 db.store();

Listing 4: Aliasing of a BankAccount object

If we were to swap lines 44 and 45, then they would no longer

follow the protocol, as the data store would call getMoney before
setMoney and applyInterest were called.

Papaya: Global Typestate Analysis of Aliased Objects Extended Version

3 THE LANGUAGE
We introduce an object-oriented calculus with classes and enumer-

ation types, similar to previous work on Mungo [3, 6, 20, 21, 36].

The syntax of terms is shown in Figure 1a. For a sequence

𝜙1, 𝜙2, . . . 𝜙𝑛 we write 𝜙 and let |𝜙 |= 𝑛. A program is a list of class

and enum-definitions 𝐷 , followed by a classMain which contains

the main method. A class definition contains the initial protocol,

or usage U, field declarations 𝐹 and method declarations 𝑀 . For

expressions, the language supports assignment, object initialisation,

method calls (on fields, parameters or on the object itself). Note

that for simplicity and readability of typing rules later on, method

calls and field access use an object-reference 𝑜 as the target, thus

call-chaining and nested field access is not allowed. However, the

language can be easily extended to facilitate these features, requir-

ing an extra object look-up in the relevant typing rules. The only

object reference that can occur in program text is the this refer-
ence. The language also supports control structures (conditionals,

loops, and sequential composition) and match expressions (switch

on an enumeration type). Loops are formalised with a jump-style

loop with labelled expressions and continue statements in line with

Mungo work.

𝐷 ::= class 𝐶{U, 𝐹 , 𝑀} | enum 𝐿{𝑙}
𝐹 ::= val 𝑓 : 𝑡

𝑀 ::= fun𝑚(𝑥 : 𝑡) : 𝑡 {𝑒}
𝑟 ::= 𝑜 | 𝑜.𝑓 | 𝑥
𝑒 ::= 𝑜.𝑓 = 𝑒 | 𝑜.𝑓 = new 𝐶 | 𝑒; 𝑒 | 𝑟 .𝑚(𝑒) | unit | 𝑜.𝑓 | 𝑥

| if (𝑒) {𝑒} else {𝑒} | 𝑜.𝑙 | match(𝑒){𝑙 : 𝑒} | null
| true | false | 𝑘 : 𝑒 | continue 𝑘

(a) Syntax of class definitions

𝑡 ::= 𝐶 | void | bool | 𝐿

𝑇 ::= 𝑜[𝐶,U] | void | ⊥ | bool | 𝐿 | 𝐿 link 𝑜

U ::= `𝑋 .U | 𝑋 | {𝑚;𝑤} | end

𝑤 :: ⟨𝑙 : U⟩ | U

(b) Syntax of types

Figure 1: Syntax of terms and types

The syntax of types is shown in Figure 1b and it contains the

object types 𝑜[𝐶,U], base types bool and void, the null-type ⊥, and
enumeration types 𝐿 and 𝐿 link 𝑜 . The shaded production rules

indicate run-time syntax. An object type 𝑜[𝐶,U] is composed of

an object reference 𝑜 , which is a unique identifier a single object,

a class name 𝐶 and a current usage U describing the remaining

protocol of the object. The enumeration type 𝐿 link 𝑜 introduced

in [35] is used to track updates in switch-statements and are not

declared in the program text.

Definition 1 presents a labelled transition system for usages, an-

notated with the method call or the enumeration label, depending

on the action performed. If an object has type 𝑜[𝐶,U], then the

transitions of U describe the permitted operations on the object

referenced by 𝑜 . As previously described, branch usages {𝑚𝑖 ;𝑤𝑖 }𝑖∈𝐼
describe a set of available methods, each with a continutation usage.

Choice usages ⟨𝑙𝑖 : U𝑖 ⟩𝑖∈𝐼 describe that based on a enumeration

label 𝑙 𝑗 , the protocol continues with protocol U𝑗 . Recursive be-

haviour can be specified with recursive usages `𝑋 .U and the end
usage denotes the terminated protocol which has no transitions.

Definition 1 (LTS on Usages).

𝑗 ∈ 𝐼

{𝑚𝑖 ;𝑤𝑖 }𝑖∈𝐼
𝑚 𝑗−−→ 𝑤 𝑗

𝑗 ∈ 𝐼

⟨𝑙𝑖 : U𝑖 ⟩𝑖∈𝐼
𝑙 𝑗−→ U𝑗

U{𝑋/`𝑋 .U} −→ U ′

`𝑋 .U 𝛼−→ U ′

We define a notion of well-formedness for expressions (Defi-

nition 2), which requires that continue expressions do not show

up in places where, after loop unfolding, they would be followed

by other expressions. Examples of ill-formed expressions include

𝑜.𝑚(continue 𝑘) and continue 𝑘 ;𝑜.𝑚(unit). Furthermore, well-form-

edness also requires a labelled expression has a terminating branch

so that 𝑘 : if (true) {continue 𝑘} else {unit} is well-formed whereas

𝑘 : continue 𝑘 is not.

Definition 2 (Well-formedness). An expression 𝑒 is well-formed if:

(1) No expression follows a continue expression after unfolding
continue expressions in 𝑒

(2) No free loop-variables in 𝑒

(3) All continue expressions in 𝑒 are guarded by a branching

(if or match) expression
(4) There must be a branch in all labelled expressions in 𝑒 that

does not end with a continue expression

We conclude with the definition of well-formed methods.

Definition 3 (Well-formed methods). A method declaration fun
𝑚(𝑥 : 𝑡) : 𝑡 {𝑒} is well formed if 𝑒 is well formed and recursive calls

are guarded by a branching expression.

4 TYPE SYSTEM
As opposed to previous type systems for Mungo [3, 20, 21] the type

system presented here performs a global analysis of the program,

in order to maintain a global view of aliasing while guarantee-

ing correct objects’ states. This means that instead of relying on

compositionality during type checking, we must explore the entire

program graph. Consequently when a method call is encountered

during type checking, the type system must ensure that the body

of the method is well typed in the current typing environment.

We define a typing environment Γ using the production rules

shown in Figure 2. A typing environment maps object references to

an object-type as well as a field typing environment _ that contains

the types for all fields in the object. Furthermore we use the notation

Γ[𝑜 ↦→ (𝑇, _)] to indicate an update of an existing binding for object

𝑜 , and Γ[𝑜.𝑓 ↦→ 𝑜 ′] to update the existing binding of a field of object
𝑜 . A typing environment can only contain a single binding for each

Mathias Jakobsen, Alice Ravier, and Ornela Dardha

object reference 𝑜 . Similarly, a field typing environment can only

contain a single binding for each field name.

Γ ::= ∅ | Γ, 𝑜 ↦→ (𝑇, _)

_ ::= ∅ | _, 𝑓 ↦→ 𝑧

𝑧 ::= basetype bool | basetype void
| basetype ⊥ | basetype 𝐿

| reference 𝑜

Figure 2: Syntax of typing environments

We define the initial field environment given a set of field dec-

larations 𝐹 .inittypes. This is used when initialising new objects.

Fields with class types are given the initial type of ⊥ whereas fields

of base types retain that type in the field environment.

(𝐹, var 𝑓 : 𝐶).inittypes = 𝐹 .inittypes, 𝑓 ↦→ basetype ⊥

(𝐹, var 𝑓 : bool).inittypes = 𝐹 .inittypes, 𝑓 ↦→ basetype bool

(𝐹, var 𝑓 : void).inittypes = 𝐹 .inittypes, 𝑓 ↦→ basetype void

(𝐹, var 𝑓 : 𝐿).inittypes = 𝐹 .inittypes, 𝑓 ↦→ basetype 𝐿

∅.inittypes = ∅
We also define the following shorthand functions for extracting

information from the typing environment and class definitions.

(𝑜[𝐶,U], _).class ≜ 𝐶

(𝑜[𝐶,U], _).usage ≜ U
(𝑜[𝐶,U], _).reference ≜ 𝑜

(𝑜[𝐶,U], _).𝑓 ≜ _(𝑓)

(𝑇, _).type ≜ 𝑇

(𝑇, _).fields ≜ _

For a class name 𝐶 where class 𝐶{U, 𝐹 , 𝑀} ∈ 𝐷 we let 𝐷(𝐶) =

class 𝐶{U, 𝐹 , 𝑀} and define the following functions.

(class 𝐶{U, 𝐹 , 𝑀).usage ≜ U

(class 𝐶{U, 𝐹 , 𝑀).fields ≜ 𝐹

(class 𝐶{U, 𝐹 , 𝑀).methods ≜ 𝑀

The type system is driven by the following (Main) rule, which

states that if the main method is well typed, then the entire program

is well typed. As previously mentioned, the type systemwill expand

method calls, hence the type system will visit all reachable parts of

the program. In the (Main) rule we require term(Γ) meaning that

the resulting type environment must be terminated, meaning that

protocols must be finished for all objects. term is defined as:

term(Γ) ⇔ ∀𝑜 ∈ dom(Γ). Γ(𝑜).usage = end

(Main)

Main{U, 𝐹 , 𝑀} ∈ 𝐷

𝑀 = {fun main(void 𝑥) {𝑒}} U = {main; end}
∅; ∅; {𝑜main ↦→ (Main[end], 𝐹 .initvals)} ⊢ 𝑒 : 𝑇 ⊣ Γ term(Γ)

⊢ 𝐷 : ok

Judgments for type checking expressions are of the formΘ; Ω; Γ ⊢
𝑒 : 𝑇 ⊣ Γ

′
. The environments Ω and Θ are used to track labelled

expressions and recursive method calls respectively. The label en-

vironment Ω relates loop labels 𝑘 to typing environments Γ such

that when encountering a continue expression we can compare

the current typing environment to the initial typing environment

when entering the loop. This will be explained in detail later. The

recursion environment Θ serves the same purpose but for recur-

sive method calls instead. As method calls are expanded in the

type systems, recursive method definitions will lead to infinite type

checking if not handled carefully. By keeping track of the currently

expanded methods, the type system can terminate type checking

after a single expansion of each method.

Returning back to the format of judgments, Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′
,

we can now describe the meaning of the judgment. Given initial

environments Θ, Ω, Γ, evaluating the expression 𝑒 will result in a

value of type 𝑇 and a possibly updated typing environment Γ
′
. We

assume that 𝐷 is globally available in the rules, and contains the

class definitions of the program.

The first set of rules, found in Figure 3a, describes object oper-

ations such as reading fields or parameters, assigning fields and

object initialisation. They are for the most part standard, although

the rules for method call require some further description.

The rules for direct method calls, which is used for typingmethod

calls on parameters or the this object, are defined in (Call-d) and

(Call-d-rec). In (Call-d) the method body is expanded, and the cur-

rent typing environment from before the unfolding is stored in the

recursion environment Θ. Upon reaching a recursive call inside the

method body the (Call-d-rec) rule is used to compare the current

typing environment to the one stored in Θ. This enforces that upon

making a recursive call, the typing environment should be the same

as it was for the initial method call. If this is the case, then we can

terminate type checking of the call-chain, as we have checked this

exact configuration already with the initial call. So the combination

of the two rules (Call-d) and (Call-d-rec) gives us a recursive typing

behaviour, with the base case defined by (Call-d-rec). This exact

behaviour is repeated for indirect calls which are used for fields, as

illustrated in the rules (Call-ind) and (Call-ind-rec).

Four auxiliary functions are used in the rules:

agree checks that a value of type 𝑇 matches the one defined in

the program text as 𝑡 . This allows null to be written to fields with

class types, and allows objects to be stored in fields with matching

classes, no matter the particular protocol of the object.

agree(𝐶,⊥) agree(𝐶, 𝑜[𝐶,U]) agree(bool, bool)

agree(void, void) agree(𝐿, 𝐿)

The returns predicate extends the agree predicate with an option

to return a link type from a method, to support switching on choice

usages by linking the enumeration type to an object.

returns(𝑡,𝑇) ⇔ agree(𝑡,𝑇) ∨ (𝑡 = 𝐿 ∧𝑇 = 𝐿 link 𝑜)

getType and vtype are used for tagging and unpacking values

for storing them in the typing environment. The reason we need

this is to handle the indirection of an object reference 𝑜 , so that we

can look up the type of a field, with an extra access to the typing

environment.

