
João Daniel da Luz Mota

Bachelor in Computer Science and Engineering

Coping with the reality: adding crucial features to
a typestate-oriented language

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: António Maria Lobo César Alarcão Ravara,
Associate Professor,
NOVA School of Science and Technology

Co-adviser: Marco Giunti,
Researcher,
NOVA School of Science and Technology

Examination Committee

Chair: Hervé Miguel Cordeiro Paulino, Associate
Professor, NOVA School of Science and
Technology

Rapporteur: Ornela Dardha, Lecturer, School of Computing
Science, University of Glasgow

Members: António Maria Lobo César Alarcão Ravara
Marco Giunti

February, 2021

Coping with the reality: adding crucial features to a typestate-oriented lan-
guage

Copyright © João Daniel da Luz Mota, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

Acknowledgements

Throughout the writing of this thesis I have received a great deal of support and assis-

tance.

I would first like to thank my adviser, Professor António Ravara, and co-adviser, Re-

searcher Marco Giunti, for the guidance and direction provided. Your feedback was

crucial and allowed me to organize my work and write this thesis.

I would like to acknowledge all the professors who during these years have given me

the skills and knowledge necessary to push me to become a good engineer in the future.

I would also like to thank my colleagues, which during these years, through the

exchanging of ideas, have helped me grow.

Finally, I could not have completed this work without the support of my parents,

Cidália and Mário, who were very kind and patient with me throughout these years.

v

“Unless the Lord builds the house, those who build it labor in
vain.” (Psalm 127:1; ESV)

Abstract

Detecting programming errors and vulnerabilities in software is increasingly impor-

tant, and building tools that help with this task is an area of investigation, crucial for the

industry these days. When programming in an object-oriented language, one naturally

defines stateful objects that are non-uniform, i.e., their methods’ availability depends

on their internal state. One might represent their intended usage protocol with an au-

tomaton or a state machine. Behavioral types allow to statically check if all the code of a

program respects the usage protocol of each object.

In this thesis we present a tool that extends Java with typestate definitions. These

typestates are associated with Java classes and define the behavior of instances of those

classes, specifying the sequences of method calls allowed. This tool checks statically that

method calls happen in order, following the specified behavior.

The tool was implemented in Kotlin as a plugin for the Checker Framework. It is a

new implementation of the Mungo tool and supports prevention of null pointer errors,

state transitions depending on return values, assurance of protocol completion, drop-

pable states, and association of protocols with classes from the standard Java library or

from third-party libraries. Additionally, the tool integrates behavioral types with ac-

cess permissions, allowing objects to be shared in a controlled way using a language of

assertions. This language of assertions supports concepts like packing and unpacking,

including unpacking of aliases objects, and transferring of permissions between aliases.

To relieve the programmer from manually writing all the necessary assertions, the tool

implements an inference algorithm which analyzes the code statically and, given the uses

of objects, constructs all the required assertions.

Keywords: Behavioral types, object-oriented programming, typestates, session types,

access permissions, inference

ix

Resumo

A deteção de erros de programação e vulnerabilidades no software é cada vez mais

importante, e a criação de ferramentas que ajudem nesta tarefa é uma área de investi-

gação crucial para a indústria atualmente. Ao programar numa linguagem orientada a

objetos, definem-se naturalmente objetos com estado que não são uniformes, ou seja, a

disponibilidade dos seus métodos depende do seu estado interno. Pode-se representar

o protocolo de uso pretendido com um autómato ou uma máquina de estados. Os tipos

comportamentais permitem verificar estaticamente se todo o código de um programa

respeita o protocolo de uso de cada objeto.

Nesta tese apresentamos uma ferramenta que estende o Java com definições de type-
states. Esses estão associados às classes Java e definem o comportamento das instâncias

dessas classes, especificando as sequências de chamadas de métodos permitidas. Esta fer-

ramenta verifica estaticamente se as chamadas de métodos ocorrem pela ordem correta,

seguindo o comportamento especificado.

A ferramenta foi implementada em Kotlin como um plugin para o Checker Framework.

É uma implementação nova da ferramenta Mungo e suporta a prevenção de erros de

ponteiro nulo, transições de estado dependendo de valores de retorno, asseguração da

conclusão dos protocolos, objetos que podem ser «largados», e a associação de protocolos

com classes da biblioteca padrão do Java ou de terceiros. Além disso, esta integra tipos

comportamentais com permissões de acesso, permitindo que objetos possam ser parti-

lhados por meio de uma linguagem de asserções. Esta linguagem de asserções oferece

suporte para conceitos como packing e unpacking, incluindo unpacking de objetos parti-

lhados, e transferência de permissões entre variáveis que apontam para o mesmo objeto.

Para aliviar o programador de escrever manualmente todas as asserções necessárias, a

ferramenta implementa um algoritmo de inferência que analisa o código estaticamente e,

consoante os usos dos objetos, constrói todas as asserções necessárias.

Palavras-chave: Tipos comportamentais, programação orientada a objetos, typestates,
session types, permissões de acesso, inferência

xi

Contents

List of Figures xvii

List of Tables xix

Glossary xxi

1 Introduction 1

1.1 Context . 1

1.2 Problem . 1

1.3 Contributions . 2

1.4 Thesis outline . 3

2 Theoretical Work on Behavioral Types 5

2.1 Typestates . 5

2.2 Session types . 6

2.3 Typestates/Session types/Usage types . 6

2.4 Motivating example: Checker Framework 7

2.5 Conclusion . 8

3 Practical work on Behavioral Types 9

3.1 Typestate-oriented approaches . 9

3.1.1 Plaid . 9

3.1.2 Fugue . 10

3.1.3 Contractor.NET . 12

3.2 Usage types approaches . 13

3.2.1 Bica . 13

3.2.2 Mool . 14

3.2.3 Mungo . 16

3.3 Summary . 18

4 Typestate-oriented tool: version 1 19

4.1 Design choices . 19

4.1.1 Checker Framework . 20

4.1.2 Kotlin . 20

xiii

CONTENTS

4.2 Type-checker features . 22

4.2.1 Protocols . 22

4.2.2 State refinement . 24

4.2.3 Nullness checking . 26

4.2.4 Protocol completion . 26

4.2.5 Droppable states . 28

4.2.6 Protocols for classes of libraries . 29

4.3 Type-checker implementation . 30

4.3.1 Type system . 30

4.3.2 Architecture . 34

4.3.3 Class analysis . 36

4.3.4 Inference and checking . 37

4.4 Comparison with Mungo . 49

4.4.1 Basic checking . 50

4.4.2 Decisions on boolean values . 52

4.4.3 Nullness checking . 54

4.4.4 Linearity checking . 56

4.4.5 Force protocol completion . 61

4.4.6 Class analysis . 64

4.4.7 State refinement via annotations 69

4.4.8 Droppable transition . 71

4.4.9 Protocols for classes of libraries . 72

4.4.10 Improved flow analysis . 73

4.4.11 Decisions based on equality checks in conditions 76

4.5 Conclusion . 77

5 Theoretical work on Access Permissions 79

5.1 Owicki-Gries method and Rely-Guarantee 79

5.2 Separation Logic . 80

5.3 Access permissions . 80

5.3.1 Fractional permissions . 81

5.3.2 Counting permissions . 81

5.3.3 Symbolic permissions . 81

5.4 Other approaches . 81

5.5 Motivating example: Cell example . 82

6 Practical work on Access Permissions 87

6.1 Spec# . 87

6.2 Chalice . 89

6.3 Dafny . 92

6.4 VeriFast . 94

xiv

CONTENTS

6.5 Plaid . 97

6.6 Summary . 98

7 Typestate-oriented tool: version 2 101

7.1 Language of assertions . 101

7.1.1 Introduction . 101

7.1.2 Assertions’ guarantees . 104

7.1.3 Assertions’ well-formedness . 105

7.1.4 Packing and Unpacking . 107

7.1.5 Permission transfer . 110

7.1.6 Protocol completion . 111

7.1.7 Implication . 111

7.1.8 Assertions’ upper bound . 113

7.1.9 Nullable values and union types 117

7.2 Inference algorithm . 119

7.2.1 Implementation . 119

7.2.2 Constraints . 120

7.2.3 Implementation details . 135

7.2.4 Limitations of the implementation 139

7.2.5 Protocol inference . 140

7.3 Comparison with other languages . 140

7.4 Working examples . 142

8 Conclusions and Future work 151

8.1 Summary . 151

8.2 Future work . 152

Bibliography 153

xv

List of Figures

3.1 Contractor.NET example: Train door abstraction 13

3.2 Contractor.NET example of non-determinism and over-approximation 13

4.1 Type System Lattice . 31

5.1 Owicki-Gries method . 79

5.2 Disjoint concurrency rule . 80

7.1 Pre-condition strengthening . 111

7.2 Post-condition weakening . 111

7.3 Assignment rule . 124

7.4 While’s control flow graph . 131

7.5 While rule . 131

xvii

List of Tables

4.1 Comparison between Mungo and our tool . 50

6.1 Comparison of languages and tools . 87

7.1 Full access annotations . 141

7.2 Read access annotations . 141

xix

Glossary

access permission An abstract capability that characterizes the way a

shared resource can be accessed by multiple refer-

ences [74].

aliasing A situation in which a data location can be accessed

through more than one reference in a program.

assertion A logical proposition that should always hold at a

given point in code execution.

behavioral types Type disciplines that describe properties associated

with the behavior of programs [43].

dynamic checking Type-checking process that occurs in runtime [14].

explicitly typed language A language where types appear in the syntax of pro-

gram sources [14].

gradual typing Process that combines both static and dynamic check-

ing in the same program [75].

ill typed program A program that does not pass the type-checker [14].

implicitly typed language A language where types do not appear in the syntax

of program sources [14].

safe language A language in which all program fragments are

safe [14].

safe program A program that does not cause untrapped errors to

occur [14].

session type A notion of behavioral types where the interactions

between different parties are described [43, 78].

static checking Type-checking process that occurs in compilation

time [14].

xxi

GLOSSARY

strongly checked language A language in which all programs are well-

behaved [14].

trapped error An error that causes the computation to stop imme-

diately. For example, division by zero or accessing an

illegal memory address [14].

type A range of values a program variable can assume dur-

ing the execution of a program [14].

type-checker Tool or algorithm that performs type-checking [14].

type-checking The process of checking programs to ensure they are

well-behaved [14].

type sound language A language where the absence of wrong behavior is

ensured for all possible runs expressed within that

language [14].

typestate A notion of behavioral types where the type of an

entity depends on the operations that are permitted,

when at a particular state [43, 32].

type system A tractable syntactic method for proving the absence

of certain program behaviors by classifying phrases

according to the kinds of values they compute [71].

typed language A language where the variables can be given nontriv-

ial types [14].

untrapped error An error that does not cause the computation to stop

immediately and that can go unnoticed. For example,

accessing an array off bounds in a language that has

no runtime bounds checks [14].

untyped language A language that does not have types or that has a sin-

gle universal type that contains all values [14].

usage type A description of all the possible states and permitted

operations for each state of an entity.

weakly typed language A language where the set of forbidden errors does not

include all untrapped errors [14].

well typed program A program that passes the type-checker [14].

well-behaved program A safe program where no forbidden errors can occur

during the execution [14].

xxii

C
h
a
p
t
e
r

1
Introduction

1.1 Context

Detecting programming errors and vulnerabilities in software is increasingly important,

and building tools that help with this task is an area of investigation, crucial for the

industry these days.

Programming errors result in programs that might malfunction in many ways. The

most common mistakes involve mixing values of different types, calling non-existing

functions, calling functions with the wrong number of parameters, accessing unautho-

rized parts of the memory, creating loops that might not terminate, de-referencing null

pointers, dangling pointers, division by zero... These mistakes might cause computations

to do not progress, producing unexpected behaviors or crashing due to runtime errors.

In modern programming languages, some of these common errors are detected thanks

to type systems implemented in compilers. Type systems ensure that if a program is well-

typed, nothing “goes wrong” [63]. By “wrong”, we mean the kind of bad behavior that

the type system was designed to rule out. Usually, type systems are used to detect errors

statically, by analyzing the source code, preventing the errors from happening at runtime.

Other techniques, usually not integrated with compilers, use deductive logics [1] and

model checking [17]. Since we are interested in preventing errors before the code is run,

we will focus on static error detection approaches.

1.2 Problem

Type systems nowadays are able to detect a lot of errors, but there are errors that are not

prevented in some programming languages. For example, C and Java still do not prevent

null de-referencing. Fortunately, languages like OCaml do prevent that, by considering

1

CHAPTER 1. INTRODUCTION

null not being a value of every type. Go and Rust are also examples of modern languages

detecting more than data-errors: Go does dynamic deadlock detection; Rust controls

resource interference statically.

Unfortunately, the type of errors detected in modern languages is still limited. Mod-

ern languages for instance, do not statically ensure that methods are called in the right

moment and in the right order, which is a source of many errors, like accessing a variable

that was not initialized [6]. Additionally, the language frameworks that do allow one to

verify that methods are called in the right order either have limitations or require expert

users, and not average programmers, to provide complex specifications.

One real example of a method being called out of order was a bug found1 in Jedis.

Jedis2 is a Java client for Redis3, an in-memory database that persists on disk. The error

happened when there was an attempt to close a socket that timed out, in other words,

there was an operation being available on a state that should not allow that.

1.3 Contributions

In this thesis, we present the implementation of a tool that type-checks a Java program

where objects are associated with typestates. These typestates are associated with Java

classes and define the behavior of instances of those classes, specifying the sequences

of method calls allowed. It checks statically that method calls happen in the prescribed

order, following the specified behavior.

This tool is a new implementation of Mungo [82, 54] which fixes issues and adds new

features. It was implemented in Kotlin [49, 50] as a plugin for the Checker Framework [79,

70].

The major features supported by this tool are:

• checking the absence of null pointer errors, fixing some issues that Mungo cur-

rently has;

• checking that protocols of objects are completed, even in some corner cases that

Mungo was not checking;

• a language of assertions that focuses on allowing a program that uses typestates to

be type-checked even in the presence of aliasing;

• an inference algorithm which analyzes the code statically and infers all the re-

quired assertions.

The language of assertions employs the notion of access permissions [10] and sup-

ports concepts like packing and unpacking [25], unpacking of aliases objects, and

1https://github.com/xetorthio/jedis/issues/1747
2https://github.com/xetorthio/jedis
3https://github.com/antirez/redis

2

1.4. THESIS OUTLINE

transferring of permissions between aliases. With this language, it is possible to share

objects between different threads, having assurance that their use follows the specified

behavior in the protocol, and that there is no interference between method calls that mu-

tate the state of the object. Furthermore, the inference algorithm infers all the required

assertions by building a constraints system and solving it with Z3 [22]. This relieves the

programmer from manually writing all the necessary assertions.

The tool also includes other features that improve the developer experience:

• support for protocols to be associated with classes from the standard Java library

or from third-party libraries, allowing the use of objects to be verified even when the

source code of their classes is not available to be edited with a Typestate annotation

(e.g. ensuring that hasNext is called before next in an iterator from the standard

library);

• support for “droppable” states, which allow one to specify states in which an object

may be “dropped” (i.e. stop being used) without having to reach the final state;

• support for transitions of state to depend on boolean values returned by methods,

not just on enumeration values, as the current version of Mungo requires;

• invalid sequences of method calls are ignored when analyzing the use of objects

stored inside other objects by taking into account that the methods of the outer

object will only be called in the order specified by the corresponding protocol, thus

avoiding false positives.

1.4 Thesis outline

The thesis is structured as follows:

• Chapter 2 presents a study on the concept of behavioral types;

• Chapter 3 presents a study on tools that employ the concept of behavioral types;

• Chapter 4 presents the first version of the tool, where linear use of objects is en-

forced;

• Chapter 5 presents a study on the concept of access permissions;

• Chapter 6 presents a study on tools that employ the concept of access permissions;

• Chapter 7 presents the second version of the tool, which allows objects to be shared;

• Chapter 8 presents a summary and discusses future work.

3

C
h
a
p
t
e
r

2
Theoretical Work on Behavioral Types

When designing a programming language, it is important to forbid a set of errors from

ever happening. This set should include all untrapped errors, and some trapped errors.

If no forbidden error can occur during the execution of a program, we say that program

is well-behaved. A well-behaved program is also safe. Safety prevents errors being

unnoticed for too long, reducing debugging time and preventing arbitrary behavior from

happening later [14].

Traditional work on type systems has focused on the result of computations. With

the growth of concurrent systems, there is a need to verify the behavior of computations,

not just the result given. Behavioral Types are type disciplines that describe properties

associated with the behavior of programs [43]. Type systems that include this notion,

allow for the static verification of interactions and protocol compliance, like ensuring

that methods on an object are called in the correct order.

In this chapter, we study the concept of behavioral types. Section 2.1 presents the

notion of typestates. Section 2.2 presents the concept of session types. In section 2.3 we

discuss the differences between these and usage types. Section 2.4 presents a motivating

example for the use of behavioral types.

2.1 Typestates

Typestates are a notion of behavioral types where the type of an entity depends on the

operations that are permitted, when at a particular state [43]. Each type has associated

with it a set of typestates, and each typestate is the set of operations that can be safely

executed in that state. Therefore, typestates are similar to finite-state machines and type-

checking is then able to reject programs where there are sequences of method calls that

are not admissible [43]. For example, in a Java iterator, the next method should only be

5

CHAPTER 2. THEORETICAL WORK ON BEHAVIORAL TYPES

called after hasNext was called.

Garcia, Tanter, Wolff and Aldrich present in [32] the concept of typestate-oriented

programming, where the language directly supports the expression of typestates, instead

of having typestate checkers as an additional layer. One example of such language is

Plaid [77, 37]. In the Plaid programming language, the class of an object represents its

typestate, and that class can change dynamically during runtime. Not only the interface

(i.e. available methods) depends on the typestate, the behavior also depends on the

current state [32].

2.2 Session types

Session types describe the interactions between different partners. Originally, this con-

cept had in mind only two parties running in parallel and communicating via message

passing [41, 78, 86]. Takeuchi, Honda and Kubo were the first to present formally in [78]

a small language and its typing system based on the concept of interaction between pro-

cesses, important for concurrent systems. Interaction is seen as a chain of actions between

two parties, sometimes interleaved with actions with other parties [78]. The language also

provides a type inference system, where it can be proven that if the program is well-typed,

there will be no inconsistent communication patterns [78].

Since then, session types have been the subject of great study, and have been inte-

grated into some object-oriented programming languages, like Plaid [37], Mool [13] and

Mungo [82].

2.3 Typestates/Session types/Usage types

In the study of behavioral types, terms like typestate, session type and usage type appear

frequently and are sometimes used interchangeably. The term typestate is usually associ-

ated with a particular state, which can be seen as a set of available operations or the pre-

and post-conditions related with each operation. Session types have their roots in typed

π-calculus - a model of computation for concurrent systems that can represent processes,

parallel composition of processes, communication between those through channels and

creation of new channels [89]. Session types allow for protocol checking in channels, but

they have been incorporated in object-oriented languages where method calls are the

communication primitive, without the need for explicit channel creation. They can be

seen as a set of typestates. A usage type is a description of all the possible states and

permitted operations for each state.

Although originally typestates were in line with a contract-oriented, or assertion-based,

approach, it is possible to easily transform the assertion-like typestates into usage-like

ones [85]. In Mungo [82], a typestate is no different from a usage type.

The following is an example, from the language Bica [33], of a usage type, which

describes the session type of an object, which has a set of possible states (typestates). In

6

2.4. MOTIVATING EXAMPLE: CHECKER FRAMEWORK

this example, the type system ensures that method calls happen in order, for example,

ensuring that the eof method is called before read, to make sure the end of the file was

not reached yet.

Listing 2.1: Usage type example

1 enum Res {OK, ERROR}

2 class FileReadToEnd {

3 session Init

4 where Init = { open: <OK: Open, ERROR: end> }

5 Open = { eof: <TRUE: Close, FALSE: Read> }

6 Read = { read: Open }

7 Close = { close: end }

8 Res open() {...}

9 Bool eof() {...}

10 String read() {...}

11 void close() {...}

12 }

2.4 Motivating example: Checker Framework

The Checker Framework is a tool that makes Java’s type system more powerful and use-

ful [79]. It includes plugins that verify the absence of many types of bugs: null pointer

exceptions, unintended side effects, SQL injections, concurrency errors, mistaken equal-

ity tests. It also allows the programmer to add new typing rules and enforcing those by

the creation of new plugins. Checker Framework has been successful at detecting and

confirming the absence of errors in Java code [27, 70].

One of the most well known plugins is the Nullness Checker. It ensures that null

pointer exceptions are never thrown1. By default, the type of objects is considered dif-

ferent from null. If one wants a nullable type, it must indicate so with the @Nullable
annotation, like in the following example.

Listing 2.2: Checker Framework: Nullness Checker example

1 import org.checkerframework.checker.nullness.qual.Nullable;

2 public class ValueWrapper {

3 private @Nullable Object obj = null;

4 public boolean hasValue() {

5 return obj != null;

6 }

7 public Object getValue() { return obj; }

8 public void setValue(@Nullable Object obj) {

9 this.obj = obj;

10 }

11 }

1https://checkerframework.org/manual/#nullness-checker

7

CHAPTER 2. THEORETICAL WORK ON BEHAVIORAL TYPES

This example presents a wrapper object which may store a reference to another object

or the null value. The hasNext method checks if an object is stored. The getValue method

retrieves the object (assuming it is not null). The setItem method stores a new object.

The Nullness Checker reports an error on line 7 indicating that the obj variable may

be null. It is a real error that could happen if hasValue is not called before calling getValue.

Unfortunately, there is no way to specify that we expect the nullness of obj to be checked

before with the hasValue method, creating a scenario where we need to use defensive pro-

gramming: always check that obj is not null inside getValue. This gives an example where

detecting data-errors is not enough and motivates the inclusion of behavior information

in types, which would enforce that methods are called in the correct order and would

avoid false positives like this, by pruning execution paths that do not occur.

2.5 Conclusion

Type systems have been focused on the result of computations. Now, there is the need to

also verify the behavior of computations and ensure that methods are called in the correct

order. Although the need for behavioral types is increased by the growth of concurrent

systems, this notion is also important for verifying properties of sequential programs.

Like in the motivating example, ensuring that methods are called in the proper order

increases safety and allows false positives to be avoided, by discarding execution paths

that do not occur. In the following chapter, we analyze some tools and programming

languages that incorporate the concept of behavioral types.

8

C
h
a
p
t
e
r

3
Practical work on Behavioral Types

This chapter presents tools and object-oriented languages that incorporate the concept

of behavioral types. In the following sections, we will present programming languages

and tools that employ a typestate-oriented approach (section 3.1) and ones that employ a

usage types approach (section 3.2). Section 3.3 summaries this chapter.

3.1 Typestate-oriented approaches

3.1.1 Plaid

Plaid [77, 37] is a programming language designed for component-based computing in

concurrent software. One of Plaid’s main characteristics is typestate-oriented program-

ming [32], where the class of an object represents its typestate, and that class can change

dynamically during runtime. Not only the interface (i.e. available methods) depends on

the typestate, the behavior also depends on the current state. Plaid also supports gradual

typing [75], which allows a programmer to mix dynamically and statically typed code.

Additionally, Plaid programs are interoperable with Java programs [38].

In Plaid, each class is represented as a state and each state is represented as a sub-

state of that. The main state should contain all the variables and methods available in

all sub-states. Each sub-state should contain the variables and methods available only

on those sub-states. Additionally, Plaid allows composition of multiple states in complex

ways. It supports hierarchical-states, which are states that are composed of other states;

and-states, which are states where both must be present, modeled using the with keyword;

and or-states, which are states where only one can be present in an object - a state that is

a case of another state [77].

The following is a simple example (from [77]) of a File with two sub-states: one where

the file is opened, allowing the file to be read or closed, and another where the file is

9

CHAPTER 3. PRACTICAL WORK ON BEHAVIORAL TYPES

closed and may be opened again. State transitions are declared with the use of this <-
NewState.

Listing 3.1: Plaid example: File

1 state File {

2 val filename;

3 }

4 state OpenFile case of File = {

5 val filePtr;

6 method read() { ... }

7 method close() { this <- ClosedFile; }

8 }

9 state ClosedFile case of File {

10 method open() { this <- OpenFile; }

11 }

Listing 3.2: Plaid example: File use

1 method readClosedFile(f) {

2 f.open();

3 val x = f.read();

4 f.close();

5 x; //return

6 }

The main features mentioned previously, constitute Plaid’s main advantages. Unfor-

tunately, it is not clear how one may specify, on a class declaration, what the initial state

of an object after initialization should be. It seems that this is done in client code every

time an object is initialized, using the @ operator, like in the following example:

Listing 3.3: Plaid example: File initialization

1 val file = new File @ ClosedFile;

That might compromise safety if an object starts in a state that was not designed to be

the initial state. Furthermore, Plaid does not include a way to force an object to reach a

certain final state, which could be useful for ensuring protocol termination.

3.1.2 Fugue

Fugue is a modular static checker for languages that compile to the Common Language

Runtime1, integrating typestates with an object-oriented programming language. Fugue

allows the programmer to add declarative specifications on interfaces, marking methods

that are used for allocating or releasing resources, limiting the order in which object’s

methods are called, or even providing preconditions and postconditions. Fugue then

ensures that resources are not used before allocated or after being released, ensures that

methods are called in correct order, and that preconditions are met before a method is

1https://docs.microsoft.com/en-us/dotnet/standard/clr

10

3.1. TYPESTATE-ORIENTED APPROACHES

called. Fugue is modular because it only analyzes method declarations, allowing for faster

checking [24].

The following is an example of a class for socket objects from [24].

Listing 3.4: Fugue example: A class for socket objects

1 [WithProtocol("raw","bound","connected","down")]

2 class Socket {

3 [Creates("raw")]

4 public Socket (...);

5 [ChangesState("raw", "bound")]

6 public void Bind (EndPoint localEP);

7 [ChangesState("raw", "connected"), ChangesState("bound", "connected")]

8 public void Connect (EndPoint remoteEP);

9 [InState("connected")]

10 public int Send (...);

11 [InState("connected")]

12 public int Receive (...);

13 [ChangesState("connected", "down")]

14 public void Shutdown (SocketShutdown how);

15 [Disposes(State.Any)]

16 public void Close ();

17 }

The WithProtocol annotation declares the possible states. The Creates annotation

specifies the initial state of an object when created. The ChangesState annotation specifies

that if the object is in the state indicated on the first argument, the method may be

called and the object transits to the state indicated in the second argument. The Dispose
annotation declares that a method is used for releasing resources. It is also possible to

declare the availability of fields in classes, like in the following example from [24].

Listing 3.5: Fugue example: A web page fetcher using a socket object

1 [WithProtocol("open", "closed")]

2 class WegPageFetcher

3 {

4 [InState("connected", WhenEnclosingState="open"),

5 NotAliased(WhenEnclosingState="open")]

6 [Unavailable(WhenEnclosingState="closed")]

7 private Socket socket;

8 ...

9 }

Fugue is very useful and has been used to check, for example, the implementation of

an internal Microsoft Research web site, detecting multiple errors, including connections

to a database not being properly disposed. Still, Fugue has some limitations. It does not

allow protocol checking on static fields, it ignores the concurrency aspect of the language

(i.e. does not control the use of shared variables) and ignores exception control flow

during analysis [24].

11

CHAPTER 3. PRACTICAL WORK ON BEHAVIORAL TYPES

3.1.3 Contractor.NET

Contractor.NET [91] is a Visual Studio extension that uses contract specifications with

typestate information to verify client code. The typestate information is inferred from

the class source code in a way that is enabled preserving [15]. This means that states are

grouped if they have the same set of actions enabled. This level of abstraction has been

useful to detect issues in various case studies including specifications of Microsoft Server

protocols [91]. The following is an example (from [91]) of a class implementation with

contract specifications and the corresponding inferred typestate (figure 3.1).