Papaya: Global Typestate Analysis of Aliased Objects Extended Version

getType(reference 𝑜, Γ) = Γ(𝑜).type

getType(basetype bool, Γ) = bool

getType(basetype void, Γ) = void

getType(basetype ⊥, Γ) = ⊥
getType(basetype 𝐿, Γ) = 𝐿

vtype(𝑜[𝐶,U]) = reference 𝑜

vtype(bool) = basetype bool

vtype(void) = basetype void

vtype(⊥) = basetype ⊥
vtype(𝐿) = basetype 𝐿

Next follows the rules for control structures shown in Figure 3b.

The rule for sequential composition is straightforward, and uses the

resulting environment from 𝑒 to type check 𝑒 ′. The rule (If) requires
the same resulting environment for both branches. The (Case) rule

checks that all branches of the choice-usage results in the same

final environment, similar to (If) and updates the usage accordingly.

Finally (Label) and (Continue) type checks loops. (Label) simply

adds the current typing environment to Ω, while (Continue) can

result in an arbitrary type and typing environment. This behaviour

is safe, since we know that the expression is well formed, meaning

that any continue statement is guarded by an if case or match

statement, in which case only the choice of an environment that

matches the other branch, can be chosen if the expression must be

well typed.

Notice that in the (Case) rule we make use of the enumeration

type 𝐿 link 𝑜 . As such types do not agree with any other types, they

cannot be stored in fields or used as method arguments. So the only

way for these types to be show up in a well-typed program, is as the

return value of a method, used for matching in a case statement.

Example 1. Consider again the bank account example presented

in Section 2. The typing environments is an approximation of the

heap, and after typing lines 41-46, the environment is:

𝑜main ↦→ (Main[end],

{account ↦→ 𝑜acc, manager ↦→ 𝑜man, db ↦→ 𝑜d, })
𝑜acc ↦→ (BankAccount[{setMoney; {applyInterest;

{getMoney; end}}}],
{amount ↦→ double})

𝑜man ↦→ (SalaryManager[{addSalary; end}], {account ↦→ 𝑜a})
𝑜db ↦→ (DataStorage[{store; end}], {account ↦→ 𝑜a})

After type checking line 48, where the salary manager adds funds

to the account, the following bindings are updated in the typing

environment, while the remaining bindings are unchanged.

𝑜acc ↦→ (BankAccount[{getMoney; end}], {amount ↦→ double})
𝑜man ↦→ (SalaryManager[{addSalary; end}], {account ↦→ 𝑜a})

This allows line 49 to be typechecked, since the 𝑜acc has been

updated to allow a call to the method getMoney, this is an example

of how the global type checking approach allow us to track changes

to aliased fields, even if they happen through seemingly unrelated

objects.

5 SEMANTICS
In this section we define the run-time semantics of the language. It

follows the standard model where object references are used to look

up values in the heap. The heap itself is similar in some respects to

the typing environment we have previously discussed. The heap

maps object references 𝑜 to their class and a field environment.

In the semantics, we do not consider typestates, hence instead of

mapping the object reference to a full type, we only map it to its

class in order to look up method definitions and field declarations.

The field bindings in the heap is a mapping from field names to

values, which themselves can be object references or base values

such as true, null, or unit. The initial field environment is defined

similarly to 𝐹 .inittypes, but instead it maps the fields to values

instead, in 𝐹 .initvals.

(𝐹, var 𝑓 : 𝐶).initvals = 𝐹 .initvals, 𝑓 ↦→ null

(𝐹, var 𝑓 : bool).initvals = 𝐹 .initvals, 𝑓 ↦→ false

(𝐹, var 𝑓 : void).initvals = 𝐹 .initvals, 𝑓 ↦→ unit

(𝐹, var 𝑓 : 𝐿).initvals = 𝐹 .initvals, 𝑓 ↦→ 𝑙

where enum 𝐿{𝑙, 𝑙} ∈ 𝐷

∅.initvals = ∅

Wenowdefine configurations, which are of the form ⟨ℎ, 𝑒⟩.When

evaluating the expression 𝑒 , both the expression and the heap can

change. To model this, we let a computation step be of the form

⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩. The reduction rules are shown in Figure 4.

To simplify the reduction rules, we make use of an evaluation

context to guide the evaluation of composite expressions.

E ::= [_] | 𝑜.𝑓 = E | E; 𝑒 | 𝑜.𝑚(E) | 𝑜.𝑓 .𝑚(E)

| if (E) {𝑒} else {𝑒} | match(E){𝑙 : 𝑒}

The (ctx) rules ensures that inner expressions are evaluated first

(e.g. left-hand side of a sequential expression are evaluated before

right-hand side). The remaining rules handle the interesting base

cases of the semantics.

Example 2. Consider again the bank account example.When reach-

ing line 48, the heap contains the following bindings:

𝑜main ↦→ (Main, {account ↦→ 𝑜acc, manager ↦→ 𝑜man, db ↦→ 𝑜d, })
𝑜acc ↦→ (BankAccount, {amount ↦→ 0})
𝑜man ↦→ (SalaryManager, {account ↦→ 𝑜a})
𝑜db ↦→ (DataStorage, {account ↦→ 𝑜a})

Mathias Jakobsen, Alice Ravier, and Ornela Dardha

Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′

(Assign)

Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′

Γ
′
(𝑜).class.fields(𝑓) = var 𝑓 : 𝑡 agree(𝑡,𝑇)

Θ; Ω; Γ ⊢ 𝑜.𝑓 = 𝑒 : void ⊣ Γ
′
[𝑜.𝑓 ↦→ vtype(𝑇)]

(Field)

Γ(𝑜).fields(𝑓) = 𝑧 𝑇 = getType(Γ, 𝑧)

Θ; Ω; Γ ⊢ 𝑜.𝑓 : 𝑇 ⊣ Γ

(New)

𝑜 ′ fresh 𝐷(𝐶) = class 𝐶{U, 𝐹 , 𝑀} val 𝑓 : 𝐶 ∈ 𝐷(Γ
′
(𝑜).class).fields

Θ; Ω; Γ ⊢ 𝑜.𝑓 = new 𝐶 : unit ⊣ (Γ, 𝑜 ′ ↦→ (𝑜 ′[𝐶,U], 𝐹 .inittypes))[𝑜.𝑓 ↦→ 𝑜 ′]

(Unit)

Θ; Ω; Γ ⊢ unit : void ⊣ Γ

(Bool)

𝑣 ∈ {true, false}
Θ; Ω; Γ ⊢ 𝑣 : bool ⊣ Γ

(Enum)

𝑙 ∈ 𝐿

Θ; Ω; Γ ⊢ 𝑜.𝑙 : 𝐿 link 𝑜 ⊣ Γ

(Null)

Θ; Ω; Γ ⊢ null : ⊥ ⊣ Γ

(Const)

𝑙 ∈ 𝐿

Θ; Ω; Γ ⊢ 𝑜.𝑙 : 𝐿 ⊣ Γ

(Obj)

Γ(𝑜) = (𝑜[𝐶,U], _)

Θ; Ω; Γ ⊢ 𝑜 : 𝑜[𝐶,U] ⊣ Γ

(Call-d)

Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′′

Γ
′′

(𝑜) = (𝑜[𝐶,U], _) U 𝑚−→ U ′

fun𝑚(𝑥 : 𝑡) : 𝑡 ′{𝑒 ′} ∈ 𝐷(𝐶).methods agree(𝑡,𝑇)

(Θ, 𝑜 .𝑚 ↦→ Γ
′′′

); Ω; Γ
′′′ ⊢ 𝑒 ′{this/𝑜}{𝑥/getValue(𝑇 ′

)} : 𝑇 ′ ⊣ Γ
′ returns(𝑡 ′,𝑇 ′

)

Θ; Ω; Γ ⊢ 𝑜.𝑚(𝑒) : 𝑇 ′ ⊣ Γ
′

where Γ
′′′

= Γ
′′

[𝑜 ↦→ (𝑜[𝐶,U ′
], _)

(Call-d-rec)

(Θ, 𝑜 .𝑚 ↦→ Γ
′′

); Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′′′

Γ
′′′

(𝑜) = (𝑜[𝐶,U], _) U 𝑚−→ U ′

agree(𝑡,𝑇) Γ
′′

= Γ
′′′

[𝑜 ↦→ (𝑜[𝐶,U ′
], _)]

(Θ, 𝑜 .𝑚 ↦→ Γ
′′

); Ω; Γ ⊢ 𝑜.𝑚(𝑒) : 𝑇 ′ ⊣ Γ
′

(Call-ind)

Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′′

Γ
′′

(𝑜).𝑓 = 𝑜 ′

Γ
′′

(𝑜 ′) = (𝑜 ′[𝐶,U], _) U 𝑚−→ U ′

fun𝑚(𝑥 : 𝑡) : 𝑡 ′{𝑒 ′} ∈ 𝐷(𝐶).methods agree(𝑡,𝑇)

(Θ, 𝑜 ′.𝑚 ↦→ Γ
′′′

); Ω; Γ
′′′ ⊢ 𝑒 ′{this/𝑜}{𝑥/getValue(𝑇 ′

)} : 𝑇 ′ ⊣ Γ
′ returns(𝑡 ′,𝑇 ′

)

Θ; Ω; Γ ⊢ 𝑜.𝑓 .𝑚(𝑒) : 𝑇 ′ ⊣ Γ
′

where Γ
′′′

= Γ
′′

[𝑜 ′ ↦→ (𝑜 ′[𝐶,U], _)

(Call-ind-rec)

(Θ, 𝑜 ′.𝑚 ↦→ Γ
′′

); Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′′′

Γ
′′′

(𝑜).𝑓 = 𝑜 ′ Γ
′′′

(𝑜 ′) = (𝑜 ′[𝐶,U], _)

U 𝑚−→ U ′ agree(𝑡,𝑇) Γ
′′

= Γ
′′′

[𝑜 ′ ↦→ (𝑜 ′[𝐶,U ′
], _)]

(Θ, 𝑜 ′.𝑚 ↦→ Γ
′′

); Ω; Γ ⊢ 𝑜.𝑓 .𝑚(𝑒) : 𝑇 ′ ⊣ Γ
′

(a) Object operations and values

Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′

(If)

Θ; Ω; Γ ⊢ 𝑒1 : bool ⊣ Γ
′′

Θ; Ω; Γ
′′ ⊢ 𝑒2 : 𝑇 ⊣ Γ

′
Θ; Ω; Γ

′′ ⊢ 𝑒3 : 𝑇 ⊣ Γ
′

Θ; Ω; Γ ⊢ if (𝑒1) {𝑒2} else {𝑒3} : 𝑇 ⊣ Γ
′

(Comp)

Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′′

Θ; Ω; Γ
′′ ⊢ 𝑒 ′ : 𝑇 ′ ⊣ Γ

′

Θ; Ω; Γ ⊢ 𝑒; 𝑒 ′ : 𝑇 ′ ⊣ Γ
′

(Label)

Θ; Ω, 𝑘 ↦→ Γ; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′

Θ; Ω; Γ ⊢ 𝑘 : 𝑒 : 𝑇 ⊣ Γ
′

(Continue)

Ω(𝑘) = Γ

Θ; Ω; Γ ⊢ continue 𝑘 : 𝑇 ⊣ Γ
′

(Case)

Θ; Ω; Γ ⊢ 𝑒 : 𝐿 link 𝑜 ⊣ Γ
′′ ∀𝑙𝑖 ∈ 𝐿.