Listing 3.6: Contractor.NET example: Train door controller

1 public class Door {

2 public bool danger, closed, moving;

3 private void Invariant() {

4 Contract.Invariant(danger ? !closed : true);

5 }

6 public Door() {

7 closed = true; moving = false; danger = false;

8 }

9 public void Open() {

10 Contract.Requires(closed && !moving); closed = false;

11 }

12 public void Close() {

13 Contract.Requires(!closed && !danger); closed = true;

14 }

15 public void Start() {

16 Contract.Requires(!moving);

17 moving = true; if (!danger) closed = true;

18 }

19 public void Stop() {

20 Contract.Requires(moving); moving = false;

21 }

22 public void Alarm() {

23 Contract.Requires(!danger); danger = true; closed = false;

24 }

25 public void Safe() {

26 Contract.Requires(danger); danger = false;

27 }

28 }

The ability to infer typestates from the class source code is useful not only for later

static verification of client code, but also to confirm that the contract specification was

defined as intended: one only needs to look at the inferred typestate and check if it

matches what was expected. The concept of enabled preserving provides a good com-

promise between size and precision of the inferred typestate [15], but since it is an

over-approximation, non-determinism may exist and invalid client sequences might be

accepted [91], like in the following example provided by the authors.

12

3.2. USAGE TYPES APPROACHES

Figure 3.1: Contractor.NET example: Train door abstraction

Figure 3.2: Contractor.NET example of non-determinism and over-approximation

3.2 Usage types approaches

3.2.1 Bica

Bica integrates channel session types with object-oriented programming by extending

the Java language with session type annotations. These annotations are included in the

class source code and describe the changes in object’s interfaces. The interface of an

object is the set of available methods, which changes over time dynamically. Such objects

are called non-uniform. In contrast to other work on session types for object-oriented

languages, channels are not required to be created and completely used within a single

method. Several methods can operate on the same channel, thus allowing encapsulation

of channels in objects. Bica verifies statically that clients use objects according to the

specified session types [33].

13

CHAPTER 3. PRACTICAL WORK ON BEHAVIORAL TYPES

Listing 3.7: Bica example: FileReadToEnd

1 enum Res {OK, ERROR}

2 class FileReadToEnd {

3 session Init

4 where Init = { open: <OK: Open, ERROR: end> }

5 Open = { eof: <TRUE: Close, FALSE: Read> }

6 Read = { read: Open }

7 Close = { close: end }

8 Res open() {...}

9 Bool eof() {...}

10 String read() {...}

11 void close() {...}

12 }

In the previous example, the file has four states, where open, eof, read, close are avail-

able for each state respectively. The first state is Init. Upon calling the open method, the

state transition depends on the return value. That return value is checked in a switch
statement, and the state changes to Open or the final one. When the file is open, the

client must check if the end of the file was reached. If it did, the state changes to Close,

otherwise it changes to Read. On the Read state, one may call the read operation, returning

to the Open state. On the Close state the close method is available, and if called, the file

goes to the final state, where no operations are available.

In Bica, non-uniform objects must be strictly used in a linear way. That is enforced

statically. It has the downside of not allowing these objects to be stored in shared data

structures. Support for session types on interfaces is also lacking. If a class C implements

interface I, the interface should be interpreted as the specification of minimum method

availability [33].

3.2.2 Mool

Mool [13] is a object-oriented language, designed for concurrent systems, where protocols

can be specified in the form of usage types, attached to class definitions. These usage

types specify: the availability of methods; the tests clients must perform on the result

of methods; and if the object must be used in a linear way or if it can be shared. Mool

extends modular session types by eliminating channel operations, and by considering

method calls as the only communication primitive, for both sequential and concurrent

code. Furthermore, instead of making a distinction between linear and shared objects,

Mool allows linear objects to evolve into shared ones. The status of an object that can

only be referenced by a single thread is described by the lin (linear) qualifier. For shared

objects, the un (unrestricted) qualifier is used. Shared objects do not evolve into linear

ones since the number of references to an object is not tracked. To enable an operation to

be shared, the sync method modifier is used [12].

14

3.2. USAGE TYPES APPROACHES

The following is an example adapted from Mool’s tutorial2.

Listing 3.8: Mool example: File

1 class File {

2 usage lin{open; Read} where

3 Read = lin{canRead;

4 <lin{read; Read} + lin{close; end}>};

5

6 int linesInFile; int linesRead;

7

8 unit open() {

9 linesRead = 0;

10 linesInFile = 5;

11 }

12 string read() {

13 linesRead = linesRead + 1;

14 "reading line... \n";

15 }

16 boolean canRead() {

17 linesInFile != linesRead;

18 }

19 unit close() {

20 unit;

21 }

22 }

23

24 class Main {

25 usage lin{main; end};

26 unit main() {

27 File f; f = new File();

28 f.open();

29 while(f.canRead()) {

30 printStr(f.read());

31 }

32 f.close();

33 }

34 }

Looking at the usage type declared on the File class, we observe that when a file is

initialized, it starts on a state where only linear use is allowed, and only the open method

is available. If open is called, the file moves to the Read state. The method’s name and the

name of the state the object transits to, upon that method being called, are separated by a

semicolon. In the Read state, one must call canRead to make sure there is something to be

read. The transition now depends on the return value of canRead. If it returns true, the

read method is available otherwise, the close method is available and it makes a transition

to the final state, where no operations can be done. This decision is represented by <>
and a plus sign to signify the disjunction between the two choices.

2http://gloss.di.fc.ul.pt/tryit/tools/Mool

15

CHAPTER 3. PRACTICAL WORK ON BEHAVIORAL TYPES

The plus sign may also be used to add more available methods on non decision states

(between {}). An asterisk can be used to create a state where the object remains in it when

its available methods are called. An example follows.

Listing 3.9: Mool example: File reader

1 class FileReader {

2 usage lin{open; Next} where

3 Next = lin{next; <Next + Done> + toString; Next}

4 Done = *{toString + getCounter};

5 ...

6 }

Channels as conceived in session type theory are special entities used to carry mes-

sages. Mool abstracts this notion by making method calls the communication primitive,

which allows for more natural code in the context of object-oriented programming. Fur-

thermore, allowing linear objects to evolve into shared ones gives more flexibility, instead

of forcing a separation between linear and shared objects. Despite that, aliasing of linear

types is forbidden, while aliasing of unrestricted types is completely allowed. Limited

forms of aliasing without loosing track of an object state should be allowed, but this is still

a topic of research. Additionally, Mool does not consider the treatment of exceptions [12].

3.2.3 Mungo

Mungo [82] is a tool that extends Java with typestate definitions [54]. These typestates

are associated with Java classes and define the behavior of instances of those classes,

specifying the sequences of method calls allowed. The Mungo tool checks statically that

method calls happen in order, following the specified behavior.

Typestate definitions are written in .protocol files and associated with the respective

Java class using an annotation. The following is an example of a file reader. It is adapted

from an example shown in Mungo’s web page [82].

Listing 3.10: Mungo example: File class

1 import mungo.lib.Typestate;

2 import mungo.lib.Boolean;

3

4 @Typestate("FileProtocol")

5 public class File {

6 public File(String filename) { /* ... */ }

7 public Status open() { /* ... */ }

8 public Boolean hasNext() { /* ... */ }

9 public byte read() { /* ... */ }

10 public void close() { /* ... */ }

11 }

16

3.2. USAGE TYPES APPROACHES

Listing 3.11: Mungo example: File protocol

1 typestate FileProtocol {

2 Init = {

3 Status open(): <OK: Open, ERROR: end>

4 }

5 Open = {

6 Boolean hasNext(): <TRUE: Read, FALSE: Close>,

7 void close(): end

8 }

9 Read = {

10 byte read(): Open,

11 void close(): end

12 }

13 Close = {

14 void close(): end

15 }

16 }

When an object is initialized, its state is the first one defined in the protocol. In this

example, if we create a File, we are only allowed to call the open method. The open method

returns OK or ERROR. If the return value is OK, we move to the Open state, if not, we

reach the end state, and nothing can be done with the object later because it reached the

final state. In this case, the transition depends on the return value of this method. In

the Open state, we have the hasNext method to ensure that we actually have something to

read. If it returns TRUE, we move to the Read state. If it returns FALSE, then we move

to the Close state, and in that case, the only choice left is to close the file. On the Read
state we can read, and then we move directly to the Open state again. The return value

makes no difference to the transition in this case. From the Open or Read states, we can

also close the file.

Other examples of Mungo’s usage are available on a repository3. One such example4

shows Mungo detecting a state, declared on a typestate that could never be reached,

warning about a possible human error.

Listing 3.12: Mungo example: Store protocol

1 typestate StoreProtocol {

2 Start = {

3 BuyResult buy(String): <OK: end, KO: end>

4 }

5 Receipt = {

6 String emitReceipt(): end

7 }

8 }

3https://github.com/jdmota/behaviour-types-research
4https://github.com/jdmota/behaviour-types-research/tree/unreachable-state

17

CHAPTER 3. PRACTICAL WORK ON BEHAVIORAL TYPES

Listing 3.13: Mungo example: State not reachable warning

1 StoreProtocol.protocol: 5-3: Warning

2 State not reachable: Receipt.

3.3 Summary

Much work has been done to produce tools that verify that behavior in programs is correct.

Plaid, for instance, includes many great features, like typestate-oriented programming,

gradual typing and control over aliasing and mutability. These concepts should be part

of languages. Fugue reads annotations of methods and class fields to ensure correct use

of objects. Unfortunately, adding annotations can be considered a burden, and since

Fugue does not check the body of methods, some errors might escape unnoticed. Con-

tractor.NET includes typestate inference, but since it overapproximates, invalid client

sequences might be accepted. Bica is a small object-oriented language that supports ses-

sion type annotations. Sadly, the project is old and no longer maintained. Mool is also an

object-oriented language like Bica, and allows the programmer to specify for each state,

if the object can be shared or not. Mungo is a more recent project, designed to verify Java

code, but it lacks some features. In the following chapter, we discuss the implementa-

tion of a tool which is inspired by Mungo and discuss the features Mungo lacks that are

present in our tool.

18

C
h
a
p
t
e
r

4
Typestate-oriented tool: version 1

In this chapter, we are going to discuss the implementation of a tool that type-checks a

Java program where objects are associated with typestates. These typestates are associated

with Java classes and define the behavior of instances of those classes, specifying the

sequences of method calls allowed. It checks statically that method calls happen in the

prescribed order, following the specified behavior.

This tool is inspired by Mungo [82, 54], which was built in Java using the JastAdd

framework [47, 28]. Initially, the objective was to extend Mungo, but the result ended up

being a completely new implementation with support for new features like droppable

states and association of protocols with classes from the standard Java library or from

third-party libraries. Furthermore, it allows for state transitions to depend on boolean

return values, not just on enumeration values, allowing for common Java code to be

accepted and removing this artificial restriction that was not necessary for the verification

of code. Finally, the new implementation fixes issues around the prevention of null

pointer errors and analysis of the flow of execution.

This chapter presents the first version of the tool where objects must be used in a

linear way (i.e. no aliases are allowed). In the following sections, we will discuss the

framework and language used for the implementation (section 4.1), the features the tool

provides (section 4.2), implementation details (section 4.3), and the differences between

Mungo and our tool (section 4.4).

4.1 Design choices

To implement this tool, we have decided to use the Checker Framework [79, 70], instead

of the JastAdd framework, and use the Kotlin language [49, 50], instead of Java. In the

following subsections we will discuss the features that Checker and Kotlin give us over

19

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

JastAdd and Java, which were the tools used for the implementation of Mungo.

4.1.1 Checker Framework

The Checker Framework is a tool that enhances Java’s type system to make it more pow-

erful and useful by letting software developers detect and prevent errors in their Java

programs [79]. This framework includes many plugins that help finding bugs. For exam-

ple, the Nullness Checker is a plugin that avoids the presence of NullPointerExceptions that

are very common is Java.

Additionally, the Checker Framework allows one to write their own plugins, including

declarative and procedural mechanisms for writing type-checking rules and support

for flow-sensitive local inference [70]. Plugins can be written in Java or any other Java

interoperable language because Checker is well-integrated with the Java toolset [70].

Since it also provides basic checking functionalities from which we can extend, we could

focus on implementing the concrete aspects of our type system.

We believe the change from JastAdd to the Checker Framework is helpful. JastAdd

includes its own language that is used to define the semantics of the implemented type

system. This may be useful but editor support for JastAdd is lacking (except for syntax

highlighting), which can hurt productivity. Besides that, it seems JastAdd is not actively

maintained while the Checker Framework, on the other hand, it is. As an example, while

developing the tool, we found an issue in Checker, which we reported1, and it took less

than one hour to get a response.

Additionally, the Checker Framework has been heavily tested and used by others. For

example, the Checker’s team evaluated the framework by writing pluggable type-checkers

and running them on over two million lines of existing code, and found hundreds of

bugs in the process, including a potential null-pointer error in Guava [35] (which at the

time was called Google Collections), even though it was already heavily tested [27]. They

also observed the use of the framework by computer science students in their projects to

eliminate null pointer errors [27]. Currently, the Checker Framework is used, for example,

by Guava, to check the absence of null-pointer errors in its code, and used in the KMS
Compliance Checker [53] by Amazon. Checker was also used as a foundation for ReImInfer,

a type inference tool for ReIm, a type system for reference immutability, implemented

for Java [42]. Finally, we note that the Checker Framework was presented in the Google

Summer of Code of 2019 [16] and mentioned in an article by Oracle [52], which shows

that Checker is not unknown to the Java community.

4.1.2 Kotlin

Kotlin [49, 50] is a new modern language developed by JetBrains. It is interoperable

with Java which means we can use Java libraries from Kotlin code, and it provides many

1https://github.com/typetools/checker-framework/issues/3267

20

https://github.com/typetools/checker-framework/issues/3267

4.1. DESIGN CHOICES

features that make the code more concise and safe, in comparison with Java, increasing

productivity and safety [50].

One of those features is the fact that the null value is not assignable to variables unless

they are marked as nullable and uses of nullable values are checked to make sure they

are not null. This limits the existence of NullPointerExceptions, which may still happen

when interacting with Java code that was not annotated, but the error surface is greatly

reduced.

Listing 4.1: Null checking in Kotlin

1 var output: String

2 output = null // Compilation error

3

4 val name: String? = null // Nullable type

5 println(name.length()) // Compilation error

6

7 if (name != null) {

8 println(name.length()) // OK

9 }

Another feature is called “smart casts”. If one checks the type of an object in an if
statement, Kotlin is able to automatically cast the type of that value inside the if body.

Notice how in Java, one would need to use the instanceof keyword and cast the value

inside the if. In Kotlin, the cast is automatic and instead of instanceof, one just needs to

write is. The code gets more concise and readable.

Listing 4.2: Smart casting in Kotlin

1 fun calculateTotal(obj: Any) {

2 if (obj is Invoice)

3 obj.calculateTotal()

4 }

Additionally, Kotlin supports lambdas, functions declarations, which unlike in Java,

do not need to be declared inside a class, and extends data structures with many utility

functions, like map and filter. This allows code to be written in a more functional style

and reduces the amount of code that needs to be written to process data in collections.

Listing 4.3: Lambdas and collection processing in Kotlin

1 val numbers = listOf("one", "two", "three", "four")

2 val longerThan3 = numbers.filter { it.length > 3 }

3 println(longerThan3)

Many other features could be mentioned but these were the ones that provided a

greater increase in productivity in the development of this tool.

Kotlin is used, for example, in Android development [83] and is supported by the

Spring Framework [44]. Kotlin is therefore stable, and we believe it creates a good foun-

dation for the future of this tool as well.

21

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

4.2 Type-checker features

In this section, we will be discussing how programmers can use this tool and which

features are available for use. We start by explaining how protocols may be defined

and associated with each class, then we present useful annotations that may be used,

we discuss the fact that our tool prevents null pointer errors, it ensures that protocols

reach completion, it supports “droppable” states, and that protocol specifications may be

associated with classes from libraries which source code is not available.

4.2.1 Protocols

This tool requires that protocol specifications be associated with each Java class if one

desires to check the behavior of instances of those classes. Protocol specifications are

written in text files usually with the .protocol extension. Since these protocols resemble

finite-state machines, they declare the states and the available transitions between those.

Each specification must follow the grammar in listing 4.4. Note that id is a meta-variable

ranging over values of the set of all the valid Java identifiers.

Listing 4.4: The grammar of protocol specifications

1 Select := id | id "." Select

2

3 Package := "package" Select ";"

4

5 Import := "import" "static"? Select ("." "*")? ";"

6

7 Destination := Select | State | DecisionState

8

9 Decision := id ":" (id | State)

10

11 DecisionState := "<" Decision ("," Decision)* ">"

12

13 Arguments := "(" Select ("," Select)* ")"

14

15 Method := Select id Arguments ":" Destination

16

17 Methods := Method ("," Method)*

18

19 State := "{" Methods ("," "drop" ":" "end")? "}"

20

21 NamedState := id "=" State

22

23 Protocol := "typestate" id "{" NamedState* "}"

24

25 Start := Package? Import* Protocol

Protocols may start with a package statement and zero or more import statements. Just

like in Java classes, these statements indicate to which package the protocol belongs and

22

4.2. TYPE-CHECKER FEATURES

which classes it wants to import. This is important for the resolution of Java types used

in the protocol.

Following that, the keyword typestate must be used, followed by the name of the

protocol. The name is used only for presentation purposes when reporting errors and

does not need to match the file name. After the name, between curly brackets, zero or

more named states may be declared. No state may be called end. The end state is the final

state which is always implicit in the protocols and allows for no method calls. The initial

state in the protocol is the first declared. If no state is declared, end is simultaneously the

first and final state.

For each state, a set of methods which are allowed on that state may be declared. Each

method in the protocol is composed by a return type, a list between parentheses of the

types of the parameters separated by commas, and the state to which the method transits

to in that given state. The destination state may be a name of another declared state,

an anonymous state (i.e. a state declaration starting and ending with curly brackets),

or a decision state. Each decision state is composed of pairs. For each pair, the first

component is the name of a value from an enumeration or a boolean literal, depending

on if the method returns an enumeration or a boolean value. The second component

indicates to which state the method transits to depending on the return value of the

method call, which may be the name of a state or an anonymous state.

Additionally, each state may optionally include a “droppable” transition. This is

a special transition that happens implicitly when an object is no longer used, which

moves the object’s state to the final state. The lack of return type and parentheses avoids

ambiguity with methods, allowing the parser to easily understand that drop: end is a

special transition. This feature will be further explained later.

Listing 4.5: Example of an iterator protocol

1 typestate Iterator {

2 HasNext = {

3 boolean hasNext(): <true: Next, false: end>

4 }

5 Next = {

6 boolean hasNext(): <true: Next, false: end>,

7 Object next(): HasNext

8 }

9 }

In this example is presented a protocol for a Java iterator. This protocol has two

declared states, HasNext and Next and the implicit end state. In the HasNext state, only

the hasNext method is available to be called (line 3). In the Next state, both hasNext and

next methods are available (lines 6 and 7). When the hasNext method is called, and if it

returns true, the iterator transits to the Next state. If the method returns false, the iterator

transits to the end state. When the next is called, the iterator transits to the HasNext state.

To associate a protocol with a Java class, the Typestate annotation should be placed

23

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

on top of the class declaration. The annotation accepts one string argument which is the

path, relative to the class file, to the protocol file. If the extension is not mentioned and

the file is not found, a file with the same name but ending with the .protocol extension is

searched. If a protocol file is still not found, an error is reported.

Listing 4.6: Typestate annotation

@Typestate("Iterator.protocol")

public class Iterator {

...

}

With the protocol associated with the class, the type-checker will ensure that instances

of that class follow the respective protocol.

Listing 4.7: Correct iterator example

1 Iterator it = new Iterator();

2 while (it.hasNext()) {

3 it.next();

4 }

This example would be accepted by the type-checker. When the iterator is instantiated

(line 1), it is in the HasNext state, the first one declared in the protocol. The hasNext
method is allowed because it is available on that state (line 2). If the method returns

true, the flow of execution goes into the loop body, where the next method is called (line

3). That call is allowed because now the iterator is in the Next state. After the call, the

iterator returns to the HasNext state. When hasNext returns false, the loop finishes, and

the iterator is left in the end state, and no other method is called on the iterator.

Listing 4.8: Incorrect iterator example

1 Iterator it = new Iterator();

2 do {

3 it.next();

4 } while (it.hasNext())

This example would not be accepted by the type-checker. When the iterator is instan-

tiated, it is in the HasNext state (line 1). Immediately after that, the next method is called

before any hasNext call is performed (line 3). This goes against what is defined in the

protocol because the next method is not available in the HasNext state.

4.2.2 State refinement

Besides the Typestate annotation, there are some other useful annotations that may be

used. One example is the Requires annotation. This annotation may be used in the

parameters of method declarations to indicate in which states the object pointed by the

parameter is expected to be in. If this annotation is not used, the type-checker assumes

24

4.2. TYPE-CHECKER FEATURES

that the object may be in any state. The annotation expects a string argument or an array

of strings with the names of the required states.

Listing 4.9: Require annotation

1 void readFile(@Requires("Open") File file) {

2 file.read();

3 file.close();

4 }

Imagine an example where there is a file object that must be opened first, then it can

be read, and then it must be closed, and suppose there is a readFile method which expects

the file to be in the Open state so that the method can immediately read it and close it. To

allow the code to be type-checked, one can use the Requires annotation before the type of

the parameter with a string argument with the name of the Open state.

Another useful annotation that the tool offers is the Ensures annotation. This annota-

tion may be used in the parameters of method declarations to indicate in which states the

object pointed by the parameter is left in after the method call. The annotation expects a

string argument or an array of strings with the names of the states.

Listing 4.10: Ensures annotation

1 void readFile(

2 @Requires("Open") @Ensures("Read") File file

3) {

4 file.read();

5 }

Now suppose that the readFile method expects a file which is opened, reads it and then

leaves the file in a state in which it can be closed, leaving the responsibility of closing the

file to the caller. To allow the code to be type-checked, one can use the Ensures annotation

before the type of the parameter with a string argument with the name of the Close state.

Notice how different annotations can be combined to specify what the method does.

Finally, the tool provides the State annotation. This annotation may be used in the

return types of method declarations. It is similar to the Ensures annotation in that it

indicates the states in which an object is in after the method call but instead of referring

to an object passed in a parameter, it refers to the object returned by the method. If this

annotation is not used, the type-checker assumes that the object may be in any state. The

annotation expects a string argument or an array of strings with the names of states.

Listing 4.11: State annotation

1 @State("Open") File newFile() {

2 File file = new File();

3 file.open();

4 return file;

5 }

Imagine there is a newFile method which returns a new file already opened, ready to

25

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

be read. To allow the code to be type-checked, one can use the State annotation before

the return type of the method with a string argument with the name of the Open state.

4.2.3 Nullness checking

Null pointer errors are very common in Java. Because of this, it is crucial for the type-

checker to be able to detect these errors before runtime. For every object type used in a

program, the type-checker assumes the type is not nullable (contrary to the default type

system of Java). If the programmer desires that a type be nullable, it can use the Nullable
annotation. The annotation may be used before any type, in variable declarations, in

parameter declarations and in return types of methods. The type-checker then ensures

that no operations that could raise a null pointer error are performed. Additionally, the

type-checker is able to refine the type of nullable values when a comparison with null is

made in if statements or in the conditions of loops.

Listing 4.12: Nullness checking example

1 @Nullable @State("Open") File tryOpening() {

2 File file = new File();

3 return file.open() ? file : null;

4 }

5

6 void main1() {

7 @Nullable file = tryOpening();

8 file.read(); // Error

9 file.close();

10 }

11

12 void main2() {

13 @Nullable File file = tryOpening();

14 if (file != null) {

15 file.read();

16 file.close();

17 }

18 }

In this example there is a tryOpening method which creates a new file, attempts to

open the file, and if it succeeds, it returns the newly created file otherwise, it returns null
(line 3). The type-checker would report an error in the main1 method because there is an

attempt to call the read method in a potentially null value (line 8). In the main2 method,

no error would be reported since before calling methods on the file, it is checked that the

file variable is not null (line 14).

4.2.4 Protocol completion

When working with objects whose use is expected to follow a protocol, it is important

not only to ensure that method calls are performed in valid sequences, but that objects

26

4.2. TYPE-CHECKER FEATURES

are used to completion (i.e. until they reach the final state). This ensures that the im-

plementation is correct by preventing method calls from being forgotten and by freeing

resources that are no longer necessary. For example, this can be used to ensure that the

close method on a socket is called after the socket is no longer in use.

Listing 4.13: Socket protocol example

1 typestate Socket {

2 NotConnected = {

3 void connect(): Connected

4 }

5 Connected = {

6 void send(String): Connected,

7 void close(): end

8 }

9 }

Imagine for example a protocol for a socket which may be in the NotConnected, Con-
nected or end states. In the initial state, the socket is not connected and only the connect
method is allowed (line 3). When the socket is connected, messages can be sent via the

send method (line 6). Finally, the socket can be closed via the close method (line 7). Closing

the socket makes it reach the end state, where no other operations are allowed.

Listing 4.14: Socket usage: example 1

1 void main1() {

2 Socket s = new Socket();

3 s.connect();

4 s.send("Hello World!");

5 // Error

6 }

In this first example, the type-checker would report an error since the socket is not

used until its protocol is completed. Notice how the socket was created, connected, a

message was sent, but the socket was not closed.

Listing 4.15: Socket usage: example 2

1 void main2() {

2 Socket s = new Socket();

3 s.connect();

4 s.send("Hello World!");

5 s.close();

6 }

In this second example, the type-checker would report no errors, since the use of

the socket follows the protocol and the socket is properly closed when it is no longer

necessary.

27

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.16: Socket usage: example 3

1 void main3() {

2 Socket s = new Socket();

3 s.connect();

4 s.send("Hello World!");

5 s.close();

6 s.send("Hello World!"); // Error

7 }

In this third example, the type-checker would report an error. Even though the socket

was closed, there was an attempt to send another message after the fact. That is not

allowed since when an object is in the end state, no method calls are allowed.

4.2.5 Droppable states

It makes sense to force a protocol to reach the final state, for example, if we want to make

sure that some resources are freed or to make sure a protocol finishes. On the other hand,

there are cases where that is not strictly necessary. For example, there are scenarios where

one does not need an iterator to iterate for all elements of a collection, but just a few.

To support this kind of scenario, protocol specifications support a special kind of

transition. This transition represents the “dropping” of an object and transits it to the

end state. It happens implicitly when an object is no longer used. This is similar to how

the drop method is automatically called in Rust when an object goes out of scope2.

One key feature of this special transition is that it does not need to be defined in

all states. This allows the programmer to indicate in which states the object may be

“dropped”. States that do not include this transition are states where the object cannot be

“dropped”. This notion of “droppability” was also proposed in [23].

Listing 4.17: Example of an iterator protocol with “droppable” transitions

1 typestate Iterator {

2 HasNext = {

3 boolean hasNext(): <true: Next, false: end>,

4 drop: end

5 }

6 Next = {

7 boolean hasNext(): <true: Next, false: end>,

8 Object next(): HasNext,

9 drop: end

10 }

11 }

In this example is defined a protocol for an iterator which may be “dropped” in any

state. That is specified by the drop: end transition defined in the HasNext and Next states.

2https://doc.rust-lang.org/book/ch15-03-drop.html

28

4.2. TYPE-CHECKER FEATURES

This means that one may stop using the iterator if it is either in the HasNext state or in

the Next state.

4.2.6 Protocols for classes of libraries

For the type-checker to ensure that method calls are performed in correct order, each

class needs to be associated with a protocol. That is easily done for classes which the

programmer owns: by adding the Typestate annotation. But not very class used in a project

is owned by the programmer of that project. It is very common to use third-party libraries

and specially the standard library of Java. Since classes belonging to those libraries might

not be associated with protocol specifications, the tool allows the programmer to associate

protocol files with classes or interfaces in a configuration file.

The content of this configuration file follows the same syntax of .properties files, com-

monly used in the Java community. Each line in the file is a mapping from a key to a value.

In this instance, the key is the full qualified name of a class or interface and the value is

the path (relative to the configuration file) of the protocol file. An example is presented

in listing 4.18, where the standard Iterator class of Java is associated with a protocol.

Listing 4.18: Example of a configuration file

1 java.util.Iterator=Iterator.protocol

To allow for common code in Java to be type-checked with our tool, it is not enough

to associate other classes or interfaces with protocols. For example, the type-checker

must know that when the iterator method is called on a list, a new iterator in the HasNext
state is returned. To account for this situation, we make use of a feature that is already

available through the Checker Framework: stub files3. A stub file is Java source code that

omits method bodies and allows one to write annotations for a library when the code is

not available to be edited.

Listing 4.19: Example of a stub file

1 package java.util;

2

3 public interface List<E> {

4 @State("HasNext") Iterator<E> iterator();

5 }

In this example is shown the content of a stub file which provides an annotation for

the iterator method in the List interface of the standard Java library. With the use of the

State annotation, we inform the type-checker that the returned iterator is in the HasNext
state, allowing the code presented in listing 4.20 to be type-checked4.

3https://checkerframework.org/manual/#stub
4With the exception that generics are not yet fully supported.

29

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.20: Example of the use of the standard iterator

1 import java.util.*;

2

3 public class Main {

4 public static void main(String[] args) {

5 Iterator<String> it = Arrays.asList(args).iterator();

6 while (it.hasNext()) {

7 it.next();

8 }

9 }

10 }

4.3 Type-checker implementation

The type-checker is implemented as a plugin for the Checker Framework [79]. It works

by visiting each class and analyzing each method in two phases. In the first phase, the

content of methods is analyzed to infer the types of variables and fields. In the second

phase, using the inferred types, errors are reported when type incompatibility exists or

when invalid operations are performed. Additionally, it is ensured that the protocol of

objects is completed and that objects are used in a linear way.

Forcing the linear use of objects associated with a protocol is important to ensure that

there was no other piece of code that could have changed the state of an object, break-

ing the assumptions of the static analysis, and compromising the checking of protocol

compliance. There are techniques that can be employed to relax this restriction without

compromising the checking process. These will be used in the second version of the tool,

which will be presented later. For the first version, linearity is enforced.

In the following sections, we will discuss the type system employed and implementa-

tion details.

4.3.1 Type system

Each variable or field declaration and each expression in the code is associated with a

Java type, which is statically known. To be able to track the state of each object, we need a

parallel type system with other types that will represent the information the type-checker

needs. To that end, we introduce a type system where every value has a type from the

lattice in figure 4.1.

Unknown is the top type. It includes all possible values. Primitive is the type of all

primitive values, like integers and booleans. Object contains all objects, not including the

null value. This detail is important because that allows us to ensure statically that null

pointer errors do not occur. Null is a type that only includes the null value.

Moved is a type applied to variables that point to an object that was passed as a

parameter to a method call or delegated to another variable. Variables with the Moved

30

4.3. TYPE-CHECKER IMPLEMENTATION

Unknown

Object

State(*) Ended NoProtocol Null

Primitive Moved

Bottom

Figure 4.1: Type System Lattice

type cannot be used, because they no longer own the data. This ensures that objects are

used linearly.

This draws inspiration from the ownership concept of the Rust language: if something

takes ownership of some data, such data is considered to have been “moved”, and the

previous reference cannot be used [88]. This also avoids the need to nullify variables after

a value is obtained, as also proposed in [9].

The NoProtocol, Ended and State types are subtypes of Object. NoProtocol applies to

all objects that do not have a protocol specification associated with it. The Ended type is

applied to objects which protocol has completed. The State type represents objects which

are in a specific state. In practice, each State type is distinguished by the name of the state

it refers to and the protocol that declared that state.

Finally, the Bottom type is the subtype of all types. All operations are allowed on it.

Conceptually, it is an empty set, which means no value introduced in the language has

the Bottom type. We attribute this type to variables in contexts where the code that uses

them is never reached, to computations that might generate an error or just as a way to

avoid propagating errors. For example, imagine we call a method on an object which is

in a state that does not allow for that, the type of the object after that invocation will be

the Bottom type.

Every type is conceptually a set of all the values that belong to that type. In practice, a

type may be one of the singleton types presented in figure 4.1 or an union type comprising

of a set of those types. For example, union types are useful so that we can specify that an

object is in a state from a set of states or that a variable may point to an object in a certain

state or be null.

31

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

In the implementation, the representation of each type follows these properties:

• union types do not include unions in their structure;

• a set with the Unknown type is just the Unknown type;

• a set with only one type is just that type;

• an empty set is just the Bottom type;

• the Bottom type does not appear in union types since it represents the empty set;

• if the Object type is present in an union type, NoProtocol, Ended and State are not

since they are already subtypes of Object.

In the following listings, we define the semantics concerning the creation of the types

presented and their subtyping relationship in ML. Additionally, we define two functions

to compute the union of two types and the intersection of two types. Assume that the ML

lists do not include repeated values.

Listing 4.21: Types definition

1 type ttype =

2 | Unknown | Object

3 | State of string | Ended | NoProtocol

4 | Null | Primitive | Moved

5 | Bottom | Union of ttype list

The type definition includes all the singleton types in the type system and an union

type with a list of types.

Listing 4.22: createType function

1 let createType (types:ttype list) : ttype =

2 let types = flatTypes types in

3 let types = if contains Object types

4 then filter_not inObject types

5 else types

6 in match types with

7 | [] -> Bottom

8 | [t] -> t

9 | types -> if contains Unknown types

10 then Unknown

11 else Union types

The createType functions takes a list of types. If that list contains union types, they are

removed and the types in the union are directly included in the list (using the flatTypes
function in line 2). If the list contains the Object type, subtypes of it are removed (line

4). If the list is then empty, the Bottom type is returned (line 7). If the list contains only

one type, such type is returned (line 8). If the list contains the Unknown type, Unknown is

32

4.3. TYPE-CHECKER IMPLEMENTATION

returned (line 10). Otherwise, an union type is returned containing the types in the list

(line 11).

Listing 4.23: isSubtype function

1 let rec isSubtype (a:ttype) (b:ttype) : bool =

2 match a with

3 | Unknown -> b = Unknown

4 | Object ->

5 begin match b with

6 | Unknown | Object -> true

7 | Union bTypes -> contains Object bTypes

8 | _ -> false

9 end

10 | State _ | Ended | NoProtocol ->

11 begin match b with

12 | Unknown | Object -> true

13 | Union bTypes ->

14 (contains a bTypes) || (contains Object bTypes)

15 | _ -> a = b

16 end

17 | Moved | Null | Primitive ->

18 begin match b with

19 | Unknown -> true

20 | Union bTypes -> contains a bTypes

21 | _ -> a = b

22 end

23 | Bottom -> true

24 | Union aTypes -> for_all (fun a -> isSubtype a b) aTypes

The isSubtype function returns true if and only if the first type is a subtype of the

second according to the lattice provided in figure 4.1. Unknown is only a subtype of

Unknown (line 3). Object is subtype of Unknown, Object and an union that includes Object
(lines 4 to 9). Remember that the representation of union types does not include Unknown,

so it is enough to check that Object is in the union. A type representing a state is subtype

of Unknown, Object, itself and any union containing itself or Object (lines 10 to 16). The

same goes for Ended and Protocol. Moved, Null and Primitive are subtypes of Unknown,

themselves and any union containing one of them (lines 17 to 22). Bottom is a subtype of

any type (line 23). An union type is a subtype of another type if the types in the union

are all subtypes of the other type (line 24).

Listing 4.24: union function

1 let union (a:ttype) (b:ttype) : ttype = createType [a; b]

The union function accepts two types and returns the type that corresponds to the

union of the two. The implementation of this function is very simple because it simply

reuses the createType presented previously.

33

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.25: intersection function

1 let rec intersection (a:ttype) (b:ttype) : ttype =

2 match a with

3 | Unknown -> b

4 | Object ->

5 begin match b with

6 | Unknown -> a

7 | Object -> a

8 | Union bTypes -> createType (

9 map (fun b -> intersection a b) bTypes)

10 | _ -> if isSubtype b Object then b else Bottom

11 end

12 | State _ | Ended | NoProtocol

13 | Moved | Null | Primitive -> if isSubtype a b then a else Bottom

14 | Bottom -> a

15 | Union aTypes -> createType (

16 map (fun a -> intersection a b) aTypes)

The intersection function accepts two types and returns the type that corresponds

to the intersection of the two. The intersection of any type with Unknown is that type

(line 3). The intersection of Unknown or Object with Object is Object (lines 6 and 7). The

intersection of Object with an union type is computed by intersecting the types of the

union with Object (lines 8 and 9). The intersection of a singleton type which is subtype of

Object with Object is that type (line 10). The intersection of any other type with Object is

Bottom (line 10). The intersection of a singleton type with another type is that singleton

type if it is subtype of the other otherwise, it is Bottom (line 13). An intersection with

Bottom is always Bottom (line 14). The intersection of an union type with another type is

the result of intersecting the types of the union with the other type (lines 15 and 16).

4.3.2 Architecture

In the first phase of the type-checking process, the types of variables and fields are in-

ferred. To do that, each class is visited independently. If the class is associated with a

protocol (i.e. has a Typestate annotation), the non-static methods of that class are analyzed

in a order that follows the protocol, a process that we are going to call class analysis. If

the class is not associated with a protocol, then we assume a trivial one for it. That trivial

protocol has only one state. In that state, the object may be “dropped”, all its methods

are available to be called, and any method calls leave the object in the same state.

When analyzing each method of a class, each expression in the method is analyzed

independently. For each expression, a transfer function is called. This function accepts a

pair of stores and returns another pair of stores. Each store is a mapping between variables

or fields and their respective types. The first element of the pair is called the then store,

and the second is called the else store. The then store refers to the information that is true

when a given expression evaluates to true. The else store refers to the information that

34

4.3. TYPE-CHECKER IMPLEMENTATION

is true when a given expression evaluates to false. If the expression does not evaluate

to a boolean, then both stores should be the same. The input that the transfer function

receives is the result of analyzing the previous expressions. The return value of the

transfer function is the result of analyzing that expression.

The existence of these two stores is important, for example, when dealing with an

if statement. The then store will correspond to the information that is true in the then
branch, while the else store will correspond to the information that is true in the else
branch.

Listing 4.26: Two stores example

1 Iterator it = new Iterator();

2 if (it.hasNext()) {

3 // it: Next

4 it.next();

5 } else {

6 // it: end

7 }

Consider for example the hasNext method call on an iterator object in the condition of

an if statement. When the call returns true, then the iterator is in the Next state otherwise,

the iterator is in the end state. With the distinction between the two stores, we can

distinguish between what is true in one branch and what is true in the other branch.

For the first expression in the method, the input to the transfer function corresponds

to the entry store of the method. For the last expressions in the method, the results of

their transfer functions are merged to produce the exit store of the method. This is done

because the method might have multiple return statements. These entry and exit stores

are important to track what is true at the beginning of the method call and what is true

after the method call. We can think of these as the pre-condition and the post-condition

of the method, respectively.

During the analysis, there might be the need to merge stores. The result of merging

two stores is a store that includes all the variables or fields in the two stores, and when

the same variable or field is present in both, the union of the corresponding types is

computed.

In the second phase of the type-checking process, checks are performed and potential

errors are reported. Each statement and expression in the code is visited to ensure that

types are compatible. For example, the type of an expression to be passed to a method

call needs to be a subtype of the type of the parameter. Additionally, we ensure that

operations are only performed when it is safe to do so. For example, operations on null
that could raise a null pointer error are reported and method calls are only accepted if

the object is in a state that allows for that call. Finally, protocol completion is ensured by,

in general, checking the end of methods.

35

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

4.3.3 Class analysis

To allow for the precise inference of the types of fields of objects, we analyze each method

of a class in an order that follows the protocol. Since we only consider as input, for

the analysis of a method, the results obtained from analyzing methods that lead to that

method, we avoid false positives. In other words, we exclude invalid sequences of method

calls from our consideration. What follows is an explanation of the algorithm with line

references pointing to the relevant lines of pseudocode in listing 4.27.

Listing 4.27: Class analysis in pseudocode

1 let stateToStore = Map<State, Store>()

2 let methodToStore = Map<Method, Store>()

3 let stateQueue = Queue<State>()

4

5 fun mergeStateStore(state, store) {

6 let current = stateToStore[state]

7 let new = merge(current, store)

8 if (current != new) {

9 stateToStore[state] = new

10 stateQueue.add(state)

11 }

12 }

13

14 fun mergeMethodStore(method, store) {

15 let current = methodToStore[method]

16 let new = merge(current, store)

17 if (current != new) {

18 methodToStore[method] = new

19 return new

20 }

21 return null

22 }

23

24 mergeStateStore(initialState, initialStore)

25

26 while (stateQueue.size > 0) {

27 let state = stateQueue.take()

28 let store = stateToStore[state]

29 for ((method, destination) in state.transitions) {

30 let entryStore = mergeMethodStore(method, store)

31 if (entryStore == null) continue

32

33 let result = analyze(entryStore, method)

34

35 mergeStateStore(destination, result)

36 }

37 }

The algorithm in the class analysis starts by analyzing the constructors and inferring

36

4.3. TYPE-CHECKER IMPLEMENTATION

what are the types of the fields after the initialization. After analyzing the constructors,

we merge the resulting stores, save the merged store and associate it with the initial state

(line 24). This store contains the facts that are true in that state. The initial state is now

added to a queue (line 10).

For each state in the queue we analyze each method available in that state. The method

analysis needs an initial store to start with, so that it can then output an inferred store

with the facts that are true after the method call. Because of that, each method is also

associated with a store (line 2), which might be updated during the algorithm. We need

the mappings from state to store (line 1) and method to store (line 2) to be different

because the same method might be reachable from different states with different stores.

The initial store for each method is computed by merging the store associated with

the state we are processing and the previous store associated with that method (line 30).

If no store was previously associated with a method, we default to the empty store, where

all the fields have the Bottom type. If the initial store is not different from the previous

store associated with the method, the method is skipped (line 31). Otherwise, the store

associated with the method is updated with the new merged store and the method is

analyzed (line 33).

After analyzing each method, the inferred stores are merged with the stores of the

respective destinations states (line 35). If no store was previously associated with a state,

we default to the empty store. If the new merged store is different from the previous store

associated with the state, the state is added to the queue (line 10).

The same states or the same methods might be analyzed more than once, but there is

a fixed point. The algorithm stops when the queue is empty (line 26). We know that the

queue will become empty because states are not requeued if their respective stores did

not change and because the number of states in protocols is finite.

4.3.4 Inference and checking

In the following sections, we will discuss how types are introduced, how types are inferred

when analyzing each type of expression or statement, what properties need to be checked

for each expression or statement, and how that is done.

4.3.4.1 Type introduction

Each Java type appearing in declarations has a corresponding type from our type system.

In general, the Java type java.lang.Object corresponds to the Object type in our type system.

Any primitive type, like an integer or a boolean, corresponds to the Primitive type. The

null value has the Null type. Any Java type associated with a class that has no protocol,

corresponds to the NoProtocol. For Java types of objects with protocol, the associated type

depends on the location of the declaration.

For return types of methods that can be analyzed (i.e. which source code is available),

the type is the union of all the states in the protocol expect end or the union of the states

37

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

specified in a State annotation. For return types of methods of other libraries, the type

is Unknown unless a State annotation is provided for that method in a stub file. This is

because we cannot be sure of the state of an object and if there are aliases to it, if it came

from a method that we cannot analyze.

For parameters, the initial type is the union of all the states in the protocol except

end or the union of the states specified in a Requires annotation. The end state is not

considered because there is no reason to return or pass to a method objects that can no

longer be used.

For public field declarations, the type corresponds to Unknown. Since public fields

may be modified without calling any of the methods of the class, it is difficult to track in

what ways those fields may be altered. By applying the Unknown type, we preserve cor-

rectness, since no operations can be performed on Unknown, and we help the programmer

to use good practices such as not exposing the fields of an object.

For local variable declarations or private field declarations, the initial type is the union

of all the states in the protocol. Since the type may change during the execution of the

code, such changes are tracked during the inference process.

For any of the cases previously mentioned, if the Nullable annotation is used before

any Java type, then the corresponding type will initially include the Null type, which can

be potentially refined during the inference process.

4.3.4.2 Method parameters

When analyzing a method, an initial store is needed as input to the analysis of the first

expression in the method. The initial store for a non-static method is the result of merging

the type information provided by the class analysis, which includes information about

the fields of the object, with the type information of the parameters just introduced.

The initial store for a static method is only composed by the type information of the

parameters. The initial type of the parameters is computed using the reasoning explained

in section 4.3.4.1.

Listing 4.28: Types of parameters (1)

1 void useIterator(Iterator it) {

2 // it: State "HasNext" | State "Next"

3 ...

4 }

In this example, the initial store of the method only contains information about the it
variable which has initially the State "HasNext"| State "Next" type, which is the union of

all the possible states of the iterator except end.

38

4.3. TYPE-CHECKER IMPLEMENTATION

Listing 4.29: Types of parameters (2)

1 void useIterator(@Requires("HasNext") Iterator it) {

2 // it: State "HasNext"

3 ...

4 }

In this example, the initial store of the method only contains information about the it
variable which has initially the State "HasNext" type. Unlike the previous example, since

the Requires annotation was used, the set of states considered was refined, allowing the

method to assume that it receives an iterator only in the HasNext state.

4.3.4.3 Object instantiations

When a new object without protocol is initialized, its type is NoProtocol. When a new

object with protocol is initialized, its type corresponds to the first state in its protocol.

Listing 4.30: Object instantiation example

1 Iterator iterator = new Iterator();

2 // iterator: State "HasNext"

4.3.4.4 Assignments

When an assignment statement is analyzed, the type of the variable or field becomes

the type of the assigned expression, and the type of the expression becomes Moved after

the statement (when dealing with object types). By changing the type of the assigned

expression to Moved, we transfer the ownership of that object to the assignee, and since

no operations are allowed on the Moved type, we ensure that each object is used linearity.

Listing 4.31: Assignments example (1)

1 Iterator it1 = new Iterator();

2 // it1: State "HasNext"

3 Iterator it2 = it1;

4 // it1: Moved

5 // it2: State "HasNext"

In this example, a new iterator is created and assigned to the variable it1, which now

has the State "HasNext" type. When it1 is later assigned to it2, the it1 variable gets the

Moved type and it2 gets the type State "HasNext", which corresponds to the type of it1
before the assignment. This means that now it2 has ownership of the iterator while it1
lost ownership of it. If one wants to use the iterator, it must now do it via the it2 variable.

In the checking phase, assignments are analyzed to ensure that the type of the as-

signed expression is a subtype of the expected type of the assignee. This expected type

corresponds to what was explained in section 4.3.4.1. For example, if we try to assign null
to a variable or field, an error will be reported unless the Nullable annotation is provided.

39

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.32: Assignments example (2)

1 Iterator it1 = null; // Error

2

3 @Nullable Iterator it2 = null; // Ok

Note that assignments on parameters with the Ensures annotation cannot be per-

formed. This is important so that we can ensure that when the ownership of the object is

returned to the caller, the object is in the specified state.

4.3.4.5 Return statements

When a return statement is analyzed, the type of the returned expression becomes Moved
after the statement (when dealing with object types). Although return statements immedi-

ately return control to the caller, it is important to track this “move” of data, for example,

when returning an object referenced from a field. By updating the type information of

this field, other methods reachable by that method will have information about the fact

that the data on that field is no longer owned by the object.

After the inference phase, the checking phase ensures that the returned expression is

subtype of the expected type to be returned. The expected return type is computed as

explained in section 4.3.4.1.

Listing 4.33: Return example (1)

1 class Wrapper {

2 private Iterator iterator = new Iterator();

3 public @State("HasNext") Iterator get() {

4 return this.iterator;

5 // this.iterator: Moved

6 }

7 }

In this example, there is a wrapper object that stores an iterator object that can be

retrieved via the get method, which is expected to return an iterator in the HasNext state.

When analyzing the return statement, the type of this.iterator becomes Moved after that

statement. This information will be provided to the analysis of methods that are reachable

after the get call, ensuring that it is known that the ownership of the iterator was lost.

Listing 4.34: Return example (2)

1 class Wrapper {

2 private Iterator iterator = new Iterator();

3 public @State("HasNext") Iterator get() {

4 // this.iterator: State "HasNext" | Moved

5 return this.iterator; // Error!

6 }

7 }

40

4.3. TYPE-CHECKER IMPLEMENTATION

If the protocol of the wrapper were to allow for multiple get calls, then when get is

called, this.iterator might be in the HasNext state or it might have been “moved” by a

previous get call. And since State "HasNext"| Moved is not a subtype of State "HasNext",

an error would be reported in the checking phase.

4.3.4.6 Method calls

To be able to call a method, the receiver (i.e. the object on which the call is performed)

needs to be in a state that allows for that method call, and the types of the argument

expressions need to be subtypes of the types of the corresponding parameters. These type

compatibility checks are performed in the checking phase, while the types are computed

in the inference phase.

When analyzing a method call on an object, the current type of the receiver is retrieved

from the stores given as input to the analysis of this call. Knowing the current type and

the method call, the inference phase computes the type of the object after that method

call and saves that information in the stores that result from this analysis step.

The following listings present the ML representation of a protocol, the ML implemen-

tation of a function that given the current type, the name of the method, and the protocol,

returns true if the method may be safely called on that type, and the ML implementation

of a function that returns the new type of the object after the method call.

Listing 4.35: Protocol representation

1 type

2 label = string and

3 destination =

4 ExternalState of string |

5 DecisionState of (label * string) list and

6 method_name = string and

7 transition = method_name * destination and

8 typestate = string * (transition list) and

9 protocol = typestate list

The protocol is represented with a list of states. Each state is a pair with its name

and a list of transitions. Each transition is a pair with the name of the method and the

destination state, which may be the name of another state or a decision state. Decision

states are represented with a list of pairs, where each pair contains the label and the

corresponding name of the destination state given that label.

41

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.36: available function

1 let rec available (t:ttype) (m:string) (p:protocol) : bool =

2 match t with

3 | Unknown | Object

4 | Ended | Moved | Null | Primitive -> false

5 | NoProtocol | Bottom -> true

6 | State state ->

7 let (_,transitions) =

8 find (fun ((name,_)) -> state = name) p in

9 exists (fun ((method,_)) -> method = m) transitions

10 | Union types -> for_all (fun it -> available it m p) types

The available function returns false for the Unknown and Object types since there is no

guarantee that methods may be safely called on objects with these types. The function

also returns false for the Ended, Moved, Null and Primitive types, since method calls are

not allowed on these. For objects with the NoProtocol type, any method call is allowed.

If an object is in a given state, the method call is allowed if it is available in that state

according to the protocol. Any method call is allowed in the Bottom type. Finally, for

union types, the method is available if it is available for all the types in the union.

Listing 4.37: transition function

1 let rec transition (t:ttype) (m:string) (p:protocol) : ttype =

2 match t with

3 | Unknown | Object | NoProtocol | Bottom -> t

4 | Ended | Moved | Null | Primitive -> Bottom

5 | State state ->

6 let (_,transitions) = find (fun ((name,_)) -> state = name) p in

7 let transition = find_opt (fun ((method_name,_)) -> method_name = m) transitions in

8 begin match transition with

9 | None -> Bottom

10 | Some(_,ExternalState name) ->

11 if name = "end" then Ended else State name

12 | Some(_,DecisionState list) ->

13 createType (map (fun ((_, name)) -> if name = "end" then Ended else State name) list

↪→)

14 end

15 | Union types -> createType (map (fun it -> transition it m p) types)

If an object has the Unknown or the Object types, the type after the method call remains

the same, since it is unknown what the new type may be after the method call. If an object

has the Ended, Moved, Null or Primitive types, the new type is Bottom, since method calls

are not allowed on these types and any attempt to call a method on these would produce

an error. Giving the object the Bottom type avoids the propagation of errors. Objects with

the NoProtocol type remain with the same type. If an object is in a given state, the new

type corresponds to the destination state, given that method call. If the method is not

available on that state, the new type is Bottom. Objects with the Bottom type remain with

42

4.3. TYPE-CHECKER IMPLEMENTATION

the same type. Finally, for union types, the new type is the union of all the types that

result from taking each type and applying the transition function to them.

Listing 4.38: Method calls example (1)

1 void main() {

2 File file = new File();

3 // file: State "Init"

4 file.open();

5 // file: State "Open"

6 file.read();

7 // file: State "Read"

8 file.close();

9 // file: Ended

10 }

In this example, there is a file with a simple protocol: in the first state it must be

opened, then it must be read, and then it must be closed. After the file is closed, no

operations may be performed on it. In the main method, the object file is created, and

then all the methods are called in the correct order so, this example type-checks.

Listing 4.39: Method calls example (2)

1 void main() {

2 File file = new File();

3 // file: State "Init"

4 file.open();

5 // file: State "Read"

6 file.close(); // Error

7 // file: Bottom

8 }

Now imagine that after the file object being instantiated and opened, there is an

attempt to close the file before reading from it. In the inference phase, when analyzing

the close method, the current state of the object would be Read and the type after the

method call would be Bottom, because the method is not available in the Read state. This

technique is used to avoid propagating errors. In the checking phase, an error would be

reported since we cannot call the close method while the file is in the Read state.

One important aspect of analyzing method calls is making sure that objects are still

used in a linear way. To that end, when analyzing a method call, the receiver and the

argument expressions are all marked with the Moved type after the program point where

they are evaluated, following the order they appear in the code (i.e. the order in which

they would be evaluated). This step is important to ensure that the receiver object is

not passed into the parameters (which would create an alias between this and one of the

parameters), and to ensure that there is no aliasing between the parameters. This works

because the parameter types never include the Moved type, which means that if one of

them was previously “moved”, a type incompatibility with the parameter type would be

reported.

43

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.40: Method calls example (3)

1 object.compareTo(object); // Error

Consider for example an object that implements a compareTo method which allows

the object to be compared with another object of the same type. In this example, there

is an attempt to compare the object to itself. Immediately after the receiver expression

is analyzed, it is marked with the Moved type, which means that when the argument

expression is analyzed, it already has the Moved type, which will be incompatible with

the type of parameter, causing an error to be reported.

Note that the receiver object having the Moved type is only true when the argument

expressions are evaluated. Immediately after the method call, the receiver object will

have the type corresponding to calling the given method in the given state.

Finally, we need to know the type of the method call expression itself and the types

of the arguments after the method call is performed. The type of the method call cor-

responds directly to the return type. The types of the arguments are in general Moved,

because they were delegated to a different method. The exception is when the Ensures
annotation is used. This annotation informs us that the ownership of the object passed in

the parameter is returned to the caller in a given set of states. Therefore, if this annotation

is provided in a parameter, then the type of the corresponding argument expression will

be the union of the states indicated in that annotation.

Listing 4.41: Method calls example (4)

1 void openFile(

2 @Requires("Init") @Ensures("Open") File file

3) {

4 file.open();

5 }

6 void main() {

7 File file = new File();

8 // file: State "Init"

9 openFile(file);

10 // file: State "Open"

11 ...

12 }

Consider for example an openFile method which expects to receive a file in the Init
state and then returns it to the caller in the Open state. In this example, although file
is temporally set with the Moved type, after the method call is performed, file does not

remain with the Moved type and instead gets the State "Open" type, according to the

Ensures annotation provided in the declaration of the method.

Note that the analysis of static method calls is performed in a similar way as non-static

method calls, the only difference is that there is no receiver object to be concerned about.

44

4.3. TYPE-CHECKER IMPLEMENTATION

4.3.4.7 Control flow statements

In Java, statements are generally executed from top to bottom, in the order that they

appear in the code. However, control flow statements are used to break up the flow of

execution. These include decision-making statements (if-else, switch), looping statements

(for, while, do-while), and branching statements (break, continue, return) [18].