{
Γ
′′

(𝑜).usage
𝑙𝑖−→ U𝑖

Θ; Ω; Γ
′′

[𝑜.usage ↦→ U𝑖] ⊢ 𝑒𝑖 : 𝑇 ⊣ Γ
′

Θ; Ω; Γ ⊢ match(𝑒){𝑙 : 𝑒} : 𝑇 ⊣ Γ
′

(b) Composite expressions

Figure 3: Typing rules for expressions

Papaya: Global Typestate Analysis of Aliased Objects Extended Version

⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩

(ctx)

⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩

⟨ℎ, E[𝑒]⟩ =⇒ ⟨ℎ′, E[𝑒 ′]⟩

(assign)

⟨ℎ, 𝑜.𝑓 = 𝑣⟩ =⇒ ⟨ℎ[𝑜.𝑓 ↦→ 𝑣], unit⟩

(seq)

⟨ℎ, 𝑣 ; 𝑒⟩ =⇒ ⟨ℎ, 𝑒⟩

(if-true)

⟨ℎ, if (true) {𝑒1} else {𝑒2}⟩ =⇒ ⟨ℎ, 𝑒1⟩

(if-false)

⟨ℎ, if (false) {𝑒1} else {𝑒2}⟩ =⇒ ⟨ℎ, 𝑒2⟩

(lab)

⟨ℎ, 𝑘 : 𝑒⟩ =⇒ ⟨ℎ, 𝑒{continue 𝑘/𝑘 : 𝑒}⟩

(match)

𝑙 𝑗 : 𝑒 𝑗 ∈ 𝑙 : 𝑒

⟨ℎ,match(𝑜.𝑙 𝑗){𝑙 : 𝑒}⟩ −→ ⟨ℎ, 𝑒 𝑗 ⟩

(call-d)

ℎ(𝑜).class.methods ∋ fun𝑚(𝑥 : 𝑡) : 𝑡 ′{𝑒}
⟨ℎ, 𝑜.𝑚(𝑣)⟩ =⇒ ⟨ℎ, 𝑒{this/𝑜}{𝑥/𝑣}⟩

(call-ind)

ℎ(𝑜).𝑓 = 𝑜 ′ ℎ(𝑜 ′).class.methods ∋ fun𝑚(𝑥 : 𝑡) : 𝑡 ′{𝑒}
⟨ℎ, 𝑜.𝑓 .𝑚(𝑣)⟩ =⇒ ⟨ℎ, 𝑒{this/𝑜 ′}{𝑥/𝑣}⟩

(new)

𝑜 ′ fresh ℎ′ = (ℎ, 𝑜 ′ ↦→ (𝐶,𝐶.fields.initvals))[𝑜.𝑓 ↦→ 𝑜 ′]

⟨ℎ, 𝑜.𝑓 = new 𝐶⟩ =⇒ ⟨ℎ′, unit⟩

(fld)

ℎ(𝑜).fields(𝑓) = 𝑣

⟨ℎ, 𝑜.𝑓 ⟩ =⇒ ⟨ℎ, 𝑣⟩

Figure 4: Run-time semantics

After evaluating the expression on line 48, where the salary

manager adds funds to the account, the following bindings are

updated in the heap, while the remaining bindings are unchanged.

𝑜acc ↦→ (BankAccount, {amount ↦→ 100})

We see that compared to the type system, fewer bindings were

updated, due to the typestates not being tracked in the semantics.

However, the resulting environments from the type system and the

semantics remains consistent, meaning that the types mentioned

in the type system are consistent with the values in the heap. This

property and more will be shown in the following section.

6 PROPERTIES
In this section we show important properties that hold for the

defined language. The first result we show is the fact that we can

remove bindings from Θ while the expression remains well-typed.

The intuition of this is that Θ serves to denote the base case of

checking recursive calls. So when we remove a binding from the

environment, we simply have to expand the method body once

more, leading to the entry being added again in Θ.

Lemma 1. If in a typing derivation starting from an empty recur-

sion environment we have Θ, 𝑜 .𝑚 ↦→ Γ
𝑁

; ∅; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
𝐹
then we

also have Θ; ∅; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
𝐹
.

Proof. Details in Appendix B. □

Along with a similar proof for labelled expressions, where bind-

ings can be removed from Ω, this shows that we often consider

situations where Θ and Ω are empty. So for readability of the up-

coming properties, we omit writing the environments when they

are empty, so Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′
is equivalent to ∅; ∅; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ

′
.

We must establish a soundness result, and show that the usages

defined for classes are respected at run-time, and no protocol de-

viation occurs. To establish such a relationship between the type

system and the semantics, we first define consistency between a

heap and a typing environment, which describes that the typing

environment and heap agree on the classes of all objects, and agree

on the field bindings of all objects.

Definition 4 (Heap consistency). We say that a heap is consistent

with a typing environment, written Γ ⊢ ℎ, if Γ and ℎ contains the

same objects and the field bindings of each object are also consistent.

dom(ℎ) = dom(Γ)

∀𝑜 ∈ dom(Γ).ℎ(𝑜).fields = Γ(𝑜).fields ∧ ℎ(𝑜).class = Γ(𝑜).class

Γ ⊢ ℎ

Furthermore, we lift the transition system for usages to typing

environments, with the rules shown in Figure 5. Notice how the

transitions match the updates to a typing environment performed

by the typing rules shown in Figure 3a. This allows us to establish

that only a single update is performed to a typing environment

when evaluating one step in the reduction semantics.

To complete subject reduction (Theorem 1), we consider a seman-

tics where the transitions in (call-d) and (call-ind) are annotated

with 𝑜.𝑚 and 𝑜 ′.𝑚 respectively, (match) is annotated with 𝑜.𝑙 ′ and
all other transitions are annotated with the empty string Y. We can

use these labels to show a correspondence between the transitions

Mathias Jakobsen, Alice Ravier, and Ornela Dardha

(empty)

Γ

Y−→ Γ

(trans)

Γ(𝑜).usage
𝛼−→ U

Γ

𝑜.𝛼−−−→ Γ[𝑜.usage ↦→ U]

(update)

Γ(𝑜).𝑓 = 𝑡

Γ

Y−→ Γ[𝑜.𝑓 ↦→ 𝑡 ′]
(new)

𝑜 ∈ dom(Γ) 𝑜 ′ fresh class 𝐶{U, 𝐹 , 𝑀} ∈ 𝐷

Γ

Y−→ (Γ, 𝑜 ′ ↦→ (𝑜 ′[𝐶,U], 𝐹 .inittypes))[𝑜.𝑓 ↦→ 𝑜 ′]

Figure 5: Transition system for typing environments

on typing environments, and the transitions between run-time

configurations.

The subject reduction theorem states that a single reduction of a

well-typed expression can be matched by a single transition from a

consistent typing environment. In other words, this tells us that a

single reduction preserves well-typedness with a single update to

the typing environment.

Theorem 1 (Subject Reduction). If Γ ⊢ ℎ, Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′
and

⟨ℎ, 𝑒⟩ 𝛼
==⇒ ⟨ℎ′, 𝑒 ′⟩ then ∃Γ

′′.Γ′′ ⊢ 𝑒 ′ : 𝑇 ⊣ Γ
′
such that Γ

𝛼−→ Γ
′′
and

Γ
′′ ⊢ ℎ′

Proof. See details in Appendix C □

Example 3.We return to the configuration just before executing

line 44 in Listing 4. In Examples 1 and 2 we have stated what the

heap and typing environment contain when reaching this statement.

In this example we show the consistency between the heap and

typing environment for the expression after a single transition.

The remaining expression of the program at this point is:

𝑒 = 𝑜main .manager.addSalary(100.0);𝑜main .db.store(unit)

In Example 1 we identified the typing environment as:

Γ =

𝑜main ↦→ (Main[end],

{account ↦→ 𝑜acc, manager ↦→ 𝑜man,

db ↦→ 𝑜d, })
𝑜acc ↦→ (BankAccount[{setMoney;

{applyInterest;
{getMoney; end}}}],

{amount ↦→ double})
𝑜man ↦→ (SalaryManager[{addSalary; end}],

{account ↦→ 𝑜a})
𝑜db ↦→ (DataStorage[{store; end}],

{account ↦→ 𝑜a})

In Example 2 we identified the heap as:

ℎ =

𝑜main ↦→ (Main, {account ↦→ 𝑜acc,

manager ↦→ 𝑜man, db ↦→ 𝑜d, })
𝑜acc ↦→ (BankAccount, {amount ↦→ 0})
𝑜man ↦→ (SalaryManager, {account ↦→ 𝑜a})
𝑜db ↦→ (DataStorage, {account ↦→ 𝑜a})

We have Γ ⊢ 𝑒 : void ⊣ Γ

′′
where Γ

′′
is the terminated envi-

ronment containing the objects of Γ. Using the (ctx) and (call-ind)

rule we can conclude the following transition (we let 𝑒 ′ denote the
updated expression):

⟨ℎ, 𝑜main .manager.addSalary(100.0);𝑜main .db.store(unit)⟩
𝑜man .addSalary
===================⇒ ⟨ℎ, (𝑜man .account.setMoney(100.0);

𝑜man .account.applyInterest(1.05));

𝑜main .db.store(unit)⟩

Now let Γ
′
be the updated environment where a single transition

has been performed on the salary manager object:

Γ
′

=

𝑜main ↦→ (Main[end],

{account ↦→ 𝑜acc, manager ↦→ 𝑜man,

db ↦→ 𝑜d, })
𝑜acc ↦→ (BankAccount[{setMoney;

{applyInterest;
{getMoney; end}}}],

{amount ↦→ double})
𝑜man ↦→ (SalaryManager[end],

{account ↦→ 𝑜a})
𝑜db ↦→ (DataStorage[{store; end}],

{account ↦→ 𝑜a})

We can conclude Γ

𝑜man .addSalary−−−−−−−−−−−−−−−→ Γ
′
with the (trans) rule. It

is clear that we have Γ
′ ⊢ ℎ since we have only updated a usage

which is not considered in the consistency relation. Finally we can

also conclude Γ
′ ⊢ 𝑒 ′ : void ⊣ Γ

′′
since the remaining usages in Γ

′

corresponds to the remaining method calls in 𝑒 ′ (and also directly

from the typing rule of Γ ⊢ 𝑒 : void ⊣ Γ
′′
).

As previously mentioned, we use the labels of the run-time se-

mantics to establish a correspondence between updates to the typ-

ing environment and the run-time configurations. In Corollary 1,

which follows from Theorem 1, we make this correspondence ex-

plicit by showing that when a method call or label selection occurs

at run-time, this always follows the protocol of the object.

Corollary 1 (Protocol conformance). If Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′′
, Γ ⊢ ℎ,

⟨ℎ, 𝑒⟩ 𝑜.𝛼
====⇒ ⟨ℎ′, 𝑒 ′⟩ then ∃Γ

′. Γ
′ ⊢ 𝑒 ′ : 𝑇 ⊣ Γ

′′
and Γ(𝑜).usage

𝛼−→
Γ
′
(𝑜).usage

Lemma 2 (Protocol completion). Let 𝐷 be a well-typed program

and let 𝑐 be the initial configuration of 𝐷 . If 𝑐 =⇒∗ ⟨ℎ, 𝑣⟩ then all

objects in ℎ has finished their protocol.

Proof. Since ⊢ 𝐷 ok we know from (Main) thatMain{U, 𝐹 , 𝑀}
∈ 𝐷 ,𝑀 = {funmain() {𝑒}}, and {𝑜main ↦→ (Main[end], 𝐹 .inittypes)}
⊢ 𝑒 : 𝑇 ⊣ Γ

′
where term(Γ

′
). Since term(Γ

′
) we know that all objects

have terminated protocols, and from Corollary 1 we know that all

objects has followed their protocols. □

We can now conclude with progress property, which states that

well-typed programs do not get stuck.

Papaya: Global Typestate Analysis of Aliased Objects Extended Version

Theorem 2 (Progress). If Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′
, Γ ⊢ ℎ, then either 𝑒 is

a value or ∃ℎ′, 𝑒 ′. ⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩

Proof. See details in Appendix D. □

7 IMPLEMENTATION
In this section we present Papaya, an implementation of our frame-

work and type system for a subset of the Scala programming lan-

guage [27]. The source code can be found on our Github repository

[29].

The Papaya tool is implemented as a plugin for the Scala com-

piler, meaning that programs with protocol violations will produce

compilation errors and the program will not be compiled.

Scala is an object-oriented language which compiles to JVM

bytecode and consequently is compatible with Java code and appli-

cations, while introducing new language features such as lazy eval-

uation, immutability, type inference and pattern matching. These

features make Scala an expressive and powerful high-level language

that supports object-oriented programming, functional program-

ming, and a mix of both.

The main features supported by Papaya are:

• Control flow structures Papaya supports users using

loops, if-else statements, match statements, and functions.

• Recursion Papaya handles recursive function calls as de-

scribed for the formalisation.

• Fields Objects with typestates can be stored in class fields

and dealt with appropriately.

• Unrestricted aliasing Papaya offers the user unrestricted

aliasing of variables.

To compare with the earlier implementations of Mungo for Java,

we can see that Papaya introduces new features:

• Uncertain states For increased flexibility, Papaya allows

multiple branches to result in different typestates, as long

as the type state of all objects eventually become consistent.

This is a deviation between the formalism of this paper and

the implementation.

• Unrestricted aliasingMungo enforces linearity in its pro-

gram, disallowing the user to alias objects with a protocol.

With unrestricted aliasing in Papaya, the user is free to alias

as much as they want to.

The implemented algorithm follows the structure defined for the

formalism, by analysing the program graph, starting from entry-

point into the program and expanding the program graph upon

reaching method calls. At each method call encountered during

verification, the transition system of the protocol of the callee is

consulted to ensure that the method call is currently allowed for

the object.

This is different from the previous implementations of theMungo

tool. In the original implementation [6, 20, 21, 36] the tool infers

the typestate of objects in the program and then checks that this

respects the typestate defined for the classes. Since that version of

the Mungo tool requires a linear treatment of references, the tool

works similar to a classic type system for object-oriented language

where each class is checked in isolation. In a recent implementation

of Mungo [24], the Java Checker Framework is used to analyse

the control flow graph of a Java program, and perform typestate

analysis. The tool allows for a modular approach to type checking,

however the use of aliases in the new implementation is still re-

stricted to fractional permissions where write-access is only given

to linear references.

Example 4. We return to our bank account example. This time we

write a working implementation in Scala and use Papaya to verify

the correctness of the implementation.

In Listing 5 we show the implementation of the bank account in-

troduced earlier. The typestate is specified using the @Typestate
annotation where the argument refers a name of a singleton object

defining the behaviour of a class.

1 @Typestate("BankAccountProtocol")

2 class BankAccount() {

3 var balance:Float = 0

4 def fill(amount:Float):Unit =

5 { balance = amount }

6 def get():Float = balance

7 def applyInterest(ir:Float):Unit = {

8 balance = balance * ir

9 }

10 }

Listing 5: Implementation of the BankAccount with attached
protocol

The protocol is written in a Scala-like domain specific language.

The protocol of the bank account is shown in Listing 6. Notice that

the implementation uses state equations (i.e. init = setMoney(Float)

→ intermediate) instead of the recursive definitions used in the

formalism to describe state changes. This change is introduced to

allow programmers to specify their protocols more easily.

1 object BankAccountProtocol extends

ProtocolLang with App {

2 in("init")

3 when("setMoney(Float)")

4 goto "intermediate"

5 in("intermediate")

6 when("applyInterest(Float)")

7 goto "filled"

8 in("filled")

9 when("getMoney()")

10 goto "end"

11 in("end")

12 end()

13 }

Listing 6: Protocol for the BankAccount class

Mathias Jakobsen, Alice Ravier, and Ornela Dardha

The protocol specifies that the BankAccount starts in the "init"
state and can perform one transition with a call to setMoney(

Float) to go to the "intermediate" state. We can see that it

then has one possible transition to the "filled" state, whence

it has one last possible transition to the "end" state. Comparing

this to the previously defined usage {setMoney; {applyInterest;
{getMoney; end}}} we see that the two descriptions are equivalent.

11 class DataStorage() {

12 var money:BankAccount = null;

13 def setMoney(m:BankAccount):Unit =

14 { money = m}

15 def store():Unit = {

16 var amount = money.get()

17 println(amount)

18 // write to the database

19 }

20 }

21 class SalaryManager() {

22 var money:BankAccount = null;

23 def setMoney(m:BankAccount):Unit =

24 { money = m}

25 def addSalary(amount:Float):Unit = {

26 money.fill(amount)

27 money.applyInterest(1.02f)

28 }

29 }

Listing 7: Implementations of two classes that will use a
shared bank account

In Listing 7 we show the implementation of the two remaining

classes previously introduced, and in Listing 8we showhow aliasing

is achieved by providing the account reference to both the salary

manager and the data store.

1 object Demonstration extends App {

2 val account = new BankAccount

3 val manager = new SalaryManager

4 val storage = new DataStorage

5 manager.setMoney(account)

6 storage.setMoney(account)

7 manager.addSalary(5000)

8 storage.store()

9 }

Listing 8: Program segment that uses aliasing

In the implementation we handle the layer of indirection between

references (with potential aliasing) and objects similarly to the treat-

ment in the type system in Section 4 but with more information

tracked in order to aid debugging and error handling. This means

that the three references introduced in Listing 8 are tracked inde-

pendently but all point to the same underlying instance, as shown

in Figure 6.

Alias

BankAccount@0

Instance

DataStorage's account

Alias

SalaryManager's account

Alias

Main function's account

Figure 6: Example of the structure of Instances and Aliases in
the BankAccount example. Here we have three Aliases point-
ing to a single BankAccount Instance. The Instance has an
"@0" ID to differentiate it from other potential BankAccount
Instances. Each Alias is identified by its name and scope.

8 RELATEDWORK
Session types. Session types [16–18] were introduced to ensure

type-safe structured communication between multiple parties. The

process sending data and the process receiving data must agree on

the type of data being transmitted. The concept of session types

has been also explored for object oriented languages [10, 34]. A par-

ticular application of session types for an object oriented language

is that in Bica [14] where session types are used to type commu-

nication on channels, but also to perform type-safe interaction

with objects themselves. In terms of message passing in object-

oriented languages, we can view a session type as a description of

the messages we can send to a particular object, corresponding to

an ordering of method calls. In the simplest setting we can imagine

object initialisation as instantiating a communication channel be-

tween the new object and the caller, and subsequent method calls

as sending messages on this channel. Scalas et al. [30, 31] integrate

binary and multiparty session types in Scala and implement it as a

library.

Typestates. While originally introduced to track value initiali-

sation [32], typestates have been explored extensively for object-

oriented programming. The approach described for Bica is one

approach for typestates in object-oriented languages that inspired

the line of research on Mungo [3, 13, 21, 24–26]. In this line of work,

typestates are based on session types and describe the permitted

sequence of method calls, in a syntax similar to session types.

Plaid [1, 33] introduces the concept of Typestate-oriented pro-
gramming wherein typestates form the basis for objects, rather

Papaya: Global Typestate Analysis of Aliased Objects Extended Version

than class descriptions. As operations are performed on object, they

transition between states, and the set of available operations evolve,

ensuring that methods can only be called on objects that are in a

state that implements the method.

The Fugue protocol checker [8, 9] extends class definitions for

the Common Language Runtime (CLR) [22] with state machines.

They use pre and postconditions to describe the transitions between

states and preconditions are used as guards, to ensure that methods

are only called when the object is in a state that allows the method

calls.

Lastly, the work on typestates for concurrent object-oriented

languages [5, 28] uses typestates to reason about protocol confor-

mance, but also properties such as deadlock freedom.

Aliasing and Typestates. We have seen multiple approaches to

combining typestates with object-oriented programming, but each

approach handles the presence of aliasing differently.

Vault [7] introduces tracked types where a unique key is created

for each object, and operations can only be performed on the object

by the current holder of the key.

In an extension to the Vault language [11] the concepts of adop-
tion and focus are used for introducing aliases. The adoption con-

struct allows a linear value (the adoptee) to be converted into a

nonlinear reference for the duration of the adopters lifetime. As

linear resources of the adoptee cannot be accessed through the

nonlinear type, they introduce the focus operation to temporarily

convert the nonlinear type into a linear type, by ensuring that in

the linear scope, no other aliases can witness the operations, and

that the object is left in a consistent state after the operation, so

that the operations remains invisible to other aliases.

Later, in the work on Fugue [8] they allow objects to be marked

NotAliased andMayBeAliased. In the case of an object being marked

NotAliased the object is treated linearly, whereas objects marked

NotAliased are tracked to see if they can escape from their context

(by method calls or assignment, etc.) and emits a warning in case

of unsafe aliasing.

Multiple approaches to aliasing have been introduced for the

Plaid language. Bierhoff and Aldrich [2] present a fine-grain ap-

proach to aliasing. The authors note that an approach such as the

one used in Fugue must be able to reason about all aliases to allow

state change to an object, hence limiting nonlinear objects to simple

operations. Instead they propose a collection of five permissions

such as unique (single reference with read/write permissions), share
(one reference has read/write permissions, other references has read

permissions) or the inverse pure (read access while other reference

has read/write permissions). For the different permissions, they

introduce the concept of permission splitting and permission joining,
where one alias with a permission can be split into two aliases

that are equally or more restricted than the original. Similarly, for

joining, two permissions can be merged back into a potentially less

restrictive permission. To handle an arbitrary number of aliases,

and ensure that all aliases can be collected to regain write access,

they introduce fractions denoting howmany times a permission has

been split, and conversely when all fractions has been recovered.

A typesystem for a language inspired by Plaid [23] uses concepts

from behavioural separation [4] to reason about type-states. In this

language, classes are composed of views, and each view contains

a subset of the fields of the class. Through view equations, views
can be composed or decomposed into a number of other views,

similar to permission splitting and joining as previously described.

Through view decomposition, each alias is associated with a single

view, and hence also follows the view equations. Similar to the

previous work on aliasing in Plaid they use fractions to keep track

of splits when allowing an unbounded number of aliases, so they

can ensure that all aliases are recovered before any updates to the

full object.

Mungo generally treats objects as linear values, where only a sin-

gle reference to an object can exist. While enforcing linearity allows

for a common treatment of all object references, it is a deviation

from real-world programs where aliasing is used in programming

patterns for sharing data etc. Accordingly, work has been undergo-

ing to lessen this constraint. A recent implementation of the Mungo

tool [25] supports access permissions similar to those described for

Plaid.

In another treatment of aliasing for Mungo [15, 19], the language

of usages is extended with a parallel construct (U1 | U2).U3 where

an object can be aliased into two references, with usagesU1 andU2

respectively. After completion of the local protocol, only a single

reference (with usageU3) exists. This approach is analogous to the

view-equations used in [23].

Common between the approaches to aliasing described in this

section is that they adopt a local treatment of aliasing, allowing

them to preserve compositionality of the type system, whereas the

treatment in this paper is global. The local treatment allows for

greater flexibility in a larger system, where components can be

replaced without having to re-verify the entire system, whereas

the global approach allows for the maximum flexibility for the

programmer’s work with aliasing.

A typestate verification framework for Java with support for

aliasing has been presented in [12]. The tool makes sound approx-

imations to scale to larger programs, at the cost of precision (in-

creased false positives).

9 CONCLUSION AND FUTUREWORK
In this paper we have explored a global approach to reasoning about

unrestricted aliasing in the presence of typestates. We have shown

the standard soundness properties about the type system, namely

subject reduction and progress. Furthermore, we have shown the

protocol conformance property–which ensures that protocols de-

fined for classes are respected by instantiated objects, and that no

protocol deviation occurs–and the protocol completion property–

which ensures that protocols are completed for all objects, meaning

that after termination of a program all objects have successfully

completed their protocol.