To ease the reasoning about the flow of execution of programs, each method declara-

tion is analyzed not by visiting each node in the abstract syntax tree, but by visiting each

node in a control flow graph [3], which is built by the Checker Framework.

Additionally, as explained before, the result of analyzing each expression in the code

is composed by a then store and by an else store, with information about what are the

types of variables when such expression evaluates to true or false (respectively). If the

expression does not evaluate to a boolean, both stores should be the same.

Listing 4.42: If-else statement example

1 Iterator it = new Iterator();

2 // it: State "HasNext"

3 if (it.hasNext()) {

4 // it: State "Next"

5 it.next();

6 } else {

7 // it: Ended

8 }

Imagine for example that the hasNext method of an iterator is called on the condition

of an if-else statement. After the call, the iterator may be in the Next state or in the end
state, depending on if the method returned true or false, respectively. Because the result

of analyzing the method call produces a then store, where the iterator is in the Next state,

and an else store, where the iterator is in the end state, we can propagate the information

of each store to each respective branch, allowing us to keep track of the precise state of

the iterator.

Listing 4.43: While statement example

1 Iterator it = new Iterator();

2 // it: State "HasNext"

3 while (it.hasNext()) {

4 // it: State "Next"

5 it.next();

6 // it: State "HasNext"

7 }

8 // it: Ended

The same reasoning is applied when the method call is performed on the condition of a

while statement. The only differences are that the information in the then store propagates

to the body of the loop and the information in the else store propagates to the program

point reached when the loop exits, as seen in this example.

45

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

In protocol specifications, the state to which an object transits to, when a method call

is executed, may also depend on an enumeration value, not just a boolean value. If this

enumeration value is checked in a switch statement, then we can refine the state of the

object for each case.

Listing 4.44: Switch statement example

1 Iterator it = new Iterator();

2 switch(it.hasNext()) {

3 case TRUE:

4 // it: State "Next"

5 it.next();

6 break;

7 case FALSE:

8 // it: Ended

9 break;

10 default:

11 // it: Bottom

12 }

Imagine a different implementation of an iterator where the hasNext method returns

an enumeration value, TRUE or FALSE, instead of a boolean value. When the method

returns TRUE, the state of the iterator is Next, and when it returns FALSE, the state of

the iterator is end. For the default case of the switch statement, the type of the iterator is

Bottom since that case is not reachable.

Listing 4.45: Switch statement example (2)

1 Iterator it = new Iterator();

2 BooleanEnum hasNext = it.hasNext();

3 if (hasNext == TRUE) {

4 // it: State "Next"

5 it.next();

6 } else {

7 // it: Ended

8 if (hasNext == FALSE) {

9 // it: Ended

10 } else {

11 // it: Bottom

12 }

13 }

Since the result of analyzing the hasNext method call is only composed of two stores,

the then store and the else store, and since the method call does not return a boolean value,

we look at a switch statement as if it was composed by multiple if statements, where each

one of the if statements compares the returned value with each of the enumeration values.

Since a comparison evaluates to a boolean value, we can make use of the resulting stores

46

4.3. TYPE-CHECKER IMPLEMENTATION

to refine the type information for each case. This is exemplified in listing 4.45.5

In our type system, values might be nullable and operations on null that would raise

a null pointer error are disallowed. Because of this, it is important to refine the type

information of a value if one checks that it is not null, to avoid reporting unnecessary

errors. To that end, when analyzing a comparison expression that sees if a value is not

null, the resulting then store is such that the Null type is excluded from the type of the

value.

Listing 4.46: Not null comparison example

1 void use(

2 @Nullable @Requires("HasNext") Iterator iterator

3) {

4 // iterator: State "HasNext" | Null

5 if (iterator != null) {

6 // iterator: State "HasNext"

7 }

8 }

Imagine a method which receives an iterator in the HasNext state or the null value. If

the variable, which potentially holds the iterator, is checked to see if it is not null, then we

can be sure that the value is not null and we can safely perform operations on the iterator.

4.3.4.8 Protocol completion

Protocol completion is verified in the checking phase. To ensure that the protocol of all

objects reaches completion, we need to consider all the places on the code where an object

might no longer be used. For example, if an object is used inside a method and is neither

returned nor delegated to another method, then the object is no longer used.

To handle such cases, the exit stores of each method, which contain all the type infor-

mation about the variables and fields at the end of the method, are read and the type of

each variable and field in those stores is verified. If the variable corresponds to a parame-

ter with an Ensures annotation, the type of the variable needs to match what is specified

in the annotation. If that is not the case, the corresponding type needs to be either Ended
(the protocol has completed), Moved (the object was delegated) or the object needs to be

in a “droppable” state (i.e. any state with the drop: end transition). Otherwise, an error is

reported.

Listing 4.47: Protocol completion example (1)

1 void main() {

2 File file = new File();

3 // file: State "Init"

4 // Error: protocol of file was not completed

5 }

5Currently, the example as is would not work because the method call is disconnected from the if state-
ments. It is only used to exemplify the reasoning employed for switch statements.

47

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

In this example, a file object was created but not used. Since the object was not

delegated, its protocol was not finished, and the file was not in a “droppable” state, an

error was reported.

Additionally, each assignment in the code is verified to ensure that the type of the

assignee, before the statement, was either Ended, Moved or the object was in a state in

which it could be “dropped”. This is important because assignments might makes us lose

the reference to the object that was previously pointed by the variable or field. Remember

that assignments on parameters with the Ensures annotation are disallowed.

Listing 4.48: Protocol completion example (2)

1 void main() {

2 @Nullable File file = new File();

3 // file: State "Init"

4 file = null;

5 // file: Null

6 // Error: protocol of file was not completed

7 }

Imagine now that a file object is created, assigned to a variable, and then that variable

is overwritten with the null value. Since the assignment was performed when the file

object was not ready to be “dropped”, an error is reported.

Furthermore, objects returned from method calls must be assigned to a variable so

that they can be used until the protocol is completed, unless the returned object is already

in a state in which it can be “dropped”.

Listing 4.49: Protocol completion example (3)

1 @State("Init") File createFile() {

2 return new File();

3 }

4 void main() {

5 createFile();

6 // Error: returned object not used

7 }

In this example, the file object is instantiated with a helper method, createFile. Notice

how that method is used but the returned file is not used. In this instance, an error would

be reported.

Moreover, if an object associated with a protocol is passed to a method that cannot be

analyzed, an error is reported, since it is unknown if the method will properly finish the

protocol of the object.

Finally, the stores resulting from the class analysis, associated with the end states and

each “droppable” state, are checked to ensure that each field has type Ended, Moved or that

the object pointed by the field is in a state in which it can be “dropped”. This is important

to ensure that objects that are referenced from other objects have their protocol completed

when their owner also finishes its protocol.

48

4.4. COMPARISON WITH MUNGO

Listing 4.50: Protocol completion example (4)

1 @Typestate("File.protocol")

2 public class FileWrapper {

3 // Error: protocol of file was not completed

4 private File file = new File();

5 public void open() {

6 // this.file: State "Init"

7 file.open();

8 // this.file: State "Open"

9 }

10 public String read() {

11 // this.file: State "Open"

12 return file.read();

13 // this.file: State "Read"

14 }

15 public void close() {

16 // this.file: State "Read"

17 }

18 }

Consider for example a scenario (listing 4.50) where a file object is used through a

wrapper object which implements the same interface and protocol as the file. The open
method calls the open method of the file (line 7) and the read method calls the read method

of the file (line 12). However, the close method does not close the file (line 16). This implies

that when the wrapper object reaches the end state (when its close method is called), the

file, which is stored inside of it, is still in the Read state, which is not a “droppable” state.

In this example, an error would be reported because the protocol completion of the file

was compromised.

4.4 Comparison with Mungo

In this section, we will present examples that highlight the features supported by the

tool we implemented and that compare it with the current (as of this writing) version of

Mungo6.

With the examples, we illustrate that our tool is able to check what Mungo checks,

find errors that the Mungo could not find, and that it includes additional features. Note

that all examples presented in the Mungo’s repository are correctly handled by our im-

plementation, only requiring the addition of some annotations.

In the following examples, files with Ok in their name are files where no errors are

expected, and files with NotOk in their name are files where errors are expected. The

examples are simple in nature as to present specifically the relevant features and issues

found in Mungo. Although they might not represent real code, they show common coding

patterns.
6https://bitbucket.org/abcd-glasgow/mungo/src/73dd8aeb/

49

https://bitbucket.org/abcd-glasgow/mungo/src/73dd8aeb/

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Table 4.1 summarizes and compares the features supported by Mungo and our tool.

Square symbols show where only partial support exists for a given feature or where issues

exist.

Features Mungo Our tool
Basic checking X X
Decisions on enumeration values X X
Decisions on boolean values × X
Nullness checking �1,2 X
Linearity checking �1,3 X
Force protocol completion �3 X
Class analysis × X
State refinement via annotations × X
Droppable transitions × X
Protocols for classes of libraries × X
Improved flow analysis × X
Decisions based on equality checks in conditions × X

Table 4.1: Comparison between Mungo and our tool

4.4.1 Basic checking

The first example presents a very simple file protocol. This example is used to show that

both tools are able to verify the correct use of objects, associated with a protocol, in basic,

but common, cases.

Listing 4.51: FileProtocol.protocol

1 typestate FileProtocol {

2 Init = {

3 FileStatus open(): <OK: Read, ERROR: end>

4 }

5 Read = {

6 String read(): Close

7 }

8 Close = {

9 void close(): end

10 }

11 }

On the initial state, the first declared in the protocol, which is the Init state, one can

only open the file, since it is a precondition for the read operation. The open method

returns an enumeration value which indicates if the operation succeeded. If the open call

returns OK, the operation has succeeded and the state transits to Read, where one can

read the file. If the open call returns ERROR, it means that the file could not be opened,

1Some errors are reported but they are a bit cryptic.
2obj != null refinement does not exist.
3Some corner cases are not handled.

50

4.4. COMPARISON WITH MUNGO

and the protocol finishes. After reading the file, the state changes to Close, where one

must free resources by calling the close method. After calling close, the protocol ends, and

no other operations are allowed.

Listing 4.52: Ok.java

1 public class Ok {

2 public static void main(String args[]) {

3 File f = new File();

4

5 switch (f.open()) {

6 case OK:

7 System.out.println(f.read());

8 f.close();

9 break;

10 case ERROR:

11 break;

12 }

13 }

14 }

Both tools can verify the correct use of the file in the Ok.java file and report no errors,

which is correct. They ensure that method calls are called in the correct order according

to the specified protocol. Both are also able to understand that if the open call (line 5)

returns OK, the file is in the Open state, allowing a read (line 7) and then a closing (line

8), and if it returns ERROR, the protocol has ended.

Listing 4.53: NotOk.java

1 public class NotOk {

2 public static void main(String args[]) {

3 File f = new File();

4

5 System.out.println(f.read());

6 f.close();

7 }

8 }

In the NotOk.java file, both tools can detect the error. They detect that the read method

(line 5) is called without the open being called first. The Mungo reports that it found the

use of the read method while it expected to find a state in which the open operation is

allowed. Our tool reports the same issue, but in different words: the read method cannot

be called in the Init state.

Listing 4.54: Mungo’s output

1 NotOk.java: 3-14: Semantic Error

2 Object created at NotOk.java: 3. Typestate mismatch. Found: String read(). Expected:

↪→ FileStatus open().

51

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.55: Our tool’s output

1 NotOk.java:5: error: Cannot call read on state Init (got: Init)

2 System.out.println(f.read());

3 ^

4 1 error

4.4.2 Decisions on boolean values

The following example presents an iterator protocol. In the first state, one can only call

the hasNext method, to ensure that there are items in the iterator. If hasNext returns true,

the state changes to Next and the next item can be obtained by calling the next method.

The protocol then returns to the HasNext state. If hasNext returns false, there are no more

items and the protocol finishes.

Listing 4.56: JavaIteratorProtocol.protocol

1 typestate JavaIteratorProtocol {

2 HasNext = {

3 boolean hasNext(): <true: Next, false: end>

4 }

5 Next = {

6 String next(): HasNext

7 }

8 }

Notice in the protocol that the state change upon calling hasNext depends on the

boolean value that is returned (line 3). This example tests if both tools support decisions

on boolean values, not just enumeration values.

Listing 4.57: Ok.java

1 import java.util.*;

2

3 public class Ok {

4 public static void main(String args[]) {

5 JavaIterator it = new JavaIterator(Arrays.asList(args).iterator());

6

7 while (it.hasNext()) {

8 System.out.println(it.next());

9 }

10 }

11 }

The first code example shows the correct use of the iterator. For illustrative purposes,

this iterator implementation is a wrapper around a standard iterator from the Java library.

52

4.4. COMPARISON WITH MUNGO

Listing 4.58: NotOk.java

1 import java.util.*;

2

3 public class NotOk {

4 public static void main(String args[]) {

5 JavaIterator it = new JavaIterator(Arrays.asList(args).iterator());

6

7 while (!it.hasNext()) {

8 System.out.println(it.next());

9 }

10 }

11 }

The second code example shows the incorrect use of the iterator. Notice how in line 7,

the loop condition is the negation of the return value of the hasNext call.

Listing 4.59: Mungo’s output

1 JavaIteratorProtocol.protocol: 3-5: Semantic Error

2 Method boolean hasNext() should return an enumeration type.

3

4 JavaIteratorProtocol.protocol:3,25: error: unexpected token "true"

5

6 JavaIteratorProtocol.protocol:3,37: error: unexpected token "false"

Mungo reports that the hasNext method should return an enumeration value and

reports syntax errors when it reads the true and false tokens in line 3 of the protocol. This

illustrates that Mungo does not support decisions on boolean values.

Listing 4.60: Our tool’s output

1 NotOk.java:5: error: Object did not complete its protocol. Type: JavaIteratorProtocol{

↪→ Next}

2 JavaIterator it = new JavaIterator(Arrays.asList(args).iterator());

3 ^

4 NotOk.java:8: error: Cannot call next on ended protocol

5 System.out.println(it.next());

6 ^

7 2 errors

Our tool does support boolean values, which can be checked in the conditions of if
statements or loops. It reports no errors in the Ok.java file and detects the issues resulting

from the wrong code in line 7 of the NotOk.java file. Since the return value of hasNext was

negated, the loop will exit when there are items to be read, which means the protocol will

not complete (first error), and the loop will be entered when the protocol has reached the

end state, where the next call (line 8) is not allowed (second error).

This feature is useful because it allows one to use, for example, an iterator in a more

natural way, without having to use an enumeration value and testing it in a switch state-

ment, which is more verbose.

53

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

4.4.3 Nullness checking

Null pointer errors are very common in Java so, it is important that tools avoid those

issues by analyzing the code statically while allowing for common programming patterns.

The following examples will compare how the two tools handle null values.

Listing 4.61: FileProtocol.protocol

1 typestate FileProtocol {

2 Init = {

3 FileStatus open(): <OK: Read, ERROR: end>

4 }

5 Read = {

6 String read(): Close

7 }

8 Close = {

9 void close(): end

10 }

11 }

This example makes use of the same file protocol presented in section 4.4.1.

Listing 4.62: Ok.java

1 public class Ok {

2 public static void main(String args[]) {

3 @Nullable File f = args.length == 0 ? null : new File();

4

5 if (f != null) {

6 use(f);

7 }

8 }

9

10 public static void use(@Requires("Init") File f) {

11 switch (f.open()) {

12 case OK:

13 System.out.println(f.read());

14 f.close();

15 break;

16 case ERROR:

17 break;

18 }

19 }

20 }

In the first code example, a variable f is declared (line 3), which might contain a null
value or point to a file. The variable is declared with a Nullable annotation, provided by

our tool, which is used to declare nullable variables. If the variable does not contain a

null value (line 5), the file is passed to the use method, which expects a file in the Init
state (notice the use of the Requires annotation in line 10). Note that Mungo will read the

code as if the annotations Nullable and Requires were not there.

54

4.4. COMPARISON WITH MUNGO

Listing 4.63: NotOk.java

1 public class NotOk {

2 public static void main1(String args[]) {

3 @Nullable File f = new File();

4

5 switch (f.open()) {

6 case OK:

7 System.out.println(f.read());

8 f = null;

9 f.close();

10 break;

11 case ERROR:

12 break;

13 }

14 }

15

16 public static void main2(String args[]) {

17 use(null);

18 }

19

20 public static void use(@Requires("Init") File f) {

21 // ...

22 }

23 }

The second code example presents two attempts to use a file. In the main1 method

(line 2), a file is initialized (line 3), attempted to be opened (line 5), and if the open

operation succeeded, a read is performed (line 7). After that, the variable f, which pointed

to the file, is assigned to null (line 8), and then the file is attempted to be closed (line 9).

In the main2 method (line 16), the use method is called with a null value (line 17). The

use method is the same as in the previous code example, expecting a non-null file in the

Init state.

Listing 4.64: Mungo’s output

1 NotOk.java: 8-13: Semantic Error

2 Object reference is used uninitialised.

3

4 NotOk.java: 0-0: Semantic Error

5 Object created at NotOk.java: 3. Typestate mismatch. Found: end. Expected: void close().

↪→
6

7 Ok.java: 3-25: Semantic Error

8 Object reference is used uninitialised.

Mungo detects the null assignment in line 8 of the NotOk.java file, reporting an used
uninitialised error. It also reports the incorrect close method call in line 9, although

without providing a line number and without indicating that the issue is directly related

55

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

with an attempt to call close on a null value.

Unfortunately, it also reports a false positive in the Ok.java file because it does not

refine the type of the variable upon comparing it with null in a condition expression (line

5). Moreover, Mungo produces a false negative in the NotOk.java file by not detecting

that a null value is being used as a parameter for the use method (line 17).

Listing 4.65: Our tool’s output

1 NotOk.java:8: error: Cannot override because object has not ended its protocol. Type:

↪→ FileProtocol{Close}

2 f = null;

3 ^

4 NotOk.java:9: error: Cannot call close on null

5 f.close();

6 ^

7 NotOk.java:17: error: incompatible types in argument

8 use(null);

9 ^

10 found : Null null

11 required: FileProtocol{Init} File

12 3 errors

Our tool detects all the null related issues in the NotOk.java file. It detects the attempt

to call the close method on a null value (line 9) and reports a type incompatibility when

calling the use method with null (line 17), where a non-null value was expected. Our

implementation also reports that, by overriding the f variable (line 8), we might lose a

reference to another file which is left with a non-completed protocol. In the Ok.java no

error is reported, since the tool is able to refine the type of the f variable upon comparing

it with null (line 5), avoiding a false positive.

4.4.4 Linearity checking

Linear use of objects is important. If linearity is not enforced, it is hard to know if there

was some other piece of code that changed the state of an object, breaking the assumptions

of the static analysis, and making it difficult to properly check protocol compliance and

completion. In the following examples, we will compare how both tools handle situations

where there is more than one reference to an object.

Listing 4.66: FileProtocol.protocol

1 typestate FileProtocol {

2 Read = {

3 String read(): Read,

4 void close(): end

5 }

6 }

To focus on the linearity enforcement of the two versions, the examples will work

56

4.4. COMPARISON WITH MUNGO

with a simplified version of the file protocol: there is no open method, multiple reads are

allowed and, at any point, the file may be closed by calling the close method.

Listing 4.67: Ok.java

1 public class Ok {

2 public static void main1() {

3 File f = new File();

4 use(f);

5 }

6 public static void main2() {

7 File f = new File();

8 File f2 = f;

9 use(f2);

10 }

11 public static void use(File f) {

12 System.out.println(f.read());

13 f.close();

14 }

15 }

In the first code example, there are two uses of files. In the main1 method (line 2), a

file is declared (line 3) and then passed as a parameter to the use method (line 4), which

will read and close the file (lines 12-13). In the main2 method (line 6), a file is declared

(line 7), being referenced by the f variable, and then also referenced by the f2 variable

(line 8), which is then passed as a parameter to the use method (line 9). These two cases

respect linearity and, even though a second reference to the file is present in main2, only

the second one is used.

Listing 4.68: NotOk.java (Part 1)

1 import java.util.function.Supplier;

2

3 public class NotOk {

4 public static void main1() {

5 File f = new File();

6 use(f);

7 f.read();

8 }

9

10 public static void main2() {

11 File f = new File();

12 use(f);

13 use(f);

14 }

57

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.69: NotOk.java (Part 2)

16 public static void main3() {

17 File f = new File();

18 File f2 = f;

19 use(f2);

20 f.read();

21 }

22

23 public static void main4() {

24 File f = new File();

25 File f2 = f;

26 use(f2);

27 use(f);

28 }

29

30 public static void main5() {

31 File f = new File();

32 Supplier<String> fn = () -> {

33 return f.read();

34 };

35 f.close();

36 fn.get();

37 }

38

39 public static void use(File f) {

40 System.out.println(f.read());

41 f.close();

42 }

43 }

In the second code example, there are five cases where linearity is broken with the

consequence of breaking the file protocol, allowing reads when the file has already been

closed. In the main1 method (line 4), a file is created, used in the use method (which

will read it and close it), and then there is an attempt to read it again. In the main2
method (line 10), a file is used twice. In the main3 method (line 16), a file is created and

referenced by two variables. The second variable is used to pass the file to the use method

and then there is an attempt to read the file again (line 20). In the main4 method (line 23),

two variables reference the same file and are both used to pass the file to the use method.

And finally, in the main5 method (line 30), a file is created and referenced from within

a lambda function. Before the lambda is called, the file is closed, forbidding the read

operation (line 33) that would happen when the lambda is called (line 36).

58

4.4. COMPARISON WITH MUNGO

Listing 4.70: Mungo’s output

1 NotOk.java: 6-9: Semantic Error

2 Object reference is used uninitialised.

3

4 NotOk.java: 12-9: Semantic Error

5 Object reference is used uninitialised.

6

7 NotOk.java: 18-15: Semantic Error

8 Object reference is used uninitialised.

9

10 NotOk.java: 25-15: Semantic Error

11 Object reference is used uninitialised.

Mungo reports multiple Object reference is used uninitialised errors, which seem cryptic,

since the variables are clearly initialized, making it hard to understand what Mungo is

actually trying to enforce. Mungo is also unable to detect that an object is referenced

from inside a lambda, which is then called in the wrong order, breaking the protocol of

the file.

Listing 4.71: Our tool’s output

1 NotOk.java:7: error: Cannot call read on moved value

2 f.read();

3 ^

4 NotOk.java:13: error: incompatible types in argument

5 use(f);

6 ^

7 found : Moved File

8 required: FileProtocol{Read} File

9 NotOk.java:20: error: Cannot call read on moved value

10 f.read();

11 ^

12 NotOk.java:27: error: incompatible types in argument

13 use(f);

14 ^

15 found : Moved File

16 required: FileProtocol{Read} File

17 NotOk.java:33: error: f was moved to a different closure

18 return f.read();

19 ^

20 5 errors

Our tool is able to detect all the issues in the NotOk.java file. Every time a reference is

assigned to a new variable or passed as a parameter to a method, the variable that had a

hold of that reference will be marked with the Moved type, which will disallow uses of it.

That can be observed by the errors reported. In line 7, it is reported that a read call is not

allowed on a “moved value”. In line 13, a file with the Moved type is not compatible with

a file in the Read state. In lines 20 and 27 the errors reported match the ones reported in

59

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

lines 7 and 13 respectively. Finally, in line 27, it is detected that the f variable is being

referenced from inside a different closure, which is completely disallowed in this version

of the tool.

Additionally, it is important to handle the case where an object is passed into a method

which source code is not available to be analyzed.

Listing 4.72: NotOk2.java

1 import java.util.*;

2

3 public class NotOk2 {

4 public static void main1() {

5 List<File> list = new LinkedList<>();

6 list.add(new File());

7 File f1 = list.get(0);

8 File f2 = list.get(0);

9 f1.read();

10 f1.close();

11 f2.read();

12 f2.close();

13 }

14 }

In this example, there is a linked list capable of storing files. A single file is stored

(line 6) and then retrieved twice (lines 7-8), which creates two references to the same file.

The code does not follow the file protocol since the file is read, closed, and then read

again.

Listing 4.73: Our tool’s output

1 NotOk2.java:6: error: Passing an object with protocol to a method that cannot be analyzed

2 list.add(new File());

3 ^

4 NotOk2.java:7: error: incompatible types in assignment

5 File f1 = list.get(0);

6 ^

7 found : FileProtocol{Read} | Ended | Moved File

8 required: FileProtocol{Read} File

9 NotOk2.java:8: error: incompatible types in assignment

10 File f2 = list.get(0);

11 ^

12 found : FileProtocol{Read} | Ended | Moved File

13 required: FileProtocol{Read} File

14 NotOk2.java:9: error: Cannot call read on ended protocol, on moved value

15 f1.read();

16 ^

17 NotOk2.java:11: error: Cannot call read on ended protocol, on moved value

18 f2.read();

19 ^

20 5 errors

60

4.4. COMPARISON WITH MUNGO

Our tool currently reports various errors. The first error (line 6) indicates that an

object with protocol is being delegated to a method that cannot be analyzed. The two

following errors (lines 7 and 8) indicate that the object returned by the get method might

be aliased (i.e. includes the Moved type) which is not compatible with the type of the

variable assigned to. The two last errors (lines 9 and 11) report that methods cannot be

called on these potentially aliased objects. The reason we consider these to be aliased is

because the get method cannot be analyzed.

Unfortunately, Mungo crashes with this last example for an unknown reason to us.

4.4.5 Force protocol completion

It is important that the protocol of objects reaches completion, to ensure necessary method

calls are not forgotten, thus ensuring correctness, and ensuring that used resources are

freed. The following examples will compare the two tools in their enforcement of protocol

completion. To focus on the protocol completion aspect of typestate checking, these

examples already present linear use of objects.

Listing 4.74: FileProtocol.protocol

1 typestate FileProtocol {

2 Read = {

3 String read(): Read,

4 void close(): end

5 }

6 }

This example makes use of the same file protocol presented in section 4.4.4.

Listing 4.75: Ok.java

1 public class Ok {

2 public static void main1() {

3 File f = new File();

4 System.out.println(f.read());

5 f.close();

6 }

7

8 public static void main2() {

9 File f = new File();

10 use(f);

11 }

12

13 public static void use(File f) {

14 System.out.println(f.read());

15 f.close();

16 }

17 }

In the first code example there are two uses of files. In the main1 method (line 2), a

61

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

file is declared, then read, and then closed. In the main2 method (line 8), a file is declared

and then passed to the use method (line 10), which will then read and close the file (lines

14-15). Both cases show the correct completion of the file’s protocol.

Listing 4.76: NotOk.java

1 public class NotOk {

2 public static void main1() {

3 File f = new File();

4 }

5

6 public static void main2() {

7 File f = new File();

8 use(f);

9 }

10

11 public static void use(File f) {

12

13 }

14 }

In the second code example there are two cases where files are created but not used

to completion. In the main1 method (line 2), a file is created but not used. In the main2
method (line 6), a file is declared and passed as a parameter to the use method, which

does nothing (line 11).

Listing 4.77: Mungo’s output

1 NotOk.java: 3-14: Semantic Error

2 Object created at NotOk.java: 3. Typestate mismatch. Found: end. Expected: String read

↪→ (), void close().

3

4 NotOk.java: 7-14: Semantic Error

5 Object created at NotOk.java: 7. Typestate mismatch. Found: end. Expected: String read

↪→ (), void close().

Mungo is able to detect both issues where the files in lines 3 and 7 are not closed,

being left in their initial state, thus the error that it found the end state while it expected

read or close calls.

Listing 4.78: Our tool’s output

1 NotOk.java:3: error: Object did not complete its protocol. Type: FileProtocol{Read}

2 File f = new File();

3 ^

4 NotOk.java:11: error: Object did not complete its protocol. Type: FileProtocol{Read}

5 public static void use(File f) {

6 ^

7 2 errors

Our tool also detects the same issues, although the second one is reported in the

declaration of the parameter of the use method (line 11).