The language presented in this paper is a small object-oriented

language that does not correspond directly to any real-life program-

ming language. However it does have similarities to the low level

JVM bytecode language. As future work, we plan to explore this

similarity in an attempt at integrating typestates in JVM bytecode.

As we use a global approach of type checking the entire program

graph, as opposed to checking each class in isolation, the run-

time may suffer for larger programs. To combat this, it would be

interesting to split classes into a linear section, and an unrestricted

Mathias Jakobsen, Alice Ravier, and Ornela Dardha

section. Then values that are treated by the class as linear objects

(where only a single reference exists at all times) can be checked in

isolation, before the global analysis checks the unrestricted sections

of all classes. We leave it to future work to check whether such a

split of a class can be determined without programmer annotations,

and to explore how to integrate the previous approaches to type

checking linear objects can be integrated as a step before the global

analysis.

10 ACKNOWLEDGEMENTS
Research supported by the EPSRC programme grant “From Data

Types to Session Types: A Basis for Concurrency and Distribution"

EP/K034413/1 (ABCD), and EU HORIZON 2020 MSCA RISE project

778233 “Behavioural Application Program Interfaces” (BehAPI).

We thank Simon Fowler for his valuable comments on the paper,

Alceste Scalas for his helpful tips on Scala and Elena Giachino for

her (implicit) suggestion on the name Papaya.

REFERENCES
[1] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009.

Typestate-oriented programming. (2009), 1015–1022. https://doi.org/10.1145/

1639950.1640073

[2] Kevin Bierhoff and Jonathan Aldrich. 2007. Modular typestate checking of aliased

objects. ACM SIGPLAN Notices 42, 10 (2007), 301–319. https://doi.org/10.1145/

1297105.1297050

[3] Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans Hüttel, Mathias S

Jakobsen, Mikkel K Kettunen, and António Ravara. 2020. Behavioural Types for

Memory and Method Safety in a Core Object-Oriented Language. In Program-
ming Languages and Systems, Bruno C d. S Oliveira (Ed.). Springer International

Publishing, Cham, 105–124.

[4] Luís Caires and João C. Seco. 2013. The type discipline of behavioral separation.

ACM SIGPLAN Notices 48, 1 (2013), 275–286. https://doi.org/10.1145/2480359.

2429103

[5] Silvia Crafa and Luca Padovani. 2017. The chemical approach to typestate-

oriented programming. ACM Transactions on Programming Languages and
Systems 39, 3 (2017), 917–934. https://doi.org/10.1145/3064849

[6] Ornela Dardha, Simon J. Gay, Dimitrios Kouzapas, Roly Perera, A. Laura Voinea,

and Florian Weber. 2017. Mungo and StMungo: tools for typechecking protocols

in Java. In Behavioural Types: from Theory to Tools, Simon Gay and Antonio

Ravara (Eds.). River Publishers, 309–328. http://eprints.gla.ac.uk/146891/

[7] Robert DeLine and Manuel Fahndrich. 2001. Enforcing high-level protocols in

low-level software. In Proc. of PLDI pages (2001), 59–69.
[8] Robert DeLine and Manuel Fähndrich. 2004. The Fugue protocol checker:

Is your software Baroque? Technical Report January. Microsoft Re-

search. http://research.microsoft.com/apps/pubs/default.aspx?id=67458%

5Cnhttp://research.microsoft.com/en-us/projects/fugue/

[9] Robert Deline and Manuel Fähndrich. 2004. Typestates for Objects. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 3086 (2004), 465–490. https://doi.org/10.1007/978-
3-540-24851-4_21

[10] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia

Drossopoulou. 2006. Session types for object-oriented languages. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 4067 LNCS (2006), 328–352. https://doi.org/

10.1007/11785477_20

[11] Manuel Fähndrich and Robert DeLine. 2002. Adoption and Focus: Practical Linear

Types for Imperative Programming. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17-19, 2002, Jens Knoop and Laurie J. Hendren (Eds.). ACM, 13–24.

https://doi.org/10.1145/512529.512532

[12] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.

2008. Effective typestate verification in the presence of aliasing. ACMTrans. Softw.
Eng. Methodol. 17, 2 (2008), 9:1–9:34. https://doi.org/10.1145/1348250.1348255

[13] Simon J. Gay, Nils Gesbert, António Ravara, and Vasco T. Vasconcelos. 2015.

Modular session types for objects. Logical Methods in Computer Science 11, 4
(2015), 1–76. https://doi.org/10.2168/LMCS-11(4:12)2015

[14] Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert, and

Alexandre Z. Caldeira. 2010. Modular session types for distributed object-oriented

programming. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, Madrid, Spain, January

17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 299–312.

https://doi.org/10.1145/1706299.1706335

[15] Iaroslav Golovanov, Hans Hüttel, Mathias Steen Jakobsen, and Mikkel Klinke

Kettunen. 2021. Behavioural Separation with Parallel Usages. In Proceedings of the
23rd ACM SIGPLAN International Workshop on Formal Techniques for Java-Like
Programs (Virtual, Denmark) (FTfJP 2021). Association for ComputingMachinery,

New York, NY, USA.

[16] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th Interna-
tional Conference on Concurrency Theory, Hildesheim, Germany, August 23-26,
1993, Proceedings (Lecture Notes in Computer Science, Vol. 715), Eike Best (Ed.).
Springer, 509–523. https://doi.org/10.1007/3-540-57208-2_35

[17] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language prim-

itives and type discipline for structured communication-based programming.

Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics) 1381 (1998), 122–138.

https://doi.org/10.1007/bfb0053567

[18] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchro-

nous session types. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, George C. Necula and Philip Wadler (Eds.). ACM, 273–

284. https://doi.org/10.1145/1328438.1328472

[19] Mathias Steen Jakobsen, Mikkel Klinke Kettunen, and Iaroslav Golovanov. 2020.

Behavioural Separation with Parallel Usages for a Core Object-Oriented Lan-

guage.

[20] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. 2016. Type-

checking protocols with Mungo and StMungo. In Proceedings of the 18th In-
ternational Symposium on Principles and Practice of Declarative Programming,
Edinburgh, United Kingdom, September 5-7, 2016, James Cheney and Germán

Vidal (Eds.). ACM, 146–159. https://doi.org/10.1145/2967973.2968595

[21] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. 2018. Type-

checking protocols with Mungo and StMungo: A session type toolchain for Java.

Science of Computer Programming 155 (2018), 52–75. https://doi.org/10.1016/j.

scico.2017.10.006

[22] Microsoft. 2020. Common Language Runtime (CLR) overview - .NET. https:

//docs.microsoft.com/en-us/dotnet/standard/clr

[23] Filipe Militão, Jonathan Aldrich, and Luís Caires. 2010. Aliasing control with

view-based typestate. In Proceedings of the 12th Workshop on Formal Techniques
for Java-Like Programs, FTFJP 2010, Maribor, Slovenia, June 22, 2010. ACM, 7:1–7:7.

https://doi.org/10.1145/1924520.1924527

[24] João Mota. 2021. Coping with the reality: adding crucial features to a typestate-

oriented language.

[25] João Mota, Marco Giunti, and António Ravara. 2021. Java Typestate Checker. In

Coordination Models and Languages - 23rd IFIP WG 6.1 International Conference,
COORDINATION 2021, Held as Part of the 16th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-
18, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12717), Ferruccio
Damiani and Ornela Dardha (Eds.). Springer, 121–133. https://doi.org/10.1007/

978-3-030-78142-2_8

[26] Mungo project. 2021. Mungo. http://www.dcs.gla.ac.uk/research/mungo/

[27] Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir,

Philipp Haller, Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas

Rytz, Michel Schinz, Erik Stenman, and Matthias Zenger. 2021. Scala Language

Specification. https://scala-lang.org/files/archive/spec/2.13/

[28] Luca Padovani. 2018. Deadlock-Free Typestate-Oriented Programming. Art Sci.
Eng. Program. 2, 3 (2018), 15. https://doi.org/10.22152/programming-journal.

org/2018/2/15

[29] Alice Ravier. 2021. Scala-Mungo. https://github.com/Aliceravier/Scala-Mungo

[30] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A

linear decomposition of multiparty sessions for safe distributed programming.

Leibniz International Proceedings in Informatics, LIPIcs 74, March (2017), 241–2431.

https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

[31] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in

Scala. In Proceedings of the 30th European Conference on Object-Oriented Program-
ming, ECOOP (LIPIcs, Vol. 56). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

21:1–21:28. https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

[32] Robert E. Strom and Shaula Yemini. 1986. Typestate: A Programming Language

Concept for Enhancing Software Reliability. , 157–171 pages. https://doi.org/10.

1109/TSE.1986.6312929

[33] Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Eric Tanter. 2011.

First-class state change in plaid. ACM SIGPLAN Notices 46, 10 (2011), 713–732.
https://doi.org/10.1145/2076021.2048122

[34] Vasco T. Vasconcelos. 2011. Sessions, from Types to Programming Languages.

Bull. EATCS 103 (2011), 53–73. http://eatcs.org/beatcs/index.php/beatcs/article/

view/136

[35] Vasco T. Vasconcelos, Simon J. Gay, António Ravara, Nils Gesbert, and Alexan-

dre Z. Caldiera. 2009. Dynamic interfaces. In 2009 International Workshop on
Foundations of Object-Oriented Languages (FOOL’09).

https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1297105.1297050
https://doi.org/10.1145/1297105.1297050
https://doi.org/10.1145/2480359.2429103
https://doi.org/10.1145/2480359.2429103
https://doi.org/10.1145/3064849
http://eprints.gla.ac.uk/146891/
http://research.microsoft.com/apps/pubs/default.aspx?id=67458%5Cnhttp://research.microsoft.com/en-us/projects/fugue/
http://research.microsoft.com/apps/pubs/default.aspx?id=67458%5Cnhttp://research.microsoft.com/en-us/projects/fugue/
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11785477_20
https://doi.org/10.1145/512529.512532
https://doi.org/10.1145/1348250.1348255
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.1145/1706299.1706335
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/bfb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.scico.2017.10.006
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://doi.org/10.1145/1924520.1924527
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1007/978-3-030-78142-2_8
http://www.dcs.gla.ac.uk/research/mungo/
https://scala-lang.org/files/archive/spec/2.13/
https://doi.org/10.22152/programming-journal.org/2018/2/15
https://doi.org/10.22152/programming-journal.org/2018/2/15
https://github.com/Aliceravier/Scala-Mungo
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2076021.2048122
http://eatcs.org/beatcs/index.php/beatcs/article/view/136
http://eatcs.org/beatcs/index.php/beatcs/article/view/136

Papaya: Global Typestate Analysis of Aliased Objects Extended Version

[36] A. Laura Voinea, Ornela Dardha, and Simon J. Gay. 2020. Typechecking Java

Protocols with [St]Mungo. In Proceedings of the International Conference on
Formal Techniques for Distributed Objects, Components, and Systems - 40th IFIP
WG 6.1 , FORTE (Lecture Notes in Computer Science, Vol. 12136). Springer, 208–224.
https://doi.org/10.1007/978-3-030-50086-3_12

https://doi.org/10.1007/978-3-030-50086-3_12

Mathias Jakobsen, Alice Ravier, and Ornela Dardha

A PROOF FOR UNFOLDING LABELLED EXPRESSIONS
Lemma 3 (Weakening of label-environment). If Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ

′
and 𝑘 ̸∈ 𝐹𝐿(𝑒) then Θ; Ω, 𝑘 ↦→ Γ

′′
; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ

′

Proof. Simple structural induction in 𝑒 . □

Lemma 4 (Strengthening of label-environment). If Θ; Ω, 𝑘 ↦→ Γ
′′

; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
′
and 𝑘 ̸∈ 𝐹𝐿(𝑒) then Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ

′

Proof. Simple structural induction in 𝑒 . □

Lemma 5 (Substitution). If
• Θ; Ω; Γ ⊢ 𝑘 : 𝑒 : void ⊣ Γ

′

• 𝑘 : 𝑒 is well formed,

• Θ
′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑒 ′ : 𝑇 ⊣ Γ

′′′
,

• 𝑘 ̸∈ 𝐵𝐿(𝑒 ′),
• 𝑒 ′ ∈ 𝑆𝑈𝐵(𝑒), and

• Ω ⊆ Ω
′

Then

• Θ
′
; Ω

′
; Γ

′′ ⊢ 𝑒 ′{continue 𝑘/𝑘 : 𝑒} : 𝑇 ⊣ Γ
′′′

Proof. Case new, unit, field, par, null, true, false, enum:
No substitution occurs, hence it follows from Lemma 4.

Case Assign: Assume Θ
′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑜.𝑓 = 𝑒 ′′ : 𝑇 ⊢ Γ

′′′
. We know from (Assign) Θ

′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑒 ′′ : 𝑇 ′ ⊣ Γ

′′′′
and

Γ
′′′

= Γ
′′′′

[𝑜.𝑓 ↦→ vtype(𝑇)]. From the induction hypothesis we know Θ
′
; Ω

′, 𝑒 ′′{continue 𝑘/𝑘 : 𝑒} : 𝑇 ′ ⊣ Γ
′′′′

, hence we can use (Assign) to

conclude Θ
′
; Ω

′
; Γ

′′ ⊢ 𝑜.𝑓 = 𝑒 ′′ : void ⊣ Γ
′′′
.

Case Call-d:
Assume Θ

′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑜.𝑚(𝑒 ′′) : 𝑇 ⊢ Γ

′′′
. From (Call-d) we know that Θ

′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑒 ′′ : 𝑇 ′ ⊢ Γ

′′′′
. With the induction

hypothesis we can conclude Θ
′
; Ω

′
; Γ

′′ ⊢ 𝑒 ′′{continue 𝑘/𝑘 : 𝑒} : 𝑇 ′ ⊢ Γ
′′′′

, hence we can conclude with (Call-d) that Θ
′
; Ω

′
; Γ

′′ ⊢
𝑜.𝑚(𝑒 ′′){continue 𝑘/𝑘 : 𝑒} : 𝑇 ⊢ Γ

′′′
.

Case Call-ind: Case similar to previous.

Case If : Assume Θ
′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ if (𝑒 ′′) {𝑒 ′′′} else {𝑒 ′′′′} : 𝑇 ⊢ Γ

′′′
. From (If) we know Θ

′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑒 ′′ : Bool ⊢ Γ

′′′′
,

Θ
′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′′′ ⊢ 𝑒 ′′′ : Bool ⊢ Γ

′′′
, and Θ

′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′′′ ⊢ 𝑒 ′′′′ : Bool ⊢ Γ

′′′
. Using the induction hypothesis three times, we get

Θ
′
; Ω

′
Γ
′′ ⊢ 𝑒 ′′{continue 𝑘/𝑘 : 𝑒} : Bool ⊢ Γ

′′′′
, Θ

′
; Ω

′
; Γ

′′′′ ⊢ 𝑒 ′′′{continue 𝑘/𝑘 : 𝑒} : Bool ⊢ Γ
′′′
, and Θ

′
; Ω

′
; Γ

′′′′ ⊢ 𝑒 ′′′′{continue 𝑘/𝑘 : 𝑒} :

Bool ⊢ Γ
′′′
, allowing us to use (If) to conclude Θ

′
; Ω

′
; Γ

′′ ⊢ if (𝑒 ′′) {𝑒 ′′′} else {𝑒 ′′′′}{continue 𝑘/𝑘 : 𝑒} : 𝑇 ⊢ Γ
′′′
.

CaseMatch: Similar to previous case.

Case Label: Assume Θ
′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑘 ′ : 𝑒 ′′ : 𝑇 ⊣ Γ

′′′
. Since 𝑘 ̸∈ 𝐵𝐿(𝑘 ′ : 𝑒 ′′) we know that 𝑘 ̸= 𝑘 ′. From (Lab) we know Θ

′
; Ω

′, 𝑘 ↦→
Γ, 𝑘 ′ ↦→ Γ

′′
; Γ

′′ ⊢ 𝑒 ′′ : void ⊣ Γ
′′′
. From our induction hypothesis we can conclude Θ

′
; Ω

′, 𝑘 ′ ↦→ Γ
′′

; Γ
′′ ⊢ 𝑒 ′′{continue 𝑘/𝑘 : 𝑒} : void ⊣ Γ

′′′
,

hence we can use (Lab) to conclude Θ
′
; Ω

′
; Γ

′′ ⊢ 𝑘 ′ : 𝑒 ′′{continue 𝑘/𝑘 : 𝑒} : 𝑇 ⊣ Γ
′′′
.

Case Seq:
Assume 𝑒 ′ = 𝑒 ′′; 𝑒 ′′′. Since Θ

′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑒 ′′; 𝑒 ′′′ : 𝑇 ⊣ Γ

′′′
we know from (Seq) that Θ

′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′ ⊢ 𝑒 ′′ : 𝑇 ′ ⊣ Γ

′′′′
and

Θ
′
; Ω

′, 𝑘 ↦→ Γ; Γ
′′′′ ⊢ 𝑒 ′′′ : 𝑇 ⊣ Γ

′′
. We can use the induction hypothesis to conclude Θ

′
; Ω

′
; Γ

′′ ⊢ 𝑒 ′′{continue 𝑘/𝑘 : 𝑒} : 𝑇 ′ ⊣ Γ
′′′′

and

Θ
′
; Ω

′
; Γ

′′′′ ⊢ 𝑒 ′′′{continue 𝑘/𝑘 : 𝑒} : 𝑇 ⊣ Γ
′′
, hence it follows from (Seq) that Θ

′
; Ω

′
; Γ

′′ ⊢ 𝑒 ′′; 𝑒 ′′′{continue 𝑘/𝑘 : 𝑒} : 𝑇 ⊣ Γ
′′′
.

Case Continue:
If 𝑒 ′ = continue 𝑘 ′ where 𝑘 ̸= 𝑘 ′ then no substitution occurs, and the lemma is trivially true. So now assume 𝑒 ′ = continue 𝑘 , hence we

must show that Θ
′
; Ω

′
; Γ

′′ ⊢ 𝑘 : 𝑒 : void ⊣ Γ
′′′
. From (con) we know that Γ

′′
= Γ. Since 𝑒 is well-formed, and 𝑒 ′ ∈ 𝑆𝑈𝐵(𝑒) then the free choice

of 𝑇 and Γ
′′′

is restricted to void and Γ
′
respectively. The reason for this is, that well-formedness ensures that any continue-expression is

guarded by a branching statement with a least one non-terminating branch. And as all branches must result in the same type and final

environment, the type and final environment from the continue expression must be chosen to match the environment and type of the

terminating branch. Hence it remains to show Θ
′
; Ω

′
; Γ ⊢ 𝑘 : 𝑒 : void ⊣ Γ

′
. This follows from Lemma 3, since we know that Ω

′ ⊆ Ω and

𝑘 ̸∈ 𝐹𝐿(𝑒) due to well-formedness. □

Papaya: Global Typestate Analysis of Aliased Objects Extended Version

Lemma 6 (Unfolding). Assume Θ; Ω; Γ ⊢ 𝑘 : 𝑒 : void ⊣ Γ
′′
, Γ ⊢ ℎ, and ⟨ℎ, 𝑘 : 𝑒⟩ =⇒ ⟨ℎ, 𝑒{continue 𝑘/𝑘 : 𝑒}⟩. Show that ∃Γ

′
such that

Θ; Ω; Γ
′ ⊢ 𝑒{continue 𝑘/𝑘 : 𝑒} ⊣ Γ

′′
.

Proof. From (Lab) we know that Θ; Ω, 𝑘 ↦→ Γ; Γ ⊢ 𝑒 : void ⊣ Γ
′′
. Because 𝑘 : 𝑒 is well-formed, we know that 𝑘 ̸∈ 𝐵𝐿(𝑒). We can then use

Lemma 5 to conclude that Θ; Ω; Γ ⊢ 𝑒{continue 𝑘/𝑘 : 𝑒} ⊣ Γ
′′ □

B PROOF OF UNFOLDING RECURSIVE CALLS
Lemma 1. If in a typing derivation starting from an empty recursion environment we have Θ, 𝑜 .𝑚 ↦→ Γ

𝑁
; ∅; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ

𝐹
then we also have

Θ; ∅; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ
𝐹
.

Proof. Induction in 𝑒 .

Case Call: Assume 𝑒 = 𝑜 ′.𝑚′
(𝑒 ′). If 𝑚 ̸= 𝑚′

or 𝑜 ̸= 𝑜 ′ then it is not a recursive call. From (Call-d) we know Θ, 𝑜 .𝑚 ↦→ Γ
𝑁

; ∅; Γ ⊢ 𝑒 ′ :

𝑇 ⊣ Γ
′′
, Γ

′′
(𝑜 ′) = (𝑜 ′[𝐶,U], _), U 𝑚′

−−→ U ′
, agree(𝑡,𝑇), fun 𝑚(𝑥 : 𝑡) : 𝑡 ′{𝑒𝑏 } ∈ 𝐷(𝐶).methods, and Θ, 𝑜 .𝑚 ↦→ Γ

𝑁 , 𝑜 ′.𝑚′ ↦→ Γ
′′′

; ∅; Γ
′′′ ⊢

𝑒𝑏 {this/𝑜 ′}{𝑥/getValue(t)} : 𝑇 ′ ⊣ Γ
𝐹
, where Γ

′′′
= Γ

′′
[𝑜 ′ ↦→ (𝑜 ′[𝐶,U ′

], _)].

From the induction hypothesis we get Θ; ∅; Γ ⊢ 𝑒 ′ : 𝑇 ⊣ Γ
′′
as well as Θ, 𝑜 .𝑚 ↦→ Γ

𝑁
; ∅; Γ

′′′ ⊢ 𝑒𝑏 {this/𝑜 ′}{𝑥/getValue(t)} : 𝑇 ′ ⊣ Γ
𝐹
, and by

applying it one more time we get Θ; ∅; Γ
′′′ ⊢ 𝑒𝑏 {this/𝑜 ′}{𝑥/getValue(t)} : 𝑇 ′ ⊣ Γ

𝐹
.

Otherwise if 𝑜 ′ = 𝑜 and𝑚 = 𝑚′
then from (Call-d-rec) we have Θ, 𝑜 .𝑚 ↦→ Γ

𝑁
; ∅; Γ ⊢ 𝑒 ′ : 𝑇 ⊣ Γ

′′
, Γ

′′
(𝑜) = (𝑜[𝐶,U], _),U 𝑚−→ U ′

, agree(𝑡,𝑇),

fun𝑚(𝑥 : 𝑡) : 𝑡 ′{𝑒𝑏 } ∈ 𝐷(𝐶).methods and Γ
𝑁

= Γ
′′

[𝑜 ↦→ (𝑜[𝐶,U ′
], _)]. From the IH we get Θ; ∅; Γ ⊢ 𝑒 ′ : 𝑇 ⊣ Γ

′′
.

By inversion we must have added the binding to Θ in a (Call-d), hence we must have had Θ
′∅; Γ

(4) ⊢ 𝑜.𝑚(𝑒𝑏𝑜𝑟𝑖𝑔) : 𝑇𝑜𝑟𝑖𝑔 ⊣ Γ𝑜𝑟𝑖𝑔 where

Θ
′ ⊆ Θ. From (Call-d) we would then have Θ

′∅; Γ
(4) ⊢ 𝑒𝑏𝑜𝑟𝑖𝑔 : 𝑇 ′′′ ⊣ Γ

(5)
, and Γ

𝑁
= Γ

(5)
[𝑜 ↦→ (𝑜[𝐶,U ′

], _). Due to well-formedness, we know

that no expresions can follow a recursive call and that all recursive calls are guarded, hence the resulting typing environment and type of a

recursive call must be chosen such that it matches the terminating branch of the body, hence we must have that 𝑇 = 𝑇𝑜𝑟𝑖𝑔 and Γ𝑜𝑟𝑖𝑔 . So with

weakening of Θ
′
we can conclude Θ; ∅; Γ ⊢ 𝑜.𝑚(𝑒 ′) : 𝑇 ⊣ Γ

𝐹
.