62

4.4. COMPARISON WITH MUNGO

Although both tools detect the errors in the previous code examples, there are some

corner cases that should be handled as well, for example, when an object with protocol is

stored inside another object without protocol or which source code is not available to be

analyzed.

Listing 4.79: NotOk2.java

1 import java.util.*;

2

3 public class NotOk2 {

4 public static void main1() {

5 List<File> list = new LinkedList<>();

6 list.add(new File());

7 }

8

9 public static class FileWrapper {

10 public File file = new File();

11 }

12

13 public static void main2() {

14 FileWrapper file = new FileWrapper();

15 }

16 }

In this example, the main1 method (line 4) includes the creation of a linked list and

then the addition of a single file (lines 5-6). The program then terminates without the file

having reached the end of its protocol. In the main2 method (line 13), an object without

protocol is created which holds a reference to a file (line 10). That file will not be used to

completion.

Listing 4.80: Our tool’s output

1 NotOk2.java:6: error: Passing an object with protocol to a method that cannot be analyzed

2 list.add(new File());

3 ^

4 NotOk2.java:10: error: Object did not complete its protocol. Type: FileProtocol{Read} |

↪→ Ended | Moved

5 public File file = new File();

6 ^

7 2 errors

Our tool detects the first issue by reporting that an object with protocol was passed

into a method that cannot be analyzed and it also detects the second issue by reporting

that the protocol of the file stored inside the wrapper object was not completed.

Unfortunately, Mungo crashes with this last example for an unknown reason to us.

63

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

4.4.6 Class analysis

When an object with protocol is stored inside another object, it is also important to check

that its protocol is followed and that it reaches completion. Our tool is able to ensure

that the use of objects with protocol inside another object, comply with their respective

protocols, thanks to the class analysis explained in section 4.3.3.

Listing 4.81: FileProtocol.protocol

1 typestate FileProtocol {

2 Read = {

3 String read(): Read,

4 void close(): end

5 }

6 }

Listing 4.82: FileWrapperProtocol.protocol

1 typestate FileWrapperProtocol {

2 Init = {

3 void init(File): Read

4 }

5 Read = {

6 String read(): Read,

7 void close(): end

8 }

9 }

This example makes use of the same file protocol presented in section 4.4.4 and makes

use of a FileWrapper. This wrapper holds a reference to a file. Its protocol matches the

file protocol except that it needs to be initialized by the use of the init method, which

receives a file and then allows the file to be operated (line 3 of the FileWrapper protocol).

Listing 4.83: OkFileWrapper.java

1 @Typestate("FileWrapperProtocol")

2 class OkFileWrapper {

3 private @Nullable File file = null;

4 public void init(File file) {

5 this.file = file;

6 }

7 public String read() {

8 return file.read();

9 }

10 public void close() {

11 file.close();

12 }

13 }

The first code example presents a correct implementation of the FileWrapper. Initially,

64

4.4. COMPARISON WITH MUNGO

the file field is initialized with a null value (line 3). Notice the use of the Nullable annota-

tion. The field is updated with a non-null value in the init method (line 5), which must be

called first according to the protocol. Then, the read (line 7) and close (line 10) methods

are available and call the respective read and close methods of the file which is stored

inside the wrapper.

Listing 4.84: NotOkFileWrapper1.java

1 @Typestate("FileWrapperProtocol")

2 class NotOkFileWrapper1 {

3 private @Nullable File file = null;

4 public void init(File file) {

5

6 }

7 public String read() {

8 return file.read();

9 }

10 public void close() {

11 file.close();

12 }

13 }

The second code example presents an incorrect implementation of the FileWrapper. It

matches the previous example except that there is no initialization of the file field with a

non-null value in the init method (line 5).

Listing 4.85: NotOkFileWrapper2.java

1 @Typestate("FileWrapperProtocol")

2 class NotOkFileWrapper2 {

3 private @Nullable File file = null;

4 public void init(File file) {

5 this.file = file;

6 }

7 public String read() {

8 return file.read();

9 }

10 public void close() {

11

12 }

13 }

The third code example also presents an incorrect implementation. It matches the

first implementation except that the close method (line 11) does not call the close method

of the file stored inside the wrapper.

65

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.86: NotOkFileWrapper3.java

1 @Typestate("FileWrapperProtocol")

2 class NotOkFileWrapper3 {

3 private @Nullable File file = null;

4 public void init(File file) {

5 this.file = file;

6 }

7 public String read() {

8 file.close();

9 return "";

10 }

11 public void close() {

12 file.read();

13 }

14 }

The fourth code example also presents an incorrect implementation of the FileWrapper.

Even though the file is properly initialized, notice how when the read method of the

wrapper (line 7) is called, the close method of the file is called (line 8), and when the close
method of the wrapper (line 11) is called, the read method of the file is called (line 12).

Listing 4.87: Mungo’s output

1 NotOkFileWrapper1.java: 3-31: Semantic Error

2 Object reference is used uninitialised.

Mungo is only able to report an error related with a null value in the NotOkFileWrap-
per1 file. All of the other issues are not detected.

Listing 4.88: Our tool’s output (Part 1)

1 NotOkFileWrapper1.java:4: error: Object did not complete its protocol. Type: FileProtocol

↪→ {Read}

2 public void init(File file) {

3 ^

4 NotOkFileWrapper1.java:8: error: Cannot call read on null

5 return file.read();

6 ^

7 NotOkFileWrapper1.java:11: error: Cannot call close on null

8 file.close();

9 ^

10 NotOkFileWrapper2.java:3: error: Object did not complete its protocol. Type: FileProtocol

↪→ {Read}

11 private @Nullable File file = null;

12 ^

66

4.4. COMPARISON WITH MUNGO

Listing 4.89: Our tool’s output (Part 2)

13 NotOkFileWrapper3.java:3: error: Object did not complete its protocol. Type: FileProtocol

↪→ {Read}

14 private @Nullable File file = null;

15 ^

16 NotOkFileWrapper3.java:8: error: Cannot call close on ended protocol

17 file.close();

18 ^

19 NotOkFileWrapper3.java:12: error: Cannot call read on ended protocol

20 file.read();

21 ^

22 7 errors

Our tool enforces protocol compliance of objects inside other objects and ensures that

if the outer object reaches the end of its protocol, all of the inner objects are also used to

completion. For the examples given, our tool detects the following errors:

• in the NotOkFileWrapper1 file, it is detected that the file passed as parameter is not

used (line 4), leaving the file field with a null value, which also results in the read
and close being called on null (lines 8 and 11).

• in the NotOkFileWrapper2 file, since the close method of the file is not called when

the close method of the wrapper is called, the file is left in the Read state, without

completing its protocol, thus the fourth error.

• in the NotOkFileWrapper3, since the file’s close method was getting called in the

read method of the wrapper, subsequent reads and a close will result in reads and

closings being performed in a file which has already completed its protocol, thus

the errors in lines 8 and 12. Additionally, since it is possible to call the close method

of the wrapper immediately after initialization, which actually performs a read on

the file, the file might be left in the Read state, thus the last error reported.

Note that, if an object is not associated with a protocol specification, a trivial protocol

is attributed to it. That trivial protocol has only one state. In that state, the object may

be “dropped”, all its methods are available to be called, and any method call leaves the

object in the same state.

67

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.90: NotOkFileWrapper4.java

1 class NotOkFileWrapper4 {

2 private @Nullable File file = null;

3 public void init(File file) {

4 this.file = file;

5 }

6 public String read() {

7 return file.read();

8 }

9 public void close() {

10

11 }

12 }

This fifth example presents an implementation of a FileWrapper where the close method

does not actually close the file stored inside (line 10). Additionally, there is no Typestate
annotation which would associate this implementation with a protocol specification. This

means that the wrapper allows methods to be called in any order.

Listing 4.91: Our tool’s output

1 NotOkFileWrapper4.java:2: error: Object did not complete its protocol. Type: FileProtocol

↪→ {Read} | Null

2 private @Nullable File file = null;

3 ^

4 NotOkFileWrapper4.java:4: error: Cannot override because object has not ended its

↪→ protocol. Type: FileProtocol{Read} | Null

5 this.file = file;

6 ^

7 NotOkFileWrapper4.java:7: error: Cannot call read on null

8 return file.read();

9 ^

10 3 errors

Since methods of this wrapper object may be called in any order, multiple errors are re-

ported. The first error is reported because the protocol of the file might not be completed.

This may happen in a scenario where the wrapper object is “dropped” immediately after

the init method is called. The second error is reported because one could call the init
method multiple times, which would overwrite the file field and make us lose a reference

to the previous file, which protocol was not completed. The third error is reported be-

cause the read method could be called before the init method, which means that there

could be an attempt to call a method on a null value.

Unfortunately, Mungo crashes with this last example for an unknown reason to us.

68

4.4. COMPARISON WITH MUNGO

4.4.7 State refinement via annotations

This example presents an important feature implemented in our tool. It allows one to use

annotations to specify the states in which an object passed in a parameter should be in,

using the Requires annotation, the states in which an object passed in a parameter is left

in, using the Ensures annotation, and in which states an object that is returned is in, using

the State annotation.

Listing 4.92: FileProtocol.protocol

1 typestate FileProtocol {

2 Init = {

3 FileStatus open(): <OK: Read, ERROR: end>

4 }

5 Read = {

6 String read(): Close

7 }

8 Close = {

9 void close(): end

10 }

11 }

This example makes use of the same file protocol presented in section 4.4.1.

Listing 4.93: Ok.java

1 public class Ok {

2 public static void main() {

3 File f = createFile();

4

5 switch (f.open()) {

6 case OK:

7 read(f);

8 f.close();

9 break;

10 case ERROR:

11 break;

12 }

13 }

14

15 public static @State("Init") File createFile() {

16 return new File();

17 }

18

19 public static void read(@Requires("Read") @Ensures("Close") File f) {

20 f.read();

21 }

22 }

In the main method of the Ok.java file, a file is first created with the help of the

createFile method (line 3). Notice how before the return type of the createFile method

69

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

there is a State annotation indicating that the returned file is in the Init state (line 15).

After that, there is an attempt to open the file (line 5). If that succeeds, the file is read, by

passing it to the static read method (line 7), and then closed (line 8). Notice how the static

read method uses the Requires and Ensures annotations to indicate that it expects a file in

the Read state and that the file is left in the Close state.

Listing 4.94: NotOk.java

1 public class NotOk {

2 public static void main() {

3 File f = createFile();

4

5 switch (f.open()) {

6 case OK:

7 f.read();

8 read(f);

9 f.close();

10 break;

11 case ERROR:

12 break;

13 }

14 }

15

16 public static @State("Init") File createFile() {

17 return new File();

18 }

19

20 public static void read(@Requires("Read") @Ensures("Close") File f) {

21 f.read();

22 }

23 }

In the main method of the NotOk.java file, a file is first created with the help of the

createFile method (line 3). After that, there is an attempt to open the file (line 5). If that

succeeds, the file is read by directly calling the read method of the file (line 7), then the

file is passed into the static read method (line 8), and then there is an attempt to close

the file (line 9). Notice how the static read method expects a file in the Read state but is

receiving it in the Close state.

Listing 4.95: Mungo’s output

1 NotOk.java: 8-14: Semantic Error

2 Object reference is used uninitialised.

3

4 Ok.java: 7-14: Semantic Error

5 Object reference is used uninitialised.

Mungo reports two errors. One in the Ok.java file and one in the NotOk.java file. The

message of these errors does not make it clear what the issue is. Also note that we did not

expect any error to be reported in the Ok.java file.

70

4.4. COMPARISON WITH MUNGO

Listing 4.96: Our tool’s output

1 NotOk.java:8: error: incompatible types in argument

2 read(f);

3 ^

4 found : FileProtocol{Close} File

5 required: FileProtocol{Read} File

6 1 error

Our tool successfully verifies the use of the file in the Ok.java file and also detects the

error in line 8 of the NotOk.java file, reporting that the static read method expected a file

in the Read state but received one in the Close state.

4.4.8 Droppable transition

In the following example we show that our tool supports “droppable” transitions, which

may be used in any state where an object may safely stop being used, without the need to

reach the end state.

Listing 4.97: MyComparatorProtocol.protocol

1 typestate MyComparatorProtocol {

2 Start = {

3 int compare(int, int): Start,

4 drop: end

5 }

6 }

This example makes use of a comparator object. The protocol of this comparator has

only one declared state. On that state, the compare method may be called. After the

method call, the object remains in the same state. Additionally, the object may be safely

“dropped” in that state, as indicated by the drop: end transition (line 4).

Listing 4.98: MyComparator.java

1 @Typestate("MyComparatorProtocol")

2 public class MyComparator {

3 public int compare(int a, int b) {

4 return a < b ? -1 : a > b ? 1 : 0;

5 }

6 }

The compare method of the comparator object receives two integer values and returns

−1 if the first is smaller than the second, returns 1 if the first is greater than the second,

and returns 0 if both are equal.

71

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.99: Ok.java

1 public class Ok {

2 public static void main() {

3 MyComparator comparator = new MyComparator();

4 System.out.println(comparator.compare(10, 5));

5 }

6 }

In the main method of the Ok.java file, a comparator object is first initialized. Follow-

ing that, the compare method is called with two integers values, and the result is printed

to the standard output channel. Then, the object is no longer used.

Mungo reports a syntax error in the protocol specification since it does not support the

drop: end transition. Our tool does not report any errors since the use of the comparator

object follows the specification.

4.4.9 Protocols for classes of libraries

In the following example we show that our tool supports that protocol specifications be

associated with classes using a configuration file and that it supports stub files, which

allow one to write annotations for a library when the code is not available to be edited.

Listing 4.100: Configuration file

1 java.util.Iterator=JavaIterator.protocol

To use this feature, a configuration file needs to be provided to map the full qualified

name of a Java class with a protocol specification.

Listing 4.101: Stub file

1 package java.util;

2

3 public interface List<E> {

4 @State("HasNext") Iterator<E> iterator();

5 }

Additionally, a stub file is provided to indicate that the iterator method of a list returns

an iterator in the HasNext state.

Listing 4.102: NotOk.java

1 import java.util.*;

2

3 public class NotOk {

4 public static void main(String[] args) {

5 Iterator<String> it = Arrays.asList(args).iterator();

6 System.out.println(it.next());

7 }

8 }

72

4.4. COMPARISON WITH MUNGO

In this example, the array of arguments provided to the main method is taken to

produce a list of strings. Then the iterator method on that list is called, and the next
method is called without calling the hasNext method first.

Listing 4.103: Mungo’s output

1 None

Listing 4.104: Our tool’s output

1 Main.java:6: error: Cannot call next on state HasNext (got: HasNext)

2 System.out.println(it.next());

3 ^

4 2 errors

Mungo does not report any errors because the iterator has no protocol associated with

it. Our tool reports that the next method is being called when the iterator is in the HasNext,
which means that the incorrect use of the iterator is properly detected.

4.4.10 Improved flow analysis

When type checking, it is important to understand the flow of execution so that type

information is propagated in a correct way, first to avoid false negatives, and second, to

reduce false positives. In our tool, the Checker Framework is responsible for building the

control flow graph, so we did not need to implement that functionality. Since Checker has

been used by other projects and battle tested, we trust its implementation. This section

presents two examples.

Listing 4.105: JavaIteratorProtocol.protocol

1 typestate JavaIteratorProtocol {

2 HasNext = {

3 Boolean hasNext(): <True: Next, False: end>

4 }

5 Next = {

6 String next(): HasNext

7 }

8 }

The first example makes use of an iterator which, for illustrative purposes, is a wrap-

per around the standard Java iterator. The iterator has two states, the HasNext state,

where one must check if there are items to be obtained, and the Next state, where one

can extract the next item. The hasNext method (line 3), available in the HasNext state,

returns an enumeration value, instead of a boolean value, so that the protocol is accepted

by Mungo.

73

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.106: NotOk.java

1 import java.util.*;

2

3 public class NotOk {

4 public static void main(String[] args) {

5 JavaIterator it = new JavaIterator(Arrays.asList(args).iterator());

6

7 loop: do {

8 switch(it.hasNext()) {

9 case True:

10 System.out.println(it.next());

11 continue loop;

12 case False:

13 break loop;

14 }

15 } while(false);

16 }

17 }

The code for the first example shows the use of an iterator. There is a loop that keeps

running while there are items in the iterator. In the loop body, the hasNext method is

called (line 8). If it returns True, the next item is extracted, via the next method (line 10),

and the loop continues. If it returns False, the loop stops.

Notice that the loop condition is not true but false (line 15). This means that at most

one item will be obtained from the iterator. This is the case because the continue statement

jumps to the condition, which evaluates to false, not the loop body. If there is more than

one item in the iterator, the iterator will not be used to completion. Mungo does not

detect that, while our tool does, as one can see by the following outputs.

Listing 4.107: Mungo’s output - If condition is false

1 None

Listing 4.108: Our tool’s output - If condition is false

1 NotOk.java:5: error: Object did not complete its protocol. Type: JavaIteratorProtocol{

↪→ HasNext} | Ended

2 JavaIterator it = new JavaIterator(Arrays.asList(args).iterator());

3 ^

4 1 error

Mungo seems to wrongly assume that a continue statement jumps to the beginning

of a loop, when in actuality, a continue statement jumps to the condition expression. If

the condition were to be always true, there would be no practical difference, but if the

condition were to be false, like in the example, bugs could go unnoticed.

Our tool, besides avoiding the previous false negative, also avoids a false positive in

the case a literal boolean value true is used in the condition expression of a loop. In that

74

4.4. COMPARISON WITH MUNGO

instance, it recognizes that when that condition is evaluated, the loop body will always be

entered. This is useful because there are code generation tools, like StMungo [54], which

produce loops with true conditions. This can be illustrated by changing the previous

example to use true instead of false in the loop condition (line 15). Our tool reports no

error in this scenario, which is correct. This particular case required special code, since it

is not supported by Checker outside of the box, although there are plans for that7.

Listing 4.109: Our tool’s output - If condition is true

1 None

In the following example, which makes use of the same file protocol presented in

section 4.4.1, we test how both tools handle the possible flows of execution around a

switch statement.

Listing 4.110: NotOk.java

1 public class NotOk {

2 public static void main(String args[]) {

3 File f = new File();

4

5 switch (f.open()) {

6 case OK:

7 switch (f.read()) {

8 case "CLOSE":

9 f.close();

10 break;

11 }

12 break;

13 case ERROR:

14 break;

15 }

16 }

17 }

In this example, a file is created (line 3), and then opened (line 5). If the open operation

failed, by returning ERROR, nothing more is done. If the open operation succeeded, by

returning OK, the file is read (line 7). After the read operation, the file should be closed,

but that only happens if the read method returns a string with the content "CLOSE".

Listing 4.111: Mungo’s output

1 None

Mungo does not detect that it is possible that no case in the switch statement matches,

assuming that the code for the "CLOSE" case will always run.

7https://github.com/typetools/checker-framework/issues/3249

75

https://github.com/typetools/checker-framework/issues/3249

CHAPTER 4. TYPESTATE-ORIENTED TOOL: VERSION 1

Listing 4.112: Our tool’s output

1 NotOk.java:3: error: Object did not complete its protocol. Type: FileProtocol{Close} |

↪→ Ended

2 File f = new File();

3 ^

4 1 error

Our tool understands that it is possible that the file is not closed so, it reports that the

file either is the end state, or was left in the Close state, after the file was read.

4.4.11 Decisions based on equality checks in conditions

If a method returns an enumeration value, and if one is only interested in knowing if that

matches or not another value, it might be too verbose to check it in a switch statement.

The following example presents an enumeration value being compared with the use of a

== operator.

Listing 4.113: JavaIteratorProtocol.protocol

1 typestate JavaIteratorProtocol {

2 HasNext = {

3 Boolean hasNext(): <True: Next, False: end>

4 }

5 Next = {

6 String next(): HasNext

7 }

8 }

This example makes use of the same iterator protocol presented in section 4.4.10.

Listing 4.114: Ok.java

1 import java.util.*;

2

3 public class Main {

4 public static void main(String[] args) {

5 JavaIterator it = new JavaIterator(Arrays.asList(args).iterator());

6

7 while(it.hasNext() == Boolean.True){

8 System.out.println(it.next());

9 }

10 }

11 }

In this example, an iterator is created and items are retrieved until there are no more

items in it. Notice that the hasNext method returns an enumeration value, which is

compared against Boolean.True with a == operator (line 7).

76

4.5. CONCLUSION

Listing 4.115: Mungo’s output

1 Main.java: 0-0: Semantic Error

2 Object created at Main.java: 6. Typestate mismatch. Found: String next(), end, Boolean

↪→ hasNext(). Expected: <True, False>.

Mungo currently forces enumeration values to be checked in a switch statement. Be-

cause of this, Mungo reports an error indicating that it expected <True, False> (a decision
state), but instead found the end state, a next call and a hasNext call.

Listing 4.116: Our tool’s output

1 None

Our tool reports no errors in this example since it supports decisions to be based on

equality checks done in conditions, properly recognizing what will be the new state of

the object after the method call, according to the value returned.

4.5 Conclusion

In this chapter, we presented a tool for type-checking Java programs where objects are

associated with typestates. This tool was inspired by Mungo [82, 54]. We also discussed

the features this tool supports and the improvements over the current version of Mungo.

In the following chapters, we will discuss how aliasing may be allowed, instead of forcing

all objects to be used in a linear way.

77

C
h
a
p
t
e
r

5
Theoretical work on Access Permissions

If multiple references to the same object exist, type information can get outdated if the

object changes state via another reference. In the first version of the tool, we enforced

that objects were used in a linear way to ensure that method calls on objects followed

the protocol. While enforcing linear use of objects made the task of checking protocol

compliance easier, it restricted what a programmer could do. For example, it is very

common to have shared data, something that is not possible if linear use is enforced. In

the following sections, we discuss different approaches that allow programs that share

resources to be verified.

5.1 Owicki-Gries method and Rely-Guarantee

The Owicki-Gries method is an axiomatic method for proving properties of parallel

programs [69]. The system Owicki and Gries proposed includes the Hoare logic [39]

rules for sequential programs and a rule for parallel composition. This rule allows one to

compose two programs into a concurrent program but requires that their proofs do not

“interfere” [84, 55].

{P1} c1 {Q1} {P2} c2 {Q2} the two proofs are non-interfering
{P1 ∧ P2} c1||c2 {Q1 ∧Q2}

Figure 5.1: Owicki-Gries method

Rely-Guarantee reasoning [51] is a compositional verification method for shared

memory concurrency based on the Owicki-Gries method. In this system, specifications

have four components: the pre-condition, which describes the initial state of the program;

the post-condition, which relates the initial state to the final state; the rely condition,

79

CHAPTER 5. THEORETICAL WORK ON ACCESS PERMISSIONS

which describes the interference the program can tolerate; and the guarantee condition,

which describes the interference it imposes on other concurrent programs [51, 84].

5.2 Separation Logic

Separation Logic [73, 67, 45] is based on the logic of bunched implications [66], and

includes the notion of resources. This program logic extends Hoare logic with new con-

nectives and the separation conjunction. It has been mainly used to reason about sequen-

tial programs that manipulate pointer data structures. In this approach, each program

state is divided into a heap and a store part, allowing explicit local reasoning about the

memory. With the separation formula, one can ensure that two programs accessing the

same location do not interfere to verify program behavior [74, 84].

Concurrent Separation Logic [11, 68] is a new realization of Separation Logic to

allow reasoning about parallel programs that share resources. With this logic, if two

threads operate on disjoint parts of the memory, they can be verified in a safe and isolated

way. Additionally, this logic introduces the notion of resource invariants, where each rule

includes a precise separation logic assertion that always holds during the execution of the

program except when a thread is inside an atomic block [74, 84].

{P } C {Q} {P ′} C′ {Q′}
{P ∗ P ′} C||C′ {Q ∗Q′}

Figure 5.2: Disjoint concurrency rule

5.3 Access permissions

Access permissions are abstract capabilities that characterize the way a shared resource

can be accessed by multiple references [74].

This notion is built on Linear Logic [34], which treats permissions as linear resources,

and Separation Logic [73, 67], which reasons about program behavior against specifica-

tions. Classic Separation Logic does not support concurrent reads of a memory location

by multiple references or threads. To add support for concurrency, Boyland (2003) and

Bornat et al. (2005) combined Separation Logic with access permissions [74, 10, 8].

Access permissions are used to ensure that only a reference can write on a particu-

lar location at any given time, and to ensure that if a location is read by a thread, all

other threads only have read permission for that location. This avoids interference in

concurrent programs [74].

Plural [7] and Plaid [64] are examples of tools for Java where access permissions

are combined with typestate abstractions to verify protocol compliance in sequential and

80

5.4. OTHER APPROACHES

concurrent programs. Since then, many approaches were used to verify program behavior

in concurrent programs with shared-memory [74].

5.3.1 Fractional permissions

Fractional permissions [10] are concrete mathematical values between 0 and 1 inclusive.

These represent the permission for a shared resource. The absence of permission is

represented by the value 0. Full permission is represented by the value 1. Shared read-

only access is represented by a value strictly between 0 and 1. Fractional permissions

can be split into a number of fractions and distributed among multiple references. For

example, a permission s can be split into s1 and s2 such that s = s1 + s2, allowing two

references to have access to the same resource. Permissions that were split may also be

joined again. [74].

5.3.2 Counting permissions

Counting permissions [8] are similar to fractional permissions. While fractional permis-

sions are values between 0 and 1 inclusive, counting permissions are values between 0

and a maximum constant value. The value 0 represents the absence of permission and

the maximum constant value represents full permission. Read-only access is represented

by a value between 0 and the maximum constant value [74].

5.3.3 Symbolic permissions

Symbolic permissions [7] are a simplified extension of fractional permissions. Instead of

using concrete fractional values to represent and split permissions, symbolic permissions

are represented with five types of permissions: unique, full, share, pure, and immutable.

Like other types of permissions, these may be split and joined [74].

Unique provides exclusive access to a reference to read and modify the referenced

object. Full grants a reference read and write access while also granting read-only access

to other references. Share allows references to read and modify the object. Pure gives

read-only access to a reference while other references may read or modify the object.

Immutable gives read-only access to all references [74].

5.4 Other approaches

Other proposed approaches that provide aliasing control include view-based typestates [62],

adoption and focus [29], and capability calculus [19]. View-based typestates are a gen-

eralization of access permissions that allows the creation of views, which are projections

of an object where the fields and methods have specific permissions [62]. The adoption
and focus strategy relaxes linearity by allowing one to alias objects via adoption, and get

81

CHAPTER 5. THEORETICAL WORK ON ACCESS PERMISSIONS

a temporary linear view on an object via focus [29]. Capability calculus is a compiler inter-

mediate language that supports region-based memory management [81, 80] and includes a

safe type system, which controls the permissibility of operations, such as memory access

and deallocation, and tracks aliasing information [19].

5.5 Motivating example: Cell example

To show the usefulness of access permissions, consider the following example, which

makes use of a cell object and an item object. The protocol and implementation of the

cell are provided in listings 5.1 and 5.2, respectively. The protocol and implementation

of the item are provided in listings 5.3 and 5.4, respectively.

Listing 5.1: Cell protocol

1 typestate Cell {

2 NoItem = {

3 void setItem(Item): OneItem,

4 drop: end

5 }

6 OneItem = {

7 Item getItem(): OneItem,

8 void setItem(Item): OneItem,

9 drop: end

10 }

11 }

Listing 5.2: Cell class

1 public class Cell {

2 private Item item = null;

3 public Item getItem() {

4 return this.item;

5 }

6 public void setItem(Item item) {

7 this.item = item;

8 }

9 }

The cell can hold at most one item, which means the cell’s protocol has only two states:

one in which there is no item stored, and other in which there is one item stored. There

are two methods that operate in this cell: getItem and setItem. The getItem can only be

called if the cell has one item and it returns the currently stored item. The setItem method

is used to store an item on the cell and can be called in both states, either to store a item

for the first time or to overwrite a previously stored item.

82

5.5. MOTIVATING EXAMPLE: CELL EXAMPLE

Listing 5.3: Item protocol

1 typestate Item {

2 S0 = {

3 void changeState(): S1,

4 drop: end

5 }

6 S1 = {

7 void changeState(): S1,

8 drop: end

9 }

10 }

Listing 5.4: Item class

1 public class Item {

2 private int state = 0;

3 public int getState() {

4 return this.state;

5 }

6 public void changeState() {

7 this.state = 1;

8 }

9 }

The item has two states, S0 and S1, and one method, changeState. Calling the method

in the S0 state, changes the state of the item to S1. Calling the method in S1, keeps the

item in the same state.

Listing 5.5: Main 1

1 Cell c = new Cell();

2 c.setItem(new Item());

3

4 Item item = c.getItem();

5

6 item.changeState();

7

8 Item item2 = c.getItem();

9

10 item2.changeState();

Consider the first scenario (listing 5.5) where a cell is created (line 1), an item is stored

(line 2), then borrowed via the getItem method (line 4), and used by the caller (line 6).

With linearity enforced, the item would be “moved” from the cell to the caller of the

getItem method, and the cell would lose the ownership of the item. We would like to

be able to temporarily borrow the item, use it, and then “return” it to the cell, without

having to create an explicit method for that, allowing it to be borrowed again later.

83

CHAPTER 5. THEORETICAL WORK ON ACCESS PERMISSIONS

Listing 5.6: Main 2

1 Cell c = new Cell();

2 c.setItem(new Item());

3

4 Item item = c.getItem();

5

6 Thread t = new Thread(() -> {

7 item.changeState();

8 });

9

10 t.start();

11 t.join();

12

13 Item item2 = c.getItem();

14 item2.changeState();

The second scenario (listing 5.6) is similar to the previous one except that the item

held by the cell is used in a separate thread (line 7). In this instance, we would like that

the item be made available again to the cell after the thread finishes its execution (line

11).

Listing 5.7: Main 3

1 Cell c = new Cell();

2 c.setItem(new Item());

3

4 Item item = c.getItem();

5

6 Thread t = new Thread(() -> {

7 item.changeState();

8 });

9

10 t.start();

11

12 Item item2 = c.getItem();

13 // Error should be reported here

14 item2.changeState();

15

16 t.join();

In the third scenario (listing 5.7), we expect the type-checker to report an error because

we are trying to borrow the item a second time from the cell and use it without waiting

for the thread to finish (line 14). If we do not call the join method on the thread first,

there is no guarantee that no data-race will occur.

Although these scenarios are simple in nature, they show a common pattern that

exists in imperative programming languages: sharing of objects. The sharing may occur

in sequential and concurrent contexts, in single-threaded and multi-threaded contexts.

Forcing the linear use of objects makes it easier to statically keep track of the state of the

84

5.5. MOTIVATING EXAMPLE: CELL EXAMPLE

objects, but prevents common uses cases, as we seen.

Although borrowing is a concept already existing in languages like Rust [72], this

concept alone is not enough for a typestate-oriented language. Since the types evolve, we

need to ensure that borrowed objects are still used in a way that respects their protocol

and does not break the assumptions the owners made.

Access permissions enable the sharing of objects in a controlled way while still allow-

ing for the use of objects to be checked statically. In the next chapter, we will explore tools

and languages that either support access permissions directly or that allow specifications

to indicate which memory locations are required and modified.

85

C
h
a
p
t
e
r

6
Practical work on Access Permissions

In this chapter, we will explore tools and languages that either support access permissions

directly or that allow specifications to indicate which memory locations are required and

modified. The languages and tools analyzed are Spec#, Chalice, Dafny, VeriFast, and

Plaid. To study these, we will be using the motivating example presented in the previous

chapter and test how these verify it in the three scenarios. Table 6.1 summarizes the

results obtained from analyzing each language and tool.

Spec# Chalice Dafny VeriFast Plaid
Specifications Assertions +

Ownership
discipline

Assertions Assertions Assertions Permission
+ State

annotations
Resource
manage-
ment

Modifies
clause

Access
permissions

Modifies
clause

Separation
Logic

Access
permissions

Typestate-
oriented

× × × × X

Concurrency
support

× X × X X

Actively
maintained

× × X X ×

Table 6.1: Comparison of languages and tools

6.1 Spec#

The Spec# language is a superset of C#, an object-oriented language targeted for the

.NET Platform. Spec# adds support for distinguishing non-null object references from

87

CHAPTER 6. PRACTICAL WORK ON ACCESS PERMISSIONS

possibly-null object references, method pre- and postconditions, a discipline for manag-

ing exceptions, and support for constraining the data fields of objects. Spec# includes

an automatic program verifier, called Boogie [5], which checks specifications statically [4,

59].

One of the key features of Spec# is the introduction of concepts like aggregate objects,
peers, and owners, to enforce an ownership discipline, which controls the use of objects

referenced by other objects in its fields, allowing invariants between them to be verified.

Unfortunately, Spec# does not check for concurrency errors such as data races and dead-

locks [59]. In the following listings, we present an implementation of the motivating

example in Spec#.

Listing 6.1: Spec#: Item class

1 class Item {

2 int state;

3

4 public Item()

5 ensures state == 0;

6 { state = 0; }

7

8 public void ChangeState()

9 modifies state; ensures state == 1;

10 { state = 1; }

11 }

The Item class has a state field that may hold an integer value: 0 or 1. The initial state
value is 0 and may be changed to 1 by calling the ChangeState method. Notice how in the

constructor (line 5) and in the ChangeState method (line 9), there are ensures clauses that

specify what is the value of the state field after they are ran. Additionally, the ChangeState
method includes a modifies clause (line 9) that indicates that the method may change the

value of the state field.

Listing 6.2: Spec#: Cell class

1 using Microsoft.Contracts;

2

3 class Cell {

4 [Peer] public Item? item = null;

5

6 public Item GetItem()

7 requires item != null; ensures item == result;

8 { return item; }

9

10 public void SetItem([Captured] Item i)

11 modifies item; ensures i == item;

12 { item = i; }

13 }

The Cell class has an item field which may hold a reference to an item or may be null.

88

6.2. CHALICE

The field must be public otherwise Spec# will not allow the exposure of the item via the

GetItem method. After initialization, the item field is null. There is a GetItem method (line

6), which can only be called if item is not null, and which returns the current stored item.

There is also a SetItem method (line 10) which stores an item in the cell, by modifying

the item field, like specified in the modifies clause. Notice the use of two annotations, Peer
(line 4) and Captured (line 10).

The Peer annotation is used when the field references an object that can also be ac-

cessed by clients of the enclosing class. For example, in a typical collection-iterator

pattern, the iterator has a field that references the collection. This field would be marked

as Peer since clients of the iterator may also access the collection directly [59]. In this

example, this annotation will allow clients of the cell to use the item directly.

The Captured annotation indicates that the SetItem method has the right to take own-

ership of the object referenced by the parameter, and that a caller should not expect to be

able to directly use the object after the call [59] (expect later, by borrowing the item via

the GetItem method).

Listing 6.3: Spec#: Main

1 class Main {

2 void Run() {

3 Cell c = new Cell();

4 c.SetItem(new Item());

5 Item item = c.GetItem();

6 item.ChangeState();

7 Item item2 = c.GetItem();

8 item2.ChangeState();

9 }

10 }

In the Run method of the Main class, a cell is created (line 3), an item is created and

stored in it (line 4), and then borrowed (line 5). After borrowing the item, the ChangeState
method is called on the item (line 6). Following that, the item may be borrowed again

(line 7). The code is accepted by Spec#.

Unfortunately, since Spec# does not check for concurrency errors [59], there will be

no guarantee of the absence of data races in the scenario where the state of the item is

changed in a separate thread.

6.2 Chalice

Chalice is an imperative language and program verifier for reasoning about concurrent

programs [60, 58]. Like Spec#, Chalice is also built on Boogie [5].

It supports thread creation, locking and channels. To allow for code verification, pro-

grammers indicate the assumptions about their code via annotations, which the verifier

then analyzes to check that they are never violated. These annotations can indicate that

89

CHAPTER 6. PRACTICAL WORK ON ACCESS PERMISSIONS

a parameter must not be null, a memory location can safely be accessed by a thread, or

that a memory location is protected by a certain lock [60].

The key feature of the Chalice language is that it centers around access permissions.

To require permission to write on a field f of an object o, one must use acc(o.f) in the

requires clause of a method. To require only read access, one can use rd(o.f) [60]. Chalice

does not use modifies clauses to know what locations can be modified by a method call

instead, it deduces those locations by looking at the permissions that the method requires.

If a method does not demand access to a memory location, then that method cannot

modify that location [60]. Note that the annotations acc and rd can only refer to fields.

If one requires full permission to all the fields of an object, one can use acc(o.*). In the

following listings, we present an implementation of the motivating example in Chalice.

Listing 6.4: Chalice: Item class

1 class Item {

2 var state: int;

3

4 method ChangeState()

5 requires acc(state)

6 ensures acc(state) && state == 1

7 { state := 1; }

8 }

The Item class has a state field that may hold an integer value: 0 or 1. The initial

state value is specified when initializing the object. That value may be changed to 1 by

calling the ChangeState method. Notice how in the ChangeState method (line 4), there is a

requires clause (line 5) that requests full permission to write in the state field, and there

is a ensures clause (line 6) that specifies that the permission is returned to the caller and

that the value of the state field after the method call is 1.

Listing 6.5: Chalice: Cell class

1 class Cell {

2 var item: Item;

3

4 method GetItem() returns (res: Item)

5 requires rd(item) && item != null

6 ensures rd(item) && res == item && res != null

7 { res := item; }

8

9 method SetItem(i: Item)

10 requires acc(item) && i != null

11 ensures acc(item) && i == item && item != null

12 { item := i; }

13 }

The Cell class has an item field which may hold a reference to an item or may be null.
There is a GetItem method (line 4), which can only be called if item is not null, and which

90

6.2. CHALICE

returns the current stored item. Notice how it requires read access to the item field, and

then returns that permission to the caller (lines 5 and 6). There is also a SetItem method

(line 9) which stores an item in the cell, by modifying the item field. To do that, the

method requires full permission to the item field, and then returns that permission to the

caller (lines 10 and 11).

Listing 6.6: Chalice: Main 1

1 class Main {

2 method Main() {

3 var c := new Cell { item := null };

4 var i := new Item { state := 0 };

5 call c.SetItem(i);

6 call item := c.GetItem();

7 call item.ChangeState();

8 call item2 := c.GetItem();

9 call item2.ChangeState();

10 }

11 }

In the first scenario (listing 6.6), in the Main method, a cell is initialized with its item
field having a null value (line 3), an item is initialized with its state field having a 0 integer

value (line 4), and the item is stored in the cell (line 5). After that, the item is borrowed

from the cell (line 6), its state is changed (line 7), and then the item is borrowed again

(line 8). The code is accepted by Chalice.

Listing 6.7: Chalice: Main 2

1 class Main {

2 method Main() {

3 var c := new Cell { item := null };

4 var i := new Item { state := 0 };

5 call c.SetItem(i);

6 call item := c.GetItem();

7 fork tk := item.ChangeState();

8 join tk;

9 call item2 := c.GetItem();

10 call item2.ChangeState();

11 }

12 }

The second scenario (listing 6.7) is similar to the previous one, except the state of the

item is changed in a separate thread (line 7), and before trying to use the item again, we

wait for the thread to finish (line 8). The code is also accepted by Chalice, as expected.

91

CHAPTER 6. PRACTICAL WORK ON ACCESS PERMISSIONS

Listing 6.8: Chalice: Main 3

1 class Main {

2 method Main() {

3 var c := new Cell { item := null };

4 var i := new Item { state := 0 };

5 call c.SetItem(i);

6 call item := c.GetItem();

7 fork tk := item.ChangeState();

8 call item2 := c.GetItem();

9 // The precondition at 5.14 might not hold. Insufficient fraction at 5.14 for Item.

↪→ state.

10 call item2.ChangeState();

11 join tk;

12 }

13 }

In the third scenario (listing 6.8), there is an attempt to use the item before ensuring

that the thread has finished (line 10). In this instance, Chalice reports an error, which is

correct. The ChangeState method requires full permission to the state field of the item,

but that permission was transferred to the thread, and can only be obtained again after

the join statement, which waits for the thread to finish.

6.3 Dafny

Dafny is an imperative and sequential language, with support for generic classes, dy-

namic allocation, inductive datatypes, and specification constructs, including pre- and

postconditions, frame specifications (read and write sets), and termination metrics [56,

20].

Its static verifier, powered by Boogie [5] and Z3 [22], is then used to verify the func-

tional correctness of programs, being able to prove that there are no runtime errors, such

as index out of bounds, null dereferences and division by zero, and that the code termi-

nates, except in specially designated loops [65]. Although Dafny does not seem to include

concurrency support, it has been used to model concurrency [57], to verify concurrent

programs [61], and as a subject of future extension with concurrency support [26]. In the

following listings, we present an implementation of the motivating example in Dafny.

92

6.3. DAFNY

Listing 6.9: Dafny: Item class

1 class Item {

2 var state: int;

3

4 constructor()

5 ensures state == 0

6 { state := 0; }

7

8 method changeState()

9 modifies ‘state

10 ensures state == 1

11 { state := 1; }

12 }

The Item class has a state field that may hold an integer value: 0 or 1. The initial state
value is 0 and may be changed to 1 by calling the changeState method. Like in Spec#, in

the constructor (line 5) and in the changeState method (line 10), there are ensures clauses

that specify what is the value of the state field after they are ran. Also like in Spec#, the

changeState method includes a modifies clause (line 9) that indicates that the method may

change the value of the state field. The only difference is syntactical: instead of writing

modifies state, one writes modifies ‘state, with a backtick, to indicate that the state field may

be changed. In Dafny, modifies state would indicate that the object pointed by state may

be changed, not the field itself, which in this case does not make sense, since state holds

an integer, not an object reference.

Listing 6.10: Dafny: Cell class

1 class Cell {

2 var item: Item?;

3

4 constructor()

5 ensures item == null

6 { item := null; }

7

8 method getItem() returns (res: Item)

9 requires item != null

10 ensures res == item

11 { return item; }

12

13 method setItem(i: Item)

14 modifies ‘item

15 ensures item == i

16 { item := i; }

17 }

The Cell class implementation is very similar to the Spec# one. It has an item field

which may hold a reference to an item or may be null. After initialization, the item field

is null. There is a getItem method (line 8), which can only be called if item is not null,

93

CHAPTER 6. PRACTICAL WORK ON ACCESS PERMISSIONS

and which returns the current stored item. There is also a setItem method (line 13) which

stores an item in the cell, by modifying the item field, like specified in the modifies clause.

Listing 6.11: Dafny: Main

1 method Main() {

2 var c := new Cell();

3 var i := new Item();

4 c.setItem(i);

5 var item := c.getItem();

6 item.changeState();

7 var item2 := c.getItem();

8 item2.changeState();

9 }

In the Main method, a cell is created (line 2), an item is created (line 3), and stored

in the cell (line 4). After that, the item is borrowed (line 5), and its state is changed by

the changeState method (line 6). Following that, the item may be borrowed again (line 7).

The code is accepted by Dafny.

Unfortunately, since Dafny does not have built-in support for threads, we cannot test

the scenarios where the state of the item is changed in a separate thread.

6.4 VeriFast

VeriFast is a verification tool, based on separation logic [67], for single-threaded and

multithreaded C and Java programs [46]. The main features of VeriFast include: checking

that a method satisfies its corresponding method contract, which can specify the structure

of the heap and provide an upper bound on the set of modifiable memory locations via

permissions; support for predicates, inductive data types, functions and lemmas [76].

In the following listings, we present an implementation of the motivating example in

Java with VeriFast specifications.

Listing 6.12: VeriFast: Item class

1 //@ predicate Item(Item i; int state) = i.state |-> state;

2

3 public class Item {

4 private int state = 0;

5

6 public void changeState()

7 //@ requires Item(this, _);

8 //@ ensures Item(this, 1);

9 { state = 1; }

10 }

The Item class has a state field that may hold an integer value: 0 or 1. The initial state
value is 0 and may be changed to 1 by calling the changeState method. Notice the use of

the Item predicate to reason about the current state of the item.

94

6.4. VERIFAST

Listing 6.13: VeriFast: Cell class

1 //@ predicate Cell(Cell c; Item item) = c.item |-> item;

2

3 public class Cell {

4 private Item item;

5

6 public Cell()

7 //@ requires true;

8 //@ ensures Cell(this, null);

9 { item = null; }

10

11 public Item getItem()

12 //@ requires Cell(this, ?i) &*& i != null;

13 //@ ensures Cell(this, i) &*& result == i;

14 { return item; }

15

16 public void setItem(Item i)

17 //@ requires Cell(this, _) &*& i != null;

18 //@ ensures Cell(this, i);

19 { item = i; }

20 }

The Cell class has an item field which may hold a reference to an item or may be null.
The initial item field value is null (line 9). There is a getItem method (line 11), which can

only be called if item is not null, and which returns the current stored item. There is also

a setItem method (line 16) which stores an item in the cell, by modifying the item field.

Notice the use of the Cell predicate to reason about the state of the cell, before and after

each method call.

Listing 6.14: VeriFast: Main 1

1 public class Main {

2 public static void main(String[] args)

3 //@ requires true;

4 //@ ensures true;

5 {

6 Cell c = new Cell();

7 c.setItem(new Item());

8

9 Item item = c.getItem();

10 item.changeState();

11

12 Item item2 = c.getItem();

13 item2.changeState();

14 }

15 }

In the first scenario (listing 6.14), in the Main class, a cell is created and an item is

stored inside of it (lines 6 and 7). After that, the item is borrowed from the cell (line 9),

95

CHAPTER 6. PRACTICAL WORK ON ACCESS PERMISSIONS

its state is changed (line 10), and then the item is borrowed again (line 12). The code is

accepted by VeriFast.

Listing 6.15: VeriFast: Runnable class

1 class StateChanger implements Runnable {

2

3 private Item item;

4

5 //@ predicate pre() = this.item |-> ?i &*& i != null &*& Item(i, _);

6 //@ predicate post() = this.item |-> ?i &*& i != null &*& Item(i, _);

7

8 public StateChanger(Item i)

9 //@ requires i != null &*& Item(i, _);

10 //@ ensures pre();

11 {

12 this.item = i;

13 }

14

15 public void run()

16 //@ requires pre();

17 //@ ensures post();

18 {

19 item.changeState();

20 }

21 }

For the following scenarios, which make use of threads, there was the need for the

declaration of a StateChanger class, which implements the Runnable interface, because

VeriFast does not parse lambda expressions.

Listing 6.16: VeriFast: Main 2

1 public class Main {

2 public static void main(String[] args) {

3 Cell c = new Cell();

4 c.setItem(new Item());

5

6 Item item = c.getItem();

7

8 Thread t = new Thread(new StateChanger(item));

9 t.start();

10 t.join();

11

12 Item item2 = c.getItem();

13 item2.changeState();

14 }

15 }

The second scenario (listing 6.16) is similar to the previous one, except the state of the

item is changed in a separate thread, and before trying to use the item again, we wait for

96

6.5. PLAID

the thread to finish. Unfortunately, the code is not accepted by VeriFast, reporting that

the changeState call (line 13) cannot be performed. The reason seems to be that it has no

knowledge that the heap chunk for the item, available in the post-condition, corresponds

to the same item required in the pre-condition. Because the Runnable interface requires

the specification of two predicates, pre and post, which are independent from one and

another, there seems to be no way of informing the verifier that the item is still the same.

Listing 6.17: VeriFast: Main 3

1 public class Main {

2 public static void main(String[] args) {

3 Cell c = new Cell();

4 c.setItem(new Item());

5

6 Item item = c.getItem();

7

8 Thread t = new Thread(new StateChanger(item));

9 t.start();

10

11 Item item2 = c.getItem();

12 item2.changeState();

13

14 t.join();

15 }

16 }

The third scenario (listing 6.17) presents a data-race example, where there is an at-

tempt to call changeState on the item without waiting for the thread that borrowed it to

finish first. In this instance, VeriFast reports that there is no heap chunk available to allow

for the changeState call outside the thread.

6.5 Plaid

Plaid [77, 37] is a typestate-oriented programming language designed for concurrency. It

includes the concept of access permissions [64, 7], which are associated with each type to

express the aliasing and the mutability of the corresponding object’s typestate [74]. Fur-

thermore, access permissions information is used to automatically parallelize code [38].

Unfortunately, since Plaid does not seem to be maintained any longer, we could not

reproduce the motivating example. If we could, the example would look something like

what is presented in the following listing (according to what we could gather from [77]

and [2]).

97

CHAPTER 6. PRACTICAL WORK ON ACCESS PERMISSIONS

Listing 6.18: Plaid example

1 state Item {

2 val int state = 0;

3 method void changeState() {

4 this.state = 1;

5 }

6 }

7

8 state Cell {

9 val shared Item item = null;

10 }

11

12 state Cell0 case of Cell {

13 method void setItem(unique Item i)

14 [unique Cell0 >> unique Cell1]

15 {

16 this.item = i;

17 this <- Cell1;

18 }

19 }

20

21 state Cell1 case of Cell {

22 method shared Item getItem() {

23 return this.item;

24 }

25 }

26

27 method void main() {

28 val unique cell = new Cell;

29 val unique i = new Item;

30 cell.setItem(i);

31

32 val item1 = cell.getItem();

33 item1.changeState();

34

35 val item2 = cell.getItem();

36 item2.changeState();

37 }

6.6 Summary

There are many approaches that can be used to specify program behavior and reason

about protocols. Languages like Spec#, Chalice, Dafny, and VeriFast, are very rich, allow-

ing one to express with precision what is the expected behavior of a program. Nonetheless,

they have the drawback of potentially being more difficult to use due to their complexity

and due to the undecidability of specifications in the general case. Spec# targets the

.NET Platform but forces programs to follow an ownership discipline, which may impose

98

6.6. SUMMARY

some overhead. Chalice is the most interesting among the four languages because it has

built-in support for threads and includes the concept of access permissions, from which

we expect to get some inspiration from. Dafny does not support threads but is actively

maintained. VeriFast is available for C and Java, but the specifications are usually very

verbose. Plaid is distinguishable from the other languages since it does not require com-

plex specifications and has built-in support for typestate-oriented features and access

permissions. Unfortunately, it does not seem to be maintained.

In conclusion, the current technology is, in general, able to verify the motivating

example. Unfortunately, it usually requires many annotations and expertise on the pro-

grammer’s part.

99

C
h
a
p
t
e
r

7
Typestate-oriented tool: version 2

In this chapter, we are going to present a language of assertions that focuses on allowing

a program that uses typestates to be type-checked even in the presence of aliasing. The

chapter starts by presenting the language of assertions (section 7.1). Following that, we

present the inference algorithm, which removes the need for assertions to be explicitly

written (section 7.2). Then, we compare our language of assertions and tool with other

languages and tools (section 7.3). In the last section, we test our tool with some examples

(section 7.4).

7.1 Language of assertions

In the following sections, we start by presenting the components of our language and their

meaning (section 7.1.1). Then we discuss the guarantees that the assertions provide and

the well-formedness properties (sections 7.1.2 and 7.1.3). Following that, the concepts

of packing and unpacking are expanded upon as well as transferring of permissions

(sections 7.1.4 and 7.1.5). Immediately after, it is explained how protocol completion

is ensured (section 7.1.6). Next, it is explained how to check if an assertion is implied

by another (section 7.1.7), how to compute the upper bound between two assertions

(section 7.1.8), and how nullable values and union types are handled (section 7.1.9).

7.1.1 Introduction

Each assertion in the language is composed of access, equality, typeof, packed and unpacked
predicates.

Access predicates specify the fractional permissions [10] for access locations. A frac-

tional permission is represented with a fractional number between zero and one. If the

fraction is equal to zero, it means there is no access to that location, so no reads and no

101

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

writes are allowed. If the fraction is equal to one, there is full access to that location, so

reads and writes are both allowed. If the fraction is a value between zero and one, only

reads are allowed.

An access location may represent a local variable or a field of an object. Conceptually,

we can think of a local variable as a field of the closure of a function call. Because of that,

we are not going to distinguish between the stack and the heap, and we will be thinking

only in terms of memory locations. These access locations may also refer to the object

pointed by a variable or field. Even though an object is the composition of its fields, we

will need to be able to reason about the access permission to an object itself, separately

from its fields. The need for it will be explained later.

Equality, typeof, packed and unpacked predicates, talk about locations. A location repre-

sents a local variable or a field of an object.

Equalities assert that two locations point to the same object (they hold the same mem-

ory address number). Tracking equalities is useful so that we can transfer permissions

between two locations, for example, to restore full access to an object that was aliased

between two locations.

Typeof predicates indicate the current type of an object pointed by a variable or field.

Packed and unpacked predicates specify that an object is packed or unpacked, respec-

tively, via the associated location. When an object is packed, the concrete types of its fields

are hidden behind the abstract typestate view. When an object is unpacked, the concrete

types of its fields are exposed.

For illustrative purposes, the syntax used to represent the assertions is formalized by

the following grammar.

Listing 7.1: Assertions’ grammar

1 Assertion := Term | Term "∧" Assertion

2 Term := Access | Equality | TypeOf | Packed | Unpacked

3

4 Access := "access" "(" AccessLocation "," f ")"

5 Equality := "eq" "(" Location "," Location ")"

6 TypeOf := "typeof" "(" Location "," t ")"

7 Packed := "packed" "(" Location ")"

8 Unpacked := "unpacked" "(" Location ")"

9

10 Location := id | id "." Location

11 AccessLocation := id | id "." "0" | id "." AccessLocation

In the grammar, f is a meta-variable ranging over all rational numbers between zero

and one; id is a meta-variable ranging over values of the set of all the valid Java identifiers;

t is a meta-variable ranging over values of the set of all the types in the type system.

Assertions are represented as conjunctions of the predicates mentioned. Access predi-

cates are represented as access(x,f), where x is an access location and f a fractional value.

102

7.1. LANGUAGE OF ASSERTIONS

An access location is represented as a sequence of Java identifiers separated by dots, po-

tentially terminated with .0 if the access location refers to the object itself. Equalities are

represented as eq(x,y), where x and y are locations. A location is also represented as a

sequence of Java identifiers separated by dots, except it never terminates with .0. Typeof
predicates are represented as typeof(x,T), where x is a location and T a textual representa-

tion of a type from our type system. Packed and unpacked predicates are represented as

packed(x) and unpacked(x) respectively.

In the following sections, code may also be presented to show how the ideas are im-

plemented in practice. In the implementation, assertions are represented by the structure

presented in the following listing.

Listing 7.2: Assertions’ type structure

1 type assertion = {

2 accesses: access list;

3 equalities: equality list;

4 typeOfs: typeOf list;

5 packs: packed list;

6 unpacks: unpacked list;

7 } and

8

9 access = Access of accessLoc * fraction and

10 equality = Equality of loc * loc and

11 typeOf = TypeOf of loc * ttype and

12 packed = Packed of loc and

13 unpacked = Unpacked of loc and

14

15 fraction = int * int and

16 loc = string list and

17 accessLoc = string list * bool

Access predicates are represented as a pair with an access location and a fractional

value. Equalities are pairs of two locations. The typeof predicate is a pair with a location
and a type from our type system. Packed and unpacked predicates are composed of a

location. A fraction is represented as a pair of integers. A location is represented with a

non-empty list of valid Java identifiers. An access location is represented with a tuple with

a non-empty list of valid Java identifiers and a boolean value. If the boolean value is false,

the access location refers to a memory location, like a variable or a field. If the boolean

value is true, the access location refers to the object pointed by the variable or field.

An example of an assertion in textual form and the corresponding data structure that

represents it, in the implementation, are presented in the following listings.