The case for indirect calling is similar

Case Remaining cases: all remaining cases are trivial or follows directly from the induction hypothesis. □

C PROOF OF SUBJECT REDUCTION
Theorem 1 (Subject Reduction). If Γ ⊢ ℎ, Γ ⊢ 𝑒 : 𝑇 ⊣ Γ

′
and ⟨ℎ, 𝑒⟩ 𝛼

==⇒ ⟨ℎ′, 𝑒 ′⟩ then ∃Γ
′′.Γ′′ ⊢ 𝑒 ′ : 𝑇 ⊣ Γ

′
such that Γ

𝛼−→ Γ
′′
and Γ

′′ ⊢ ℎ′

Proof. Structural induction in 𝑒 .

Case Comp: Assume Γ ⊢ ℎ, ∅; ∅; Γ ⊢ 𝑒; 𝑒 ′ : 𝑇 ⊣ Γ
′
, and ⟨ℎ, 𝑒; 𝑒 ′⟩ =⇒ ⟨ℎ′, 𝑒 ′′⟩.

If ⟨ℎ, 𝑒; 𝑒 ′⟩ Y
=⇒ ⟨ℎ′, 𝑒 ′′⟩ was concluded using rule (Seq) then 𝑒 ′′ = 𝑒 ′, 𝑒 = 𝑣 , and ℎ′ = ℎ. From the rules (Unit), (Enum), (Object), (Null),

and (Bool) we see that ∅; ∅; Γ ⊢ 𝑣 : 𝑇 ′ ⊣ Γ. We know from our assumptions that ∅; ∅; Γ ⊢ 𝑒; 𝑒 ′ : 𝑇 ⊣ Γ
′
, hence from (Comp) we get that

∅; ∅; Γ ⊢ 𝑒 ′ : 𝑇 ⊣ Γ
′
. The last condition is trivial since Γ

Y−→ Γ.

If, on the other hand, ⟨ℎ, 𝑒; 𝑒 ′⟩ 𝛼
==⇒ ⟨ℎ′, 𝑒 ′′⟩ was concluded using rule (ctx), then from the outermost evaluation context must have

been 𝑒; 𝑒 ′ = E[𝑒 ′′′]; 𝑒 ′ and we have ⟨ℎ, E[𝑒 ′′′]⟩ 𝛼
==⇒ ⟨ℎ′, E[𝑒 ′′′′]⟩. From our assumption ∅; ∅; Γ ⊢ 𝑒; 𝑒 ′ : 𝑇 ⊣ Γ

′
we get from (Comp) that

∅; ∅; Γ ⊢ E[𝑒 ′′′] : 𝑇 ′ ⊣ Γ
′′
. We can then, using the induction hypothesis, conclude that ∃Γ

′′′.∅; ∅; Γ
′′′ ⊢ E[𝑒 ′′′′] : 𝑇 ′ ⊣ Γ

′′
such that Γ

𝛼−→ Γ
′′′
.

By (Comp) we can finally conclude ∅; ∅; Γ
′′′ ⊢ E[𝑒 ′′′′]; 𝑒 ′ : 𝑇 ⊣ Γ

′
.

Case New: Assume Γ ⊢ ℎ, ∅; ∅; Γ ⊢ 𝑜.𝑓 = new 𝐶 : 𝑇 ⊣ Γ
′
, and ⟨ℎ, 𝑜.𝑓 = new 𝐶⟩ Y

=⇒ ⟨ℎ′, unit⟩. From (New) we know that 𝑇 = void. From Γ ⊢ ℎ
we know that 𝑜 ′ is fresh for both Γ and ℎ, and hence it can be chosen as the reference for the new object, in both environments.

From (New)we get that Γ
′

= (Γ, 𝑜 ′ ↦→ (𝑜 ′[𝐶,U],𝐶.fields.inittypes))[𝑜.𝑓 ↦→ 𝑜 ′]. From (new)we know thatℎ′ = (ℎ, 𝑜 ′ ↦→ (𝐶,𝐶.fields.inittypes))[𝑜.𝑓 ↦→
𝑜 ′]. Using (Unit) we can conclude ∅; ∅; Γ

′ ⊢ unit : void ⊣ Γ
′
. It is clear that Γ

Y−→ Γ
′
(case new). From the updates we have done to Γ and ℎ, it is

also clear that Γ
′ ⊢ ℎ′.

Case Field: Assume Γ ⊢ ℎ, ∅; ∅; Γ ⊢ 𝑜.𝑓 : 𝑇 ⊣ Γ
′
, and ⟨ℎ, 𝑜.𝑓 ⟩ Y

=⇒ ⟨ℎ′, 𝑣⟩. From (Field) we know that Γ(𝑜).𝑓 = basetype 𝑇 (where

𝑇 ∈ {bool, void,⊥} or Γ(𝑜).𝑓 = reference 𝑜 .
We show the case for 𝑣 = true, the cases for false, null, and 𝑙 are similar.

We know from Γ ⊢ ℎ that Γ(𝑜).𝑓 = bool and from (fld) that ℎ′ = ℎ. Hence from (Field) we get that 𝑇 = bool and Γ
′

= Γ. Finally from (Bool)

we can conclude that ∅; ∅; Γ ⊢ true ⊣ Γ
′
.

Mathias Jakobsen, Alice Ravier, and Ornela Dardha

If 𝑣 = 𝑜 ′, then from (fld) we know that ℎ(𝑜).𝑓 = 𝑜 ′ and from Γ ⊢ ℎ that Γ(𝑜 ′) = (𝑜 ′[𝐶,U], _), hence 𝑇 = 𝑜 ′[𝐶,U]. But then we can use

(Object) to conclude ∅; ∅; Γ ⊢ 𝑜 ′ : 𝑇 ⊣ Γ
′
.

In both cases, we can use (empty) to conclude Γ

Y−→ Γ
′
.

Case Call-D: Assume Γ ⊢ ℎ, ∅; ∅; Γ ⊢ 𝑜.𝑚(𝑒) : 𝑇 ⊣ Γ
′
, and ⟨ℎ, 𝑜.𝑚(𝑒)⟩ 𝑜.𝑚

====⇒ ⟨ℎ′, 𝑒 ′⟩. Assume that 𝑒 = 𝑣 , the other case will be proven

afterwards. From (Call-d) we know Γ(𝑜) = (𝑜[𝐶,U], _), U 𝑚−→ U ′
, and ∅,𝑚 ↦→ Γ; ∅; Γ[𝑜 ↦→ (𝑜[𝐶,U ′

], _)] ⊢ 𝑒{𝑡ℎ𝑖𝑠/𝑜}{𝑥/𝑣} ⊣ Γ
′
. From

(call-d) we know ℎ′ = ℎ and 𝑒 ′ = 𝑒{𝑡ℎ𝑖𝑠/𝑜}{𝑥/𝑣}. From Lemma 1 we can conclude that ∅; ∅; Γ[𝑜 ↦→ (𝑜[𝐶,U ′
], _)] ⊢ 𝑒{𝑡ℎ𝑖𝑠/𝑜}{𝑥/𝑣} ⊣ Γ

′
.

Γ[𝑜 ↦→ (𝑜[𝐶,U ′
], _)] ⊢ ℎ clearly follows from Γ ⊢ ℎ as only the usage of 𝑜 is updated in Γ. Γ

𝑜.𝑚−−−→ Γ[𝑜 ↦→ (𝑜[𝐶,U ′
], _)] follows from (case call).

Now assume 𝑒 ̸= 𝑣 . Then ⟨ℎ, 𝑜.𝑚(𝑒)⟩ 𝛼
==⇒ ⟨ℎ′, 𝑒 ′⟩ must have been concluded with the (ctx) rule with the outermost evaluation context

𝑜.𝑚(𝑒) = 𝑜.𝑚(E[𝑒 ′′]), hence we have ⟨ℎ, E[𝑒 ′′]⟩ =⇒ ⟨ℎ′, E[𝑒 ′′′]⟩. From (Call-d) we know that ∅; ∅; Γ ⊢ E[𝑒 ′′] : 𝑇 ′ ⊣ Γ
′′
, hence by our induction

hypothesis we know ∃Γ
′′′.∅; ∅; Γ

′′′ ⊢ E[𝑒 ′′′] : 𝑇 ′ ⊣ Γ
′′
such that Γ

𝛼−→ Γ
′′′
. By (Call-d) we can then conclude that ∅; ∅; Γ

′′′ ⊢ 𝑜.𝑚(E[𝑒 ′′′]) :

𝑇 ⊢ Γ
′
.

Case Assign:
Assume Γ ⊢ ℎ, ∅; ∅; Γ ⊢ 𝑜.𝑓 = 𝑒 : void ⊣ Γ

′
, and ⟨ℎ, 𝑜.𝑓 = 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩.

If ⟨ℎ, 𝑜.𝑓 = 𝑒⟩ Y
=⇒ ⟨ℎ′, 𝑒 ′⟩ was concluded with (assign) then 𝑒 = 𝑣 , 𝑒 ′ = unit, and ℎ′ = ℎ[𝑜.𝑓 ↦→ 𝑣]. From (Assign) we know that

∅; ∅; Γ ⊢ 𝑣 : 𝑇 ⊣ Γ
′′
, and¬only(Γ

′′, 𝑜, 𝑓). From (Unit, Bool, Enum, Const, Obj) we know that Γ
′′

= Γ. Lastlywe know that Γ
′

= Γ[𝑜.𝑓 ↦→ vtype(𝑇)].

We see that the updates to ℎ′ and Γ
′
match exactly, hence we still have Γ

′ ⊢ ℎ′, and trivially from rule (Unit) we have ∅; ∅; Γ
′ ⊢ unit : void ⊣ Γ

′
.

Finally we have that Γ

Y−→ Γ
′
from (case assign).

If on the other hand ⟨ℎ, 𝑜.𝑓 = 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩ was concluded with (ctx) then 𝑜.𝑓 = 𝑒 must be the evaluation context (𝑜.𝑓 = E)[𝑒 ′′] and from

(ctx) we have ⟨ℎ, E[𝑒 ′′]⟩ 𝛼
==⇒ ⟨ℎ′, E[𝑒 ′′′]⟩. From (Assign) we know ∅; ∅; Γ ⊢ E[𝑒 ′′] : 𝑇 ⊣ Γ

′′
, hence we can use the induction hypothesis to

conclude ∃Γ
′′′.∅; ∅; Γ

′′′ ⊢ E[𝑒 ′′′] : 𝑇 ⊣ Γ
′′
such that Γ

𝛼−→ Γ
′′′
, hence using (Assign) we can conclude ∅; ∅; Γ

′′′ ⊢ 𝑜.𝑓 = E[𝑒 ′′′] : void ⊣ Γ
′
.

Case Case:
Assume Γ ⊢ ℎ, ∅; ∅; Γ ⊢ match(𝑒){𝑙 : 𝑒} : 𝑇 ⊢ Γ

′
, and ⟨ℎ,match(𝑒){𝑙 : 𝑒}⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩.