Listing 7.3: Assertion example produced by the grammar in listing 7.1

access(x,1) ∧ access(y,1) ∧
access(x.0,0) ∧ access(y.0,1) ∧
eq(x,y) ∧ typeof(y,State "HasNext") ∧ packed(y)

103

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Listing 7.4: Assertion example according to the type structure in listing 7.2

{

accesses = [

Access((["x"], false), (1, 1));

Access((["y"], false), (1, 1));

Access((["x"], true), (0, 1));

Access((["y"], true), (1, 1))

];

equalities = [Equality(["x"], ["y"])];

typeOfs = [TypeOf(["y"], State "HasNext")];

packs = [Packed ["y"]];

unpacks = [];

}

In this example, there is full access to read or write into x and y, no access to the

object via x, full access to an object via y, y is packed and in state HasNext, and x and y
are aliases. An example of Java code where this assertion would hold true, is presented

in the following listing.

Listing 7.5: Example of Java code where an assertion holds

1 Iterator x = collection.iterator();

2 Iterator y = x;

3 // access(x,1) ∧ access(y,1) ∧
4 // access(x.0,0) ∧ access(y.0,1) ∧
5 // eq(x,y) ∧ typeof(y,State "HasNext") ∧ packed(y)

Details regarding the language of assertions, and how it works in practice, will be

explained in the following sections.

7.1.2 Assertions’ guarantees

This language of assertions guarantees that:

1. The usage of objects will follow the corresponding protocol, even in the presence of

aliasing;

2. No data-races occur at the level of variables and fields;

3. Method calls that change the state of an object do not interfere with each other.

The following listings present examples of code that contains bad behavior that would

be detected by our type system.

Listing 7.6: Wrong method order example

1 Iterator it = collection.iterator();

2 it.next(); // Error: Cannot call "next" in HasNext state

104

7.1. LANGUAGE OF ASSERTIONS

In the first example, the method next is being called in a newly created iterator without

ensuring that there are items to be read. The hasNext should have been called first.

Listing 7.7: Data-race example

1 Iterator it = collection.iterator();

2

3 new Thread(() -> {

4 while(it.hasNext())

5 it.next();

6 }).start();

7

8 new Thread(() -> {

9 while(it.hasNext())

10 it.next();

11 }).start();

In the second example, the same iterator object is being manipulated by two different

threads, which are both trying to read all the items of the iterator. This is an example of

bad behavior since, for example, by the time one of the threads attempts to call next, the

other thread might have read all the items already.

7.1.3 Assertions’ well-formedness

An assertion, to be well-formed, must respect the following properties. Assume that the

fractional values f1 and f2 are greater than zero (f1 > 0 ∧ f2 > 0).

1. An access predicate that refers to an object pointed by a variable or field can only

hold if read access to that variable or field is available. For example, access(x.0,f1)
holds if access(x,f2) holds, and access(x.y.0,f1) holds if access(x.y,f2) holds;

2. An access predicate that refers to a field of an object can only hold if read access to

the variable or field that holds that object is available. For example, access(x.y,f1)
holds if access(x,f2) holds;

3. An equality predicate, such as eq(x,y), can only hold if access(x,f1) ∧ access(y,f2)
holds. This means that we need at least read access to the variables/fields x and y,

ensuring they do not get overwritten;

4. A typeof predicate with Unknown always holds;

5. A typeof predicate with a type that is subtype of Null | Primitive, such as typeof(x,Null),
can only hold if access(x,f1) holds. This means that we need at least read access to

the variable/field x, ensuring it does not get overwritten;

6. A typeof predicate with a type that is not a subtype of Null | Primitive (and it is

not Unknown), such as typeof(x,State "HasNext"), can only hold if access(x,f1) ∧
access(x.0,f2) holds. This means that we need at least read access to the variable/field

105

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

x, ensuring it does not get overwritten, and at least read access to the object pointed

by x, ensuring its state does not change;

7. Predicates such as packed(x) or unpacked(x) can only hold if access(x,f1)∧ access(x.0,f2)
holds;

8. An object cannot be packed and unpacked at the same time via the same variable

or field;

9. If packed(x) is true, no predicates over the object’s fields via x should exist in the

assertion;

10. The sum of all fractional permissions that allow access to the same location, must

be a value less or equal than one. For example, if x and y are the only variables that

point to the same object, and access(x.0,k1) ∧ access(y.0,k2) holds, then the sum of

k1 and k2 must be a number less or equal to one.

A function that checks if an assertion is well-formed, may be defined by the following

ML code. The code for property 10 is omitted for brevity.

Listing 7.8: Checking assertions’ well-formedness (Part 1)

1 let isValid (a:assertion) : bool =

2 (* Properties 1 and 2 *)

3 for_all (fun (Access((x, dotZero), (f1, f2))) ->

4 f1 = 0 ||

5 if dotZero

6 then hasAccess a x

7 else hasAccess a (parent x)

8) a.accesses &&

9 (* Property 3 *)

10 for_all (fun (Equality(x, y)) ->

11 hasAccess a x &&

12 hasAccess a y

13) a.equalities &&

14 (* Properties 4, 5 and 6 *)

15 for_all (fun (TypeOf(x, t)) ->

16 isUnknown t || (

17 hasAccess a x &&

18 (isNullOrPrimitive t || hasAccessDotZero a x))

19) a.typeOfs &&

20 (* Property 7 and 8 *)

21 for_all (fun (Packed x) ->

22 hasAccess a x &&

23 hasAccessDotZero a x &&

24 not (isUnpacked a x)

25) a.packs &&

106

7.1. LANGUAGE OF ASSERTIONS

Listing 7.9: Checking assertions’ well-formedness (Part 2)

25 (* Property 7 and 8 *)

26 for_all (fun (Unpacked x) ->

27 hasAccess a x &&

28 hasAccessDotZero a x &&

29 not (isPacked a x)

30) a.unpacks &&

31 (* Property 9 *)

32 for_all (fun (Packed x) ->

33 not (hasPredicatesOverFields a x)

34) a.packs

Each for_all call checks if the predicates follow the properties. The parent function,

given a location with more than one identifier, returns a new location without the last

identifier, and given a location with only one identifier, the function just returns it. The

hasAccess function checks if the assertion contains an access predicate such as access(x,f),
where f > 0. The hasAccessDotZero function checks if the assertion contains an access
predicate such as access(x.0,f), where f > 0. The isPacked and isUnpacked functions check if

in the assertion the locations are packed or unpacked, respectively. The hasPredicatesOver-
Fields function checks if the assertion contains predicates over locations prefixed with x,

like access(x.y,f) or typeof(x.z,T). The isNullOrPrimitive function returns true if the given

type is a subtype of Null | Primitive.

Note that in the implementation, if an access predicate for a certain access location is

absent, it is assumed that the associated fractional permission is zero, if a typeof predicate

for a certain location is absent, it is assumed that the associated type is Unknown, and if a

packed predicate for a certain location is absent, it is assumed that the associated object is

unpacked.

7.1.4 Packing and Unpacking

When an object is packed, the concrete types of its fields are hidden behind the abstract

typestate view. When an object is unpacked, the concrete types of its fields are exposed.

In our system, methods can only be called on packed objects, to ensure that the invariants

hold before the execution of methods. But since accessing objects stored in fields of other

objects is also a use case, it is important to be able to perform packing and unpacking on

objects, coercing between their abstract typestate views and their concrete views.

The concepts of packing and unpacking applied to typestates were probably intro-

duced in [25], and have been used in other approaches, for example in [7] and [62]. An

earlier appearance of these concepts, although not applied to typestates, is [87]. Origi-

nally, unpacking was not allowed for aliased objects [25]. Later Bierhoff and Aldrich [7]

refined the notion of unpacking to instead pack and unpack specific permissions, which

allows unpacking of shared objects. Our approach also allows for aliased objects to be

unpacked and packed in a consistent way.

107

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

To allow packing or unpacking of an aliased object, we need to “remember” the per-

mission to the object we unpacked or packed. This is the reason why access predicates

such as access(x.0,f), are needed. Although 0 is not a valid field name, we use this rep-

resentation to refer to the access permission for an object itself, without referring to its

fields.

To illustrate how packing and unpacking work in practice, imagine an object with

field y, which stores a reference to another object for which it has read access. Suppose

for example that for any state of the object, the following invariant holds.

access(y,1)∧ access(y.0,1/4)∧ packed(y)

Now assume that there is a reference for that object in variable x, such that the follow-

ing assertion holds. Notice that there is only read permission available for that object via

x, which means that this object may be aliased.

access(x.0,1/2)∧ packed(x)

To unpack the object pointed by x, one just needs to multiply the access fractions in the

invariant (1 and 1/4) by the object’s access fraction (1/2), combine the modified invariant

with the previous assertion, and replace packed(x) with unpacked(x). This process results

in the following assertion.

access(x.0,1/2)∧unpacked(x)∧
access(x.y,1/2)∧ access(x.y.0,1/8)∧ packed(x.y)

Packing is only allowed if all the truths about the fields of the object are consistent

with the invariant. In the previous assertion, x could be packed again, since 1× 1/2 = 1/2,

1/4 × 1/2 = 1/8 and the object referenced by the field y is packed, like required by the

invariant. Given that packing is allowed, one just needs to remove the predicates that

refer to fields of the object and replace unpacked(x) with packed(x).

But if instead of the previous assertion, we had the following one, we would not be

able to pack x again since 1/4× 1/2 , 0.

access(x.0,1/2)∧unpacked(x)∧
access(x.y,1/2)∧ access(x.y.0,0)

The following listings present the pack and unpack operations and their helper func-

tions implemented in ML.

108

7.1. LANGUAGE OF ASSERTIONS

Listing 7.10: revealedInv function

1 let revealedInv (t:ttype) (f:fraction) (x:loc) (inv:ttype->assertion) : assertion =

2 let assertion = inv t in

3 {

4 accesses = map (fun

5 (Access((y, zero), k)) -> Access((x @ y, zero), multFrac k f)

6) assertion.accesses;

7 equalities = map (fun

8 (Equality(a, b)) -> Equality(x @ a, x @ b)

9) assertion.equalities;

10 typeOfs = map (fun

11 (TypeOf(y, t)) -> TypeOf(x @ y, t)

12) assertion.typeOfs;

13 packs = map (fun

14 (Packed y) -> Packed(x @ y)

15) assertion.packs;

16 unpacks = map (fun

17 (Unpacked y) -> Unpacked(x @ y)

18) assertion.unpacks;

19 }

The revealedInv function, given a type, a fraction, a location and an inv function,

gets the invariant corresponding to the given type, and returns a new assertion that

corresponds to the invariant but modified to be exposed: locations referring to fields

are prefixed with the location to the object and access predicates have their fractional

values multiplied by the fraction initially passed as parameter. The inv function, given

a type, returns the corresponding invariant in the form of an assertion. This invariant

indicates what is true about the fields of the object when in a given typestate and must

only include predicates over locations accessible via those fields. Invariants may be

provided by the programmer or inferred by executing an algorithm similar to the class
analysis (section 4.3.3).

Listing 7.11: unpack function

1 let unpack (a:assertion) (x:loc) (inv:ttype->assertion) : assertion =

2 let Access(_, f) = getAccess a (x, true) in

3 let TypeOf(_, t) = getTypeOf a x in

4 let revealed = revealedInv t f x inv in {

5 accesses = a.accesses @ revealed.accesses;

6 equalities = a.equalities @ revealed.equalities;

7 typeOfs = a.typeOfs @ revealed.typeOfs;

8 packs = (remove (Packed x) a.packs) @ revealed.packs;

9 unpacks = a.unpacks @ ((Unpacked x) :: revealed.unpacks);

10 }

The unpack function, given an assertion, a location and an inv function, takes the

current fractional permission to the object in the given location (using the getAccess func-

tion), takes the current type of the object (using the getTypeOf function), computes the

109

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

revealed invariant (with the revealedInv function), and returns a new assertion that com-

bines the revealed invariant with the given assertion, with the additional care of replacing

the packed predicate for an unpacked predicate for the location we are unpacking.

Listing 7.12: pack function

1 let pack (a:assertion) (x:loc) (inv:ttype->assertion) : assertion =

2 let Access(_, f) = getAccess a (x, true) in

3 let TypeOf(_, t) = getTypeOf a x in

4 let revealed = revealedInv t f x inv in {

5 accesses = remove_list revealed.accesses a.accesses;

6 equalities = remove_list revealed.equalities a.equalities;

7 typeOfs = remove_list revealed.typeOfs a.typeOfs;

8 packs = (Packed x) :: remove_list revealed.packs a.packs;

9 unpacks = remove_list revealed.unpacks (remove (Unpacked x) a.unpacks);

10 }

The pack function, given an assertion, a location and an inv function, takes the current

fractional permission to the object in the given location, takes the current type of the

object, computes the revealed invariant, and returns a new assertion without the predi-

cates that are common between the revealed invariant and the given assertion, with the

additional change that the object becomes packed instead of unpacked.

7.1.5 Permission transfer

Since assertions track equality between memory locations, it is possible to transfer permis-

sions. Making use of aliasing information is an idea also suggested in [10]. For example,

imagine a context in which variables x and y are alias to the same object, which means

that eq(x,y) is true, and that there is 1/2 access to the object via x — access(x.0,1/2) — and

also 1/2 access to the object via y — access(y.0,1/2). If one wants to perform a mutable

operation on the object, it needs full permission to it. Since x and y are known to be alias,

the access permission of one can be transferred to the other, for example, from x to y,

resulting in assertion access(x.0,0) ∧ access(y.0,1), which allows one to perform a mutable

operation on the object via the variable y.

If two variables are alias to the same object, it is also possible to assert equalities

between their fields, which also allows permissions to be transferred between their fields

and objects referenced by those fields.

Additionally, by knowing that two variables point to the same object, it is possible to

intersect the types of both, to get a more refined knowledge of the type of the object. For

example, given assertion eq(x,y) ∧ typeof(x,State "HasNext"| State "Next") ∧ typeof(y,State
"Next"), we can be sure that x is in the Next state.

Transferring of permissions can be done as needed. Like in the initial example, a

permission was transferred to allow for a mutable operation. Additionally, we can transfer

permissions before computing the least upper bound of two assertions to avoid losing

“resources” and information (explained later).

110

7.1. LANGUAGE OF ASSERTIONS

7.1.6 Protocol completion

To guarantee that protocols reach the final state in a system with access permissions, we

need to ensure that no access permissions (or “resources”) are lost unless the object is

already in the final state or in a state in which it can be “dropped”. The reason for this

is that if we were able to arbitrarily “forget” about an alias, this would mean that we

could also “forget” about other aliases, and potentially lose all references to an object for

which the protocol did not complete. To this end, we analyze each pair of consecutives

assertions (i.e. pair where the first implies the second) in the code to check if there was

some access permission in the first that was completely lost in the second. If that was

the case, and if the object was not in the final state nor in a state in which it could be

“dropped”, we report an error. We also check the end of methods to ensure objects have

their protocol completed, unless we know that the object will be “returned” to the caller,

via the post-condition.

7.1.7 Implication

It is important to mention that the pre-condition strengthening rule (figure 7.1) and the

post-condition weakening rule (figure 7.2), which apply to Hoare logic [39, 36], also apply

to our language of assertions. What needs to be specified is how to know if an assertion

implies or is implied by another assertion.

` P =⇒ P ′ ` {P ′} C {Q}
` {P } C {Q}

Figure 7.1: Pre-condition strengthening

` {P } C {Q′} `Q′ =⇒ Q
` {P } C {Q}

Figure 7.2: Post-condition weakening

As presented before, our language of assertion includes access, equality, typeof, packed
and unpacked predicates.

Packing and unpacking serve the purpose of coercing between the abstract view and

the concrete view of objects, to hide or expose the facts about the fields of the objects.

Because of that, any assertion where an object is packed, implies an assertion resulting

from unpacking the object, and any assertion where an object is unpacked and its fields

are consistent with the object’s invariant (to allow for packing), implies an assertion

resulting from packing the object. In the following paragraph, assume that the objects

are all unpacked in the assertions.

111

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

An assertion a implies an assertion b if when a holds, b also holds. In other words, a

implies b if b is a weaker version of a. To check if a implies b, we need to check for each

predicate in b, if there is a predicate in a that implies it. An access predicate is implied by

another access predicate, for the same access location, if the first offers an equal or greater

access permission than the second. An equality predicate that holds in b must also hold in

a. A typeof predicate is implied by another typeof predicate, for the same location, if the

type in the first predicate is a subtype of the type in the second predicate. The following

are some examples of implications that are true or false.

access(x,1) =⇒ access(x,0)

The implication is true since full permission is greater than no permission.

access(x,0) 6=⇒ access(x,1)

The implication is false since we cannot ensure that full permission is available from

having no permission.

access(x,1)∧ typeof (x,Null) =⇒ access(x,1)∧ typeof (x,Unknown)

The implication is true since Null is a subtype of Unknown.

access(x,1)∧ typeof (x,Object) 6=⇒ access(x,1)∧ typeof (x,Null)

The implication is false since Object is not a subtype of Null.

access(x,0.5)∧ access(y,0.5)∧ eq(x,y) =⇒ access(x,0.5)∧ access(y,0.5)

The implication is true since an assertion without information about an equality is

implied by one where that equality holds.

access(x,0.5)∧ access(y,0.5) 6=⇒ access(x,0.5)∧ access(y,0.5)∧ eq(x,y)

This implication is not true because we cannot assert that an equality is true without

having knowledge of that.

The following listing presents a ML implementation of a function that checks if one

assertion implies another assertion.

112

7.1. LANGUAGE OF ASSERTIONS

Listing 7.13: implies function

1 let implies (a:assertion) (b:assertion) (inv:ttype->assertion) : bool =

2 let (a, b) = unpackNecessary a b inv in

3 for_all (fun (Access(l, fB)) ->

4 let Access(_, fA) = getAccess a l in gteFrac fA fB

5) b.accesses &&

6 for_all (fun (Equality(x,y)) ->

7 areEqual a x y

8) b.equalities &&

9 for_all (fun (TypeOf(l, tB)) ->

10 let TypeOf(_, tA) = getTypeOf a l in isSubtype tA tB

11) b.typeOfs

The function implies starts by ensuring that all the locations that are packed or un-

packed in a are also packed or unpacked (respectively) in b (using the unpackNecessary
function). Following that, the function checks that for each access permission available

in b, there is a greater or equal access permission in a (using the getAccess and gteFrac
functions), it checks that for each equality that holds in b, the same equality holds in a

(using the areEqual function), and that for each typeof predicate in b, there is one in a

associated with a type that is subtype of the type in the predicate in b (using the getTypeOf
and isSubtype functions).

The implementation uses some helper functions. The unpackNecessary function, given

two assertions, returns two new assertions where the locations that are packed/unpacked

in one are also packed/unpacked in the other (respectively). The getAccess function

attempts to find an access predicate in the given assertion for the given location. If none

is found, it is assumed that there is no permission for that access location. The gteFrac
returns true if the first fractional permission is greater or equal than the second. The

areEqual function checks if in the given assertion, the two given locations are known to

refer to the same object. The getTypeOf function finds an typeof predicate in the given

assertion for the given location. If none is found, it is assumed the type Unknown for that

location. The isSubtype function returns true if the first type is a subtype of the second.

Note that the above implementation is simplified. It does not consider equality transi-

tivity, it does not consider the fact that if two locations refer to the same object all its fields

are also the same, and it does not perform permission transfer to cover other possible

implications.

7.1.8 Assertions’ upper bound

It is important to define how to compute the least upper bound of two assertions. For

example, after executing an if-else statement, we need to know what the assertion will be

by combining the assertions of the if and else branches. When dealing with types, one

just needs to compute the union of the types from both branches. When dealing with

access permissions, the result is more difficult to define.

113

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Imagine, for example, an if branch where an object is passed to a method call, leaving

the current context with no permission to access it, and an else branch which keeps

full access to the object in the current context. In this example, we need to combine

two different access predicates: access(x.0,0) and access(x.0,1). One solution could be

to support disjunctions in assertions, like so: access(x.0,0) ∨ access(x.0,1). The problem

is that the checking would become more complex to perform without much gain, since

there would always be the chance that we lost access to the object, which meant we would

need to report an error anyway, if the object were to be used. A different solution is to

choose the “worst” scenario, in other words, choose the smaller fraction value. This makes

sense because in actuality, a non-aliased type is a subtype of an aliased-type, so when

merging the assertions, the “upper bound” can be chosen. Unfortunately, this means

that “resources” can be lost, which would compromise the assurance that protocols reach

completion. To avoid that, we report an error if the fractional values are not the same and

the object is neither in the final state or in a state in which it can be “dropped”.

Assertions are also composed of equality predicates. When computing the least upper

bound between two assertions, one where an equality is true, and another where the

equality is false or unknown, we do not preserve the knowledge about the equality.

Finally, it is important to define the case where in one assertion, an object is packed,

and in another, the object is unpacked. One solution could be to unpack the object (in the

assertion it is packed) and compute the upper bound like previously explained. Another

solution could be to try to pack the object (in the assertion it is unpacked), and report

an error if that was not possible. In this instance, we believe we can preserve precision

without much overhead, so we chose the first solution.

The following listings present some scenarios where the least upper bound between

two assertions is computed. Assume that there is always full permission to read or to

write into the local variables.

Listing 7.14: Assertions’ upper bound: example 1

1 Cell cell = new Cell();

2 // access(cell.0,1) ∧ packed(cell) ∧ typeof(cell,State "NoItem")

3

4 if (condition) {

5 take(cell);

6 // access(cell.0,0)

7 } else {

8 addItem(cell);

9 // access(cell.0,1) ∧ packed(cell) ∧ typeof(cell,State "OneItem")

10 }

11

12 // access(cell.0,0)

The first scenario (listing 7.14) uses a cell which stores an item. If a certain condition

is true, the cell is “moved” and the current context loses permission to access it. If the

condition is false, the cell is temporarily borrowed. In this example, we combine two

114

7.1. LANGUAGE OF ASSERTIONS

access permissions, one with full permission, and one with no permission to the cell,

resulting in one with no permission. Since with no permission to an object, we cannot

ensure that it is packed or that it is in a given typestate, such information is not preserved.

An error is also reported since a “resource” might have been lost.

Listing 7.15: Assertions’ upper bound: example 2

1 Cell cell1 = new Cell();

2 Cell cell2 = null;

3 // access(cell1.0,1) ∧ packed(cell1) ∧ typeof(cell1,State "NoItem") ∧
4 // typeof(cell2,Null)

5

6 if (condition) {

7 cell2 = cell1;

8 // access(cell1.0,0) ∧ eq(cell1,cell2) ∧
9 // access(cell2.0,1) ∧ packed(cell2) ∧ typeof(cell2,State "NoItem")

10 } else {

11 cell2 = new Cell();

12 // access(cell1.0,1) ∧ packed(cell1) ∧ typeof(cell1,State "NoItem") ∧
13 // access(cell2.0,1) ∧ packed(cell2) ∧ typeof(cell2,State "NoItem")

14 }

15

16 // access(cell1.0,0) ∧
17 // access(cell2.0,1) ∧ packed(cell2) ∧ typeof(cell2,State "NoItem")

In the second example (listing 7.15), one cell is created, and stored in variable cell1,

and variable cell2 is assigned to null. If the condition is true, cell2 becomes an alias for

the cell also referenced from the local variable cell1. If the condition is false, cell2 will

reference a new cell object. Notice how the permission for the object pointed by cell2 is

the same in both branches, and that in both branches, the object is packed and is in state

NoItem. Because of that, such information is preserved. But since in the if branch, there

is no access to the object referenced by cell1, the upper bound of the two assertions will

affirm that there is no access to the object. The information about the equality between

cell1 and cell2, which was true in the if branch, is not included in the resulting assertion,

since access to the object pointed by cell1 was lost and because that equality was unknown

in the else branch. Notice how if the condition were to be false, the object referenced by

cell1 would just be lost. Because of that, an error needs to be reported, since protocol

completion might have been compromised.

115

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Listing 7.16: Assertions’ upper bound: example 3

1 Cell cell = new Cell();

2 c.setItem(new Item());

3

4 Item item = null;

5 // access(cell.0,1) ∧ packed(cell) ∧ typeof(cell,State "OneItem") ∧
6 // typeof(item,Null)

7

8 if (condition) {

9 item = cell.getItem();

10 // access(cell.0,1) ∧ access(cell.item.0,0) ∧
11 // access(item.0,1) ∧ eq(cell.item,item) ∧
12 // typeof(cell,State "OneItem") ∧ unpacked(cell) ∧
13 // typeof(item,NoProtocol) ∧ packed(item)

14 } else {

15 // Unpacking to compute the upper bound...

16

17 // access(cell.0,1) ∧ access(cell.item.0,1) ∧
18 // typeof(cell,State "OneItem") ∧ unpacked(cell) ∧
19 // packed(cell.item) ∧
20 // typeof(item,Null)

21 }

22

23 // access(cell.0,1) ∧ access(cell.item.0,0) ∧
24 // typeof(cell,State "OneItem") ∧ unpacked(cell) ∧
25 // typeof(item,NoProtocol | Null) ∧ packed(item)

In the third scenario (listing 7.16), a cell is created and an item is stored on it, and

a local variable item is declared with the value null. If the condition is true, the item

is borrowed and assigned to the local variable item. This results in the cell becoming

unpacked. If the condition is false, nothing happens, and the cell remains packed with

one item, and the local variable remains with the value null. In this scenario, the cell is

unpacked in one branch, and packed in a different branch. To compute the least upper

bound, the cell object is unpacked in the assertion from the else branch, and then the

upper bound is computed as explained before. The resulting assertion gives full access

to the cell object, no access to the item via the item field, asserts that the cell remains in

the OneItem state, and that it is packed. The local variable item may refer to the item or it

may have value null. If it refers to the item, we may also say that it is packed.

The following listing presents the ML implementation of a function that computes

the least upper bound between two assertions.

116

7.1. LANGUAGE OF ASSERTIONS

Listing 7.17: assertionsUpperBound function

1 let assertionsUpperBound (a:assertion) (b:assertion) (inv:ttype->assertion) : assertion =

2 (* Returns a new assertion without the predicates that may no longer hold *)

3 let pruneInvalid (a:assertion) : assertion = ... in

4 (* Perform the necessary unpacks *)

5 let (a, b) = unpackNecessary a b inv in

6 pruneInvalid {

7 accesses = map (fun (Access(l, f)) ->

8 accessUpperBound (Access(l, f)) (getAccess b l)

9) a.accesses;

10 equalities = filter_map (fun (Equality(x,y)) ->

11 if areEqual b x y then Some(Equality(x,y)) else None

12) a.equalities;

13 typeOfs = map (fun (TypeOf(l, t)) ->

14 typeOfUpperBound (TypeOf(l, t)) (getTypeOf b l)

15) a.typeOfs;

16 packs = a.packs @ b.packs;

17 unpacks = a.unpacks @ b.unpacks;

18 }

The implementation starts by finding the locations that are packed in one assertion

and not in the other, and then proceeds to unpack those. Given two assertions, where

locations that are packed (or unpacked) in one, are also packed (or unpacked) in the

other, the computing of the least upper bound continues: the upper bound of the access

predicates is computed, by choosing the smaller fractional values; if an equality holds

in one assertion and not in the other, it is not included in the final result; the upper

bound of the typeof predicates is computed, by producing an union type; and the lists

of pack and unpack predicates are concatenated. Finally, predicates that may no longer

hold, because some access predicate now has fractional value zero, are removed in the

pruneInvalid function.

Note that the above implementation is simplified. It does not consider equality transi-

tivity, it does not consider the fact that if two locations refer to the same object all its fields

are also the same, and it does not perform permission transfer to cover other possible

implications.

7.1.9 Nullable values and union types

In this section, we address how access permissions, packed and unpacked predicates, func-

tion in the situation a location stores the null value. Additionally, we explain how an

invariant is computed given an union type.

If a location stores the null value, we may assume that we have full access permission

to it. This is correct since we can think of null as an immutable object with no fields,

which can be arbitrarily shared. With that reasoning, we can also say that null is packed

or even unpacked, since it has no fields. This device allows us to avoid losing information

117

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

when computing the least upper bound between two assertions, one in which a value is

null and other in which it is not null (like in the third example of the previous section).