If ⟨ℎ,match(𝑒){𝑙 : 𝑒}⟩
𝑜.𝑙 𝑗
====⇒ ⟨ℎ′, 𝑒 ′⟩ was concluded with (match) then we know 𝑒 = 𝑜.𝑙 𝑗 and 𝑒

′
= 𝑒 𝑗 where 𝑙 : 𝑒 = 𝑙1 : 𝑒1, 𝑙2 : 𝑒2, . . . 𝑙𝑖 : 𝑒𝑖 and

1 ≤ 𝑗 ≤ 𝑖 . From (Case) we have that ∅; ∅; Γ ⊢ 𝑜.𝑙 𝑗 : 𝐿 link 𝑜 ′ ⊢ Γ
′′
, and from (Enum) we know that 𝑜 ′ = 𝑜 and Γ

′′
= Γ. Furthermore, from (Case),

we have that ∀1 ≤ 𝑘 ≤ 𝑖 .Γ(𝑜).usage
𝑙𝑘−→ U𝑘 ∧ ∅; ∅; Γ[𝑜.usage ↦→ U𝑘] ⊢ 𝑒𝑘 : 𝑇 ⊣ Γ

′
, hence we have that ∅; ∅; Γ[𝑜.usage ↦→ 𝑈 𝑗] ⊣ 𝑒 𝑗 : 𝑇 ⊣ Γ

′
.

We have Γ

𝑜.𝑙 𝑗−−−→ Γ[𝑜.usage ↦→ 𝑈 𝑗] from (case label).

If, on the other hand, ⟨ℎ,match(𝑒){𝑙 : 𝑒}⟩ 𝛼
==⇒ ⟨ℎ′, 𝑒 ′⟩was concludedwith (ctx) thenmatch(𝑒){𝑙 : 𝑒} = match(E){𝑙 : 𝑒}[𝑒 ′′], and ⟨ℎ, E[𝑒 ′′]⟩ 𝛼

==⇒
⟨ℎ′, E[𝑒 ′′′]⟩. From (Case) we know ∅; ∅; Γ ⊢ E[𝑒 ′′] : 𝐿 link 𝑜 ⊣ Γ

′′
, and since Γ ⊢ ℎ we can conclude, with the induction hypothesis, that

∃Γ
′′′.∅; ∅; Γ

′′′ ⊢ E[𝑒 ′′′] : 𝐿 link 𝑜 ⊣ Γ
′′
such that Γ

𝛼−→ Γ
′′′
, hence by (Case) we can conclude ∅; ∅; Γ

′′ ⊢ 𝑒 ′ ⊣ Γ
′
.

Case If :
Assume Γ ⊢ ℎ, ∅; ∅; Γ ⊢ if (𝑒) {𝑒1} else {𝑒2} : 𝑇 ⊣ Γ

′
, and ⟨ℎ, if (𝑒) {𝑒1} else {𝑒2}⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩.

If ⟨ℎ, if (𝑒) {𝑒1} else {𝑒2}⟩
Y
=⇒ ⟨ℎ′, 𝑒 ′⟩ was concluded using (if-true) then we know that 𝑒 = true, 𝑒 ′ = 𝑒1, and ℎ

′
= ℎ. Then it follows directly

from (If) that ∅; ∅; Γ ⊢ 𝑒1 : 𝑇 ⊣ Γ
′
. Using (empty) we can conclude Γ

Y−→ Γ The case for (if-false) is similar.

If ⟨ℎ, if (𝑒) {𝑒1} else {𝑒2}⟩
𝛼
==⇒ ⟨ℎ′, 𝑒 ′⟩ was concluded using (ctx) then we must have if (𝑒) {𝑒1} else {𝑒2} = if (E) {𝑒1} else {𝑒2}[𝑒 ′′]

and ⟨ℎ, E[𝑒 ′′]⟩ =⇒ ⟨ℎ′, E[𝑒 ′′′]⟩. From (If) we know ∅; ∅; Γ ⊢ E[𝑒 ′′] : bool ⊣ Γ
′′
, and from the induction hypothesis we can conclude

∃Γ
′′′.∅; ∅; Γ

′′′ ⊢ E[𝑒 ′′′] : bool ⊣ Γ
′′
such that Γ

𝛼−→ Γ
′′′
. Finally, using (If) we can conclude that ∅; ∅; Γ

′′′ ⊢ if (E) {𝑒1} else {𝑒2}[𝑒 ′′′] : 𝑇 ⊣ Γ
′
.

Case Label:
Assume Γ ⊢ ℎ, ∅; ∅; Γ ⊢ 𝑘 : 𝑒 : void ⊣ Γ

′
, and ⟨ℎ, 𝑘 : 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩.

We know that ⟨ℎ, 𝑘 : 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩ must have been concluded with (lab) hence we know that 𝑒 ′ = {continue 𝑘/𝑘 : 𝑒} and ℎ′ = ℎ. The

remainder of this case follows from Lemma 6.

□

Papaya: Global Typestate Analysis of Aliased Objects Extended Version

D PROOF OF PROGRESS
Theorem 2 (Progress). If Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ

′
, Γ ⊢ ℎ, then either 𝑒 is a value or ∃ℎ′, 𝑒 ′. ⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩

Proof. Structural induction in 𝑒 .

Case Assignment:
Assume Θ; Ω; Γ ⊢ 𝑜.𝑓 = 𝑒 : void ⊣ Γ

′
and Γ ⊢ ℎ. Show that ⟨ℎ, 𝑜.𝑓 = 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩.

If 𝑒 = 𝑣 then we can trivially conclude with (assign) that ⟨ℎ, 𝑜.𝑓 = 𝑣⟩ =⇒ ⟨ℎ[𝑜.𝑓 ↦→ 𝑣], unit⟩.
Otherwise if 𝑒 ̸= 𝑣 then from (Assign) we know Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ⊣ Γ

′′
, hence by the induction hypothesis we have ⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′′, 𝑒 ′′⟩ and

since (𝑜.𝑓 = 𝑒) = (𝑜.𝑓 = [_])[𝑒] we can use (ctx) to conclude ⟨ℎ, 𝑜.𝑓 = 𝑒⟩ =⇒ ⟨ℎ′′, 𝑜 .𝑓 = 𝑒 ′′ >.

Case New:
Assume Θ; Ω; Γ ⊢ 𝑜.𝑓 = new 𝐶 : unit ⊣ Γ

′
and Γ ⊢ ℎ. With (new) we conclude directly that ⟨ℎ, 𝑜.𝑓 = new 𝐶⟩ =⇒ ⟨ℎ′, unit⟩ where 𝑜 ′ is fresh

and ℎ′ = (ℎ, 𝑜 ′ ↦→ (𝐶,𝐶.fields.initvals))[𝑜.𝑓 ↦→ 𝑜 ′].

Case Seq:
Assume Θ; Ω; Γ ⊢ 𝑒; 𝑒 ′ : 𝑇 ⊣ Γ

′
and Γ ⊢ ℎ.

If 𝑒 = 𝑣 then with (seq) we conclude ⟨ℎ, 𝑣 ; 𝑒 ′⟩ =⇒ ⟨ℎ, 𝑒 ′⟩.
Otherwise; from (Comp) we knowΘ; Ω; Γ ⊢ 𝑒 : 𝑇 ′ ⊣ Γ

′′
, hence by the induction hypothesis we have ⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′′⟩. Since 𝑒 ; 𝑒 ′ = ([_]; 𝑒 ′)[𝑒]

we can use (ctx) to conclude ⟨ℎ, 𝑒; 𝑒 ′⟩ =⇒ ⟨ℎ′, 𝑒 ′′; 𝑒 ′⟩.

Case Call-d:
Assume Θ; Ω; Γ ⊢ 𝑜.𝑚(𝑒) : 𝑇 ⊣ Γ

′
and Γ ⊢ ℎ.

If 𝑒 = 𝑣 then from (Call-d) we know Γ(𝑜).class = 𝐶 and fun𝑚(𝑥 : 𝑡) : 𝑡 ′{𝑒 ′} ∈ 𝐶.methods. From Γ ⊢ ℎ we know that ℎ(𝑜).class = 𝐶 , hence

we can conclude with (call-d) that ⟨ℎ, 𝑜.𝑚(𝑣)⟩ =⇒ ⟨ℎ, 𝑒 ′{this/𝑜}{𝑥/𝑣}⟩.
Otherwise from (Call-d) we know Θ; Ω; Γ ⊢ 𝑒 : 𝑇 ′ ⊣ Γ

′′
. With the induction hypothesis we can conclude ⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′′⟩. Finally, since

𝑜.𝑚(𝑒) = (𝑜.𝑚([_]))[𝑒], we can conclude with (ctx) that ⟨ℎ, 𝑜.𝑚(𝑒)⟩ =⇒ ⟨ℎ′, 𝑜 .𝑚(𝑒 ′′)⟩.

Case If :
Assume Θ; Ω; Γ ⊢ if (𝑒) {𝑒 ′} else {𝑒 ′′} : 𝑇 ⊣ Γ

′
and Γ ⊢ ℎ.

If 𝑒 = 𝑣 then from (If) we know Θ; Ω; Γ ⊢ 𝑣 : bool ⊣ Γ
′′
. This must have been concluded with (Bool), hence we know 𝑣 ∈ {true, false}. If

𝑣 = true then we can conclude, using (if-true), ⟨ℎ, if (true) {𝑒 ′} else {𝑒 ′′}⟩ =⇒ ⟨ℎ, 𝑒 ′⟩. If 𝑣 = false then we can conclude, using (if-false), ⟨ℎ, if
(false) {𝑒 ′} else {𝑒 ′′}⟩ =⇒ ⟨ℎ, 𝑒 ′′⟩.

If, on the other hand, 𝑒 ̸= 𝑣 , then from (If) we know Θ; Ω; Γ ⊢ 𝑒 : bool ⊣ Γ
′′
. From the induction hypothesis we get ⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′′′⟩. Since

if (𝑒) {𝑒 ′} else {𝑒 ′′} = (if ([_]) {𝑒 ′} else {𝑒 ′′})[𝑒] we can use (ctx) to conclude ⟨ℎ, if (𝑒) {𝑒 ′} else {𝑒 ′′}⟩ =⇒ ⟨ℎ′, if (𝑒 ′′′) {𝑒 ′} else {𝑒 ′′}⟩.

CaseMatch:
Assume Θ; Ω; Γ ⊢ match(𝑒){𝑙 : 𝑒} : 𝑇 ⊣ Γ

′
and Γ ⊢ ℎ.

If 𝑒 = 𝑣 then from (Match) we know Θ; Ω; Γ ⊢ 𝑣 : 𝐿 link 𝑜 which must have been concluded with (Enum) hence 𝑣 = 𝑜.𝑙 𝑗 . Furthermore we

know 𝑙 : 𝑒 = 𝑙1 : 𝑒1, . . . 𝑙𝑖 : 𝑒𝑖 and 1 ≤ 𝑗 ≤ 𝑖 . Using (match) we can conclude ⟨ℎ,match(𝑜.𝑙 𝑗){𝑙 : 𝑒}⟩ =⇒ ⟨ℎ, 𝑒 𝑗 ⟩.

Otherwise from (Match) we know Θ; Ω; Γ ⊢ 𝑒 : 𝐿 link 𝑜 ⊣ Γ
′
. By the induction hypothesis we know ⟨ℎ, 𝑒⟩ =⇒ ⟨ℎ′, 𝑒 ′⟩. Sincematch(𝑒){𝑙 : 𝑒} =

(match([_]){𝑙 : 𝑒})[𝑒] we can use (ctx) to conclude ⟨ℎ,match(𝑒){𝑙 : 𝑒}⟩ =⇒ ⟨ℎ′,match(𝑒 ′){𝑙 : 𝑒}⟩.

Case Label:
Assume Θ; Ω; Γ ⊢ 𝑘 : 𝑒 : 𝑇 ⊣ Γ

′
and Γ ⊢ ℎ. Here we directly conclude using (lab) that ⟨ℎ, 𝑘 : 𝑒⟩ =⇒ ⟨ℎ, 𝑒{continue 𝑘/𝑘 : 𝑒}⟩.

□

	Abstract
	1 Introduction
	2 Overview
	3 The Language
	4 Type System
	5 Semantics
	6 Properties
	7 Implementation
	8 Related Work
	9 Conclusion and Future Work
	10 Acknowledgements
	References
	A Proof for Unfolding Labelled Expressions
	B Proof of Unfolding Recursive Calls
	C Proof of Subject Reduction
	D Proof of Progress