When speaking about fields of a potentially null value, we can also assert that we have

full permission to access them and that they have the Bottom type. This works because

accessing a field of a null value would result in a null pointer error anyway, which the

type-checker detects and reports in compile-time. By assuming that we have full access

to the field, we also avoid reporting two errors when an access is made.

To compute an invariant given an union type, we establish that the assertion the inv
function returns, is the result of computing the least upper bound of the invariants of

each typestate in the union. If one of the types in the union type is Null, we default for an

assertion that gives full access to any field, to avoid losing information when computing

the upper bound, using the previously explained reasoning.

To illustrate how nullable values and union types are handled in practice, suppose

there is a cell object which may or may not include an item stored inside of it and that is

packed.

access(cell.0,1)∧ packed(cell)∧ typeof (cell,State”OneItem”|State”NoItem”)

To unpack the object, we need to obtain the invariants for both states, OneItem and

NoItem. For this example, assume that the cell object has a item field where the item is

stored, and that the invariants for both states are the following, respectively.

access(item,1)∧ access(item.0,1)∧ packed(item)∧ typeof (item,NoP rotocol)

access(item,1)∧ typeof (item,Null)

Before performing the actual unpack operation, we need to compute the least upper

bound between these two assertions. Notice that in the NoItem state, the item is null.
To avoid losing information, we arbitrarily include some access and packed predicates,

resulting in the following assertion for the NoItem state.

access(item,1)∧ access(item.0,1)∧ packed(item)∧ typeof (item,Null)

Computing the least upper bound between the invariants of both states results in

what follows.

access(item,1)∧ access(item.0,1)∧ packed(item)∧ typeof (item,NoP rotocol|Null)

With the previous assertion for the type OneItem | NoItem computed, we can unpack

the cell object, resulting in the following assertion.

118

7.2. INFERENCE ALGORITHM

access(cell.0,1)∧unpacked(cell)∧ typeof (cell,State”OneItem”|State”NoItem”)∧
access(cell.item,1)∧ access(cell.item.0,1)∧
packed(cell.item)∧ typeof (cell.item,NoP rotocol|Null)

7.2 Inference algorithm

Until now, we have presented the language of assertions as if the programmer would write

them explicitly in the code. Since that could become a burden to the programmer, in this

section, we are going to present an algorithm to automatically infer the assertions from

the code. This algorithm is inspired by the work done in [30]. In that work, a constraint

system over symbolic permissions, which expresses the requirements at each program

point, is inferred and then solved using linear programming [21]. A similar approach

was also previously presented in [90].

Just like in Hoare logic [39], each statement in the code has one assertion that precedes

it, supplying the pre-conditions to be met for the code to run correctly, and one assertion

that follows it, with the facts resulting from executing that statement.

The inference algorithm analyzes each statement in the code and produces constraints.

These constraints limit the possible assertions that occur before or after each statement.

For example, for the statement iterator.next(), the assertion that precedes it must allow

the iterator variable to be read, it must indicate that the object is in a state that allows for

the next call, and the permission to modify that state must be provided. The assertion

that follows it must provide the effects of calling the next method.

After inferring the constraints, these are provided to the Z3 Solver [22] to ensure that

they are satisfiable.

The implementation was done in Kotlin and relies on the Checker Framework, like

the first version of the tool, and on the Z3 Solver. Although we use Z3, the algorithm

produces input for any SMT Solver1.

7.2.1 Implementation

The implementation of the inference algorithm is composed of four steps: a skeleton for

the assertions for each method of each class is constructed, assertions are instantiated

and associated with each expression or statement in the code, constraints are inferred on

those assertions, and then the Z3 Solver [22] is used to find a satisfiable solution.

Like discussed in previous sections, assertions are composed of access, typeof, eq, packed
and unpacked predicates. Access predicates specify the permissions for access locations (i.e.

variables, fields or objects pointed by variables or fields). Typeof predicates indicate the

1http://smtlib.cs.uiowa.edu/

119

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

current type of locations (i.e. variable or fields). Eq predicates assert that two locations
are aliases. Finally, packed and unpacked predicates indicate if the information about the

fields of an object is hidden behind an abstract view or exposed.

To build an initial structure for the assertions, each method of each class is analyzed

and all the variables and associated fields are gathered. For now, we are working with all

the objects unpacked and we are ignoring subtyping. To know the fields associated with

variables, we check the Java type of each variable (which is statically known), find the

class declaration, and gather all the declared fields. We also check the Java type of each

field and gather all the fields of those, recursively. After gathering all these, we build a

list of possible equalities that would need to be tracked, by combining two by two the

variables or fields that have compatible Java types, making sure that all equalities that

could be true by transitivity are also included in the list.

With an assertion skeleton constructed for each method, concrete assertions are in-

stantiated before and after each expression or statement in each method, with symbolic
permissions associated with each access location and symbolic types associated with each

location. Each assertion is also associated with symbolic equalities (with boolean type)

where each represents if a given equality (from the list of possible equalities) is true in

that assertion. These symbols are the values for which Z3 will try to find satisfiable values.

Additionally, assertions for the pre- and post-conditions are associated with each method.

During this instantiation, consecutive assertions are connected to track which assertions

imply which.

Following that, each expression and statement is analyzed independently and con-

straints are inferred on the assertion that precedes each and the assertion that follows

each.

Finally, the solving phase is performed in two sub-phases. First, the constraints over

the symbolic permissions and symbolic equalities are given to Z3 to find a satisfiable answer.

Using the model produced by Z3, the constraints over the symbolic types are simplified

(replacing the symbolic permissions and symbolic equalities with concrete fractional and

boolean values, respectively), and given to Z3 to find a satisfiable answer. Splitting the

solving phase in two sub-phases works because the access permissions and equalities

inferred do not depend on the types, but the inferred types do depend on these, for

example, to assert that an object has a given type, there needs to be enough permission.

Additionally, performance is improved.

The code is only considered correct if, and only if, the two solving phases report that

there are satisfiable interpretations for the constraints. If the first phase does not provide

a satisfiable model, the second phase does not occur.

7.2.2 Constraints

In this section are presented the constraints inferred when statically analyzing each piece

of code. Previously, the assertions were presented as if they were manually provided

120

7.2. INFERENCE ALGORITHM

in the code, and the access permissions were presented with concrete fractional values.

Now that we want to infer the assertions, and for the purposes of explaining the inferred

constraints, we will extend the language of assertions with variables (e.g. f1), arithmetic

(e.g. f1 + f2), number equalities and inequalities (e.g. f1 = f2 or f3 > 0), implication,

predicates and functions, which will be explained in the following sections. The variables

are the values for which the Z3 Solver will try to find satisfiable answers.

7.2.2.1 Method declarations

Each method is associated with a pre-condition and a post-condition. The requirements

needed for the method call (expressed in the pre-condition) and the results produced by

the method call (expressed in the post-condition), are inferred by analyzing the body of

the method.

To allow the tracking of the information about the objects passed in the parameters

of the object, there are ghost variables that hold references to those objects. Thus, these

ghost variables hold the same references that the parameters hold. This artifact is needed

because in Java, one can assign to the parameters of the method, which would mean that

we could lose track of the access permissions and types of the objects passed.

For example, a method which accepts two parameters (a and b), would be analyzed as

if the parameters were constant and assigned to the corresponding local variables at the

beginning of the method’s code.

Listing 7.18: Parameters with their counterparts

void method(final A param0, final B param1) {

A a = param0;

B b = param1;

// ...

}

Additionally, all the possible equalities for the given method are constrained to be

false. Without this enforcement, Z3 could arbitrarily assign true to these, meaning that all

the possible equalities would hold, which would be incorrect, because Z3 only attempts

to find a satisfiable model that makes the constraints hold.

With respect to all the other variables and fields referenced in the method, the pre-

condition provides no permissions to those. These are introduced when variables are

declared, when other methods are called, etc. . . For a method with no arguments, the

pre-condition corresponds to the empty assertion. The empty assertion is an assertion

in which no locations have permissions. It is similar to the “empty heap” assertion in

separation logic [73] and also corresponds to the true assertion.

To keep track of the permissions and the type of a value returned by a method, we

also make use of a ghost variable that represents such value. So, a return statement, is

seen as an assignment to that ghost variable.

121

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Listing 7.19: Return values

Object method() {

return new Object();

}

// Seen as:

Object method() {

returnValue = new Object();

}

7.2.2.2 Variable declarations

When a variable is declared, full access to that variable is introduced and its type is

Unknown. All the associated fields get no permissions and the Unknown type. All the

other variables and fields remain with their access permissions and types.

Listing 7.20: Constraints inferred for variable declarations

Object x;

// access(x,1)

7.2.2.3 Variable reads

To read from a variable, there needs to be read access to that variable. Reads have no side-

effects so, any fact that was true before this expression, remains true after this expression.

Listing 7.21: Constraints inferred for variable reads

// access(x,f1) ∧ f1 > 0

x;

7.2.2.4 Field reads

To read from a field, there needs to be read access to the variable or field that holds the

object, its type should be a subtype of Object (ensuring it is not null), and there needs

to be read access to the field itself. Reads have no side-effects so, any fact that was true

before this expression, remains true after this expression.

Listing 7.22: Constraints inferred for field reads

// access(x,f1) ∧ access(x.y,f2) ∧ f1 > 0 ∧ f2 > 0

// typeof(x,t1) ∧ isSubtype(t1,Object)

x.y;

7.2.2.5 Assignments

Assignments are very common in imperative programming languages and they are the

instructions that introduce aliasing so, it is important to handle these correctly. To assign

122

7.2. INFERENCE ALGORITHM

to a variable, there needs to be write access to that variable. To assign to a field, there

needs to be read access to the variable or field that holds the object, its type should be a

subtype of Object (ensuring it is not null), and there needs to be write access to the field

itself.

Since assignments overwrite the value previously stored, it is important to not lose

the “residual” access permission and type of the previous object pointed by the variable

(or field). To keep track of this “residual” information, we use a ghost local variable that

represents the previous object. With this artifact, no facts about that object are lost. To

ensure protocol completion of all objects, the state of these ghost variables is checked

at the end of methods and at the end of loops. Since a loop may contain assignments in

its body and execute an arbitrary number of times, there is no enough amount of ghost

variables that can be created to represent all possible values, so the end of loops must be

checked as well.

The use of ghost variables is a technique already used by verifiers to facilitate the

verification process. For example, they may be used to refer to a value of a variable at

some program point different from the point where an assertion is declared [40]. In this

instance, ghosts variables are used to keep track of the previous values of variables before

they get assigned to.

In practice, when analyzing the assignment, we imagine the existence of an assign-

ment to a ghost variable before the actual assignment is performed. In other words, if

we are analyzing an assignment such as x = y, we need to consider the assignment oldX
= x before. To ensure the total amount of permissions is preserved, each assignment

transfers all the access permissions and type information from the assigned expression

to the assignee, leaving the assigned expression with no permission and the Unknown
type. After the main assignment, there is an equality that holds between the assigned

expression and the assignee. With that, permissions can be transferred again if necessary

later.

Listing 7.23: Constraints inferred for an assignment

// access(x,1) ∧ access(y,f1) ∧ f1 > 0

// access(x.0,f2) ∧ access(y.0,f3)

// typeof(x,t1) ∧ typeof(y,t2)

oldX = x;

// access(oldX, 1) ∧ access(x,1) ∧ access(y,f1)

// access(oldX.0,f2) ∧ access(x.0,0) ∧ access(y.0,f3)

// typeof(oldX,t1) ∧ typeof(x,Unknown) ∧ typeof(y,t2)

x = y;

// access(oldX, 1) ∧ access(x,1) ∧ access(y,f1)

// access(oldX.0,f2) ∧ access(x.0,f3) ∧ access(y.0,0)

// typeof(oldX,t1) ∧ typeof(x,t2) ∧ typeof(y,Unknown)

// eq(x,y)

Since assignments have side-effects, it is important to infer the correct constraints to

represent the changes that are performed and to preserve information about locations

123

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

that were not modified. The permissions for the assignee and the assigned expression

remain the same, the permission and type of the object pointed by the ghost variable

in the post-condition correspond to the permission and type of the object pointed by

the assignee in the pre-condition, the permission and type of the assignee in the post-

condition correspond to the permission and type of the assigned expression, and the

assigned expression is left with no permission and the Unknown type.

To handle equalities, it is not enough to include eq(x,y) in the post-condition. To

facilitate the reasoning, we employ the assignment rule of Hoare logic [39].

{P [E/x]} x := E {P }

Figure 7.3: Assignment rule

By applying the assignment rule of Hoare logic in the two assignments presented, we

get the following intermediate assertions.

Listing 7.24: Applying the assignment rule of Hoare logic

{P [y/x][x/oldX]}

oldX = x;

{P [y/x]}

x = y;

{P }

This means that each equality holds in the post-condition if and only if it holds in

the pre-condition by replacing the assignee with the assigned expression and replacing

the ghost variable with the assignee. By looking at the previous example, we know that

eq(x,y) holds in the post-condition since eq(y,y) trivially holds in the pre-condition.

Listing 7.25: Applying the assignment rule of Hoare logic (2)

{eq(x,y)[y/x][x/oldX]}

oldX = x;

{eq(x,y)[y/x]}

x = y;

{eq(x,y)}

Listing 7.26: Applying the assignment rule of Hoare logic (3)

{eq(y,y)}

oldX = x;

{eq(y,y)}

x = y;

{eq(x,y)}

124

7.2. INFERENCE ALGORITHM

7.2.2.6 Object instantiations

When a new object is initialized, there is full access to it and to its fields, and the object is

in its initial state, according to the corresponding protocol. In the following listing, the

rules for assignment and method calls also apply but are ignored for brevity.

Listing 7.27: Constraints inferred for new objects

x = new SomeClass();

// access(x.0,1) ∧ typeof(x,initialState(SomeClass))

7.2.2.7 Method calls

In general, to call a method, an assertion that implies the pre-condition of the method

must hold. After the method call, the post-condition, and any assertion implied by it,

hold. The constraints upon the pre- and post-conditions are found when analyzing the

code of the method.

Non-static method calls, i.e. method calls on objects, are reasoned with as if the

method had one additional argument representing the this value, which means that, for

example, iterator.next() would be interpreted as next(iterator). Furthermore, when calling

methods on objects, there are some additional constraints. To call the method, the object

must be in a state that allows for that method call (i.e. available(t1,method)), and after

the method call, the object is in the state corresponding to the transition via that method

call (i.e. transition(t1,method)). If the method changes the state of the object, then full

permission to the object is also required.

Listing 7.28: Constraints inferred for mutable methods

// access(x,f1) ∧ f1 > 0 ∧ access(x.0,1)

// typeof(x,t1) ∧ available(t1,method)

x.method();

// access(x,f1) ∧ access(x.0,1)

// typeof(x,transition(t1,method))

If according to the protocol, the object remains in the same state after the method

call, then full access permission is not required (i.e. access(x.0,f2) ∧ f2 > 0 instead of

access(x.0,1)).

Listing 7.29: Constraints inferred for readable methods

// access(x,f1) ∧ f1 > 0 ∧ access(x.0,f2) ∧ f2 > 0

// typeof(x,t1) ∧ available(t1,method)

x.method();

// access(x,f1) ∧ access(x.0,1)

// typeof(x,t1)

For the method to be called, the permissions of the arguments need to be equal or

greater than the permissions of the corresponding parameters in the pre-condition, and

125

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

the types of the arguments need to be subtypes of the types of the corresponding param-

eters in the pre-condition.

Listing 7.30: Method’s requirements (1)

void fillCells(Cell param1, Cell param2) {

// access(param1.0,1)

// access(param2.0,1)

// typeof(param1,State "NoItem")

// typeof(param2,State "NoItem")

param1.setItem(new Item());

param2.setItem(new Item());

}

void main() {

Cell c1 = new Cell();

Cell c2 = new Cell();

fillCells(c1, c2);

}

In this example, to call the method fillCells, the permission for the object in param1
needs to be equal to one, the permission for the object in param2 needs to be equal to one

as well, and both objects need to be in the NoItem state. This means that the permission

for the object in c1 needs to be equal to one (because c1 corresponds to param1), the

permission for the object in c2 needs to be equal to one (because c2 corresponds to param2),

and both objects need to be in the NoItem state.

Although each argument expression corresponds in general to a single parameter,

such is not always the case. For example, if a method that requests two objects is called

with the same object in both arguments, then the permission for that object needs to

be equal or greater than the sum of the requested permissions of both parameters in

the method’s pre-condition. If this was not the case, we could potentially allow for the

duplication of permissions, which would be incorrect.

Listing 7.31: Method’s requirements (2)

void main() {

Cell c = new Cell();

fillCells(c, c);

}

In this second example, the object in c would correspond to both param1 and param2
in the fillCells method, which means that the permission for that object would need to be

at least two. This is impossible since permissions are values between zero and one and an

error would be reported as intended.

After the method is called, the permissions and types of the arguments must take into

account the effects the method produced, which include if locations were modified. A

location is considered modified if the method requested full permission to it or to any

location that reaches the first. For example, if full permission is requested for cell.item,

126

7.2. INFERENCE ALGORITHM

then cell.item.state may be modified indirectly by replacing the object in cell.item for

another one.

For each argument (and corresponding fields), if it was modified, then the corre-

sponding permissions and types are only those ensured by the method’s post-condition;

otherwise, the corresponding permissions are the subtraction between the permissions

before the method call and the permissions the method call took, and the corresponding

types remain the same.

Listing 7.32: Method’s effects (1)

void fillCells(Cell param1, Cell param2) {

// access(param1.item,1)

// access(param2.item,1)

// typeof(param1.item,Null)

// typeof(param2.item,Null)

param1.item = new Item();

param2.item = new Item();

// access(param1.item,1)

// access(param2.item,1)

// typeof(param1.item,State "S0")

// typeof(param2.item,State "S0")

}

void main() {

Cell c1 = new Cell();

Cell c2 = new Cell();

fillCells(c1, c2);

}

To discuss how the effects of methods are handled, consider this third example where

the code of setItem was inlined. The method requests full permission to the item fields in

param1 and param2, requests that they hold the null value, ensures that full permissions

remain, and that the fields hold an item in the S0 state. Since c1 corresponds to param1
and c2 corresponds to param2, and since the method requested full permission to mod-

ify their fields, the permissions and types for c1.item and c2.item are those ensured for

param1.item and param2.item (respectively) in the method’s post-condition.

The effects of methods also have an impact on which equalities hold after a method

call. For each pair of locations that may refer to the same object, we build constraints such

that: if the locations were not modified, then the equality is true if and only if it was true

before the method call; if both locations were modified, then the equality is true if and

only if that is asserted in the post-condition; if only one location was modified, then the

equality is true if and only if that is asserted in the post-condition or that can be proven

via transitivity (i.e. if now exists a location that is equal to the modified location and the

non-modified location).

127

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Listing 7.33: Method’s effects (2)

class Cell {

void setItem(Item param1) {

// access(this.item,1)

this.item = param1;

// access(this.item,1)

// eq(this.item,param1)

}

}

void main() {

Cell cell = new Cell();

Item item = new Item();

cell.setItem(item);

// eq(cell.item,item)

}

In this example, a cell and an item are instantiated, and then the setItem method

is called to store the item in the cell. This method requires full permission to write

into the item field and ensures that the field holds the item passed in the parameter (i.e.

eq(this.item,param1)). Since cell.item corresponds to this.item, which is modified, and item
corresponds to param1, the equality between cell.item and item in the main context holds

because the equality between this.item and param1 holds in the post-condition of the

setItem method.

Listing 7.34: Method’s effects (3)

void main() {

Cell cell = new Cell();

Item item = new Item();

Item item2 = item;

// eq(item,item2)

cell.setItem(item);

// eq(item,item2)

// eq(cell.item,item)

// eq(cell.item,item2)

}

Suppose now that there is an alias for the item object in variable item2 (i.e. eq(item,item2)).
The equality between item and item2 holds after the method because it holds before the

method and none of those variables was modified. The equality between cell.item and item
holds after the method call as previously explained. Finally, the equality between cell.item
and item2 after the method call is proven by transitivity, because there is a variable (i.e.

item) which is now equal to both cell.item and item2.

128

7.2. INFERENCE ALGORITHM

7.2.2.8 Threads

With our tool, threads are associated automatically with a protocol with three states:

not_started, started and end. When a thread object is instantiated, it is in the not_started
state. In this state, only the start method is available which, when called, changes the

state of the thread to started. Only in the started state, the join method is available, which

waits for the thread to finish, and changes the state of the thread to the final state, end.

Currently, threads are only supported if instantiated with a lambda expression and if

used in the local context where they were created.

The pre- and post-conditions of the start and join methods are inferred from the pre-

and post-conditions of the associated lambda expression. The pre-condition of start is

the pre-condition of the lambda expression. The post-condition of start is such that the

permissions requested by the thread are not returned to the caller. The pre-condition of

join requires nothing (except that the thread is in the started state and full permission

is available to it). The post-condition of join corresponds to the post-condition of the

lambda expression, to allow for the permissions to be returned to the caller.

7.2.2.9 Control flow statements

In Java, statements are generally executed from top to bottom, in the order that they

appear. However, control flow statements are used to break up the flow of execution.

These include decision-making statements (if-else, switch), looping statements (for, while,

do-while), and branching statements (break, continue, return) [18].

To ease the reasoning about the flow of execution of programs, each method declara-

tion is analyzed not by visiting each node in the abstract syntax tree, but by visiting each

node in a control flow graph [3], which is built by the Checker Framework.

As previously mentioned, each expression or statement in the code has an assertion

that precedes it and an assertion that follows it. For expressions that evaluate to a boolean

value, there are two assertions that follow it, one for when the expression is true, and other

for when the expression is false. In terms of the control flow graph, this means that each

node in the graph is associated with an assertion that precedes it and an assertion that

follows it (or two assertions that follow it). Additionally, the assertions that follow each

node, imply the assertions that precede the successor nodes (i.e. nodes that can be reached

by following the out-edges).

For example, when considering an if-else statement, we know that the assertion that

follows it is the result of computing the upper bound of the assertions resulting from the

if and the else branches (represented as a1 and a2, respectively, in the following listing).

129

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Listing 7.35: The assertion that follows an if-else statement

if (condition) {

...

// a1

} else {

...

// a2

}

// assertionsUpperBound(a1, a2)

Another way to look at an if-else statement is to consider that the assertion resulting

from the if branch and the assertion resulting from the else branch need both to imply

the assertion that immediately follows the if-else statement (represented as a3, in the

following listing).

Listing 7.36: The assertion that follows an if-else statement (2)

if (condition) {

...

// a1

} else {

...

// a2

}

// (a1 =⇒ a3)∧ (a2 =⇒ a3)

// a3

The analysis of loop statements especially benefits from looking at the code via a

control flow graph. In Java there are three types of loop statements: while, do-while, and

for [48]. In a while loop, the condition is evaluated, and if true, the loop body is executed

and control returns to the condition, otherwise, the loop exits. In a do-while loop, the loop

body is executed at least once, and iterations continue until the condition is false. In the

for loop, the declarations are executed (if any), and while the condition is true, the loop

body and then the update expression are executed.

Loops may contain break and continue statements. When a break statement is executed,

control is transferred to the enclosing labeled statement (or the innermost enclosing while,

do-while, or for statement, if no label is given) and immediately completes [48]. When a

continue statement is executed, control is transferred to the enclosing labeled statement

(or the innermost enclosing while, do-while, or for statement, if no label is given) and

immediately ends the current iteration and begins a new one (starting with the evaluation

of the condition) [48].

An example of a control flow graph of a while statement, without branching state-

ments, can be seen in figure 7.4.

Let pre(Cond) be the pre-condition for Condition, and post(CondTrue) and post(CondFalse)
be the post-conditions for when Condition evaluates to true or false (respectively), and let

130

7.2. INFERENCE ALGORITHM

Condition

Loop Body

[True][False]

Figure 7.4: While’s control flow graph

pre(LoopBody) and post(LoopBody) be the pre- and post-conditions (respectively) for the

Loop Body.

For the while loop, the inference algorithm will produce constraints such that pre(Cond)
is implied by the assertion that holds before executing the loop statement, post(CondTrue)
implies pre(LoopBody), post(LoopBody) implies pre(Cond), and post(CondFalse) implies the

assertion that holds when the loop exits.

If we look at the while rule in Hoare logic [39], we may observe the similarities.

{B∧ P } S {P }
{P } while B do S done {¬B∧ P }

Figure 7.5: While rule

The assertion B∧ P corresponds to post(CondTrue) and pre(LoopBody), P corresponds

to pre(Cond) and post(LoopBody), and ¬B∧ P corresponds to post(CondFalse).
What we are left to define are the specific constraints that together build the implica-

tions between assertions.

7.2.2.10 Implications

As previously explained, one of the initial phases of the inference algorithm is responsible

for connecting consecutive assertions with implications. Because of the different flows

of execution that are possible in programs, an assertion might be implied by more than

one assertion. For example, as we seen, the assertion that immediately follows an if-else
statement, is implied by the assertions that result from the if and else branches.

131

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

In this section, we will explain which concrete constraints are produced so that the

implication between assertions is enforced while allowing for the transferring of permis-

sions.

For the purposes of explanation, we will be using an if-else statement as example.

Let x and y be two variables which may point to an object with a z field. Let tail be

the assertion that follows the statement and let headif and headelse be the assertions that

result from the if and else branches, respectively, which imply tail (i.e. headif =⇒ tail

and headelse =⇒ tail).

headif ⇐⇒

access(x,f1)∧ access(x.0, f2)∧ access(x.z, f3)∧

access(y,f4)∧ access(y.0, f5)∧ access(y.z, f6)∧

typeof (x, t1)∧ typeof (y, t2)

headelse ⇐⇒

access(x,f7)∧ access(x.0, f8)∧ access(x.z, f9)∧

access(y,f10)∧ access(y.0, f11)∧ access(y.z, f12)∧

typeof (x, t3)∧ typeof (y, t4)

tail ⇐⇒

access(x,f13)∧ access(x.0, f14)∧ access(x.z, f15)∧

access(y,f16)∧ access(y.0, f17)∧ access(y.z, f18)∧

typeof (x, t5)∧ typeof (y, t6)

For each one of the variables in tail, the access permission of each is the minimum

between the access permissions of the same variable in headif and headelse. For example,

if the permission for variable x in headif is f1, and the permission in headelse is f7, then

the permission for x in tail (i.e. f13) is min(f1, f7).

f13 =min(f1, f7)

f16 =min(f4, f10)

For each one of the fields in tail, the access permission of each needs to consider the

possible existence of aliases between the objects. For example, if the permission for field

x.z in headif is f3, and the permission in headelse is f9, and no aliases for x are known,

132

7.2. INFERENCE ALGORITHM

then the permission for x.z in tail (i.e. f15) is min(f3, f9). If, for example, y is an alias of x

(which means that y.z and x.z are the same location), then the following holds:

min(f3, f9) +min(f6, f12) = f15 + f18

Which is equivalent to:

(min(f3, f9)− f15) + (min(f6, f12)− f18) = 0

With this constraint, f15 and f18 are not fixed, thus allowing the transferring of permis-

sions. We also note that each term of the sum is the subtraction between the minimum of

the permissions in headif and headelse, and the permission in tail, which together amount

to zero, meaning that there is conservation of permissions between aliases. By looking

at this pattern, we realize that we can use the set of possible equalities (computed in the

initial phases of the algorithm) and build all the necessary formulas.

Assuming there can be no other aliases for x and y, we would produce the following

constraint when constraining the access permission for x.z:

(min(f3, f9)− f15) + (if eq(x,y) then min(f6, f12)− f18 else 0) = 0

And we would produce the following constraint when constraining the access permis-

sion for y.z:

(min(f6, f12)− f18) + (if eq(y,x) then min(f3, f9)− f15 else 0) = 0

In practice, if eq(x,y) were true in both headif and headelse, then the constraints would

correspond to:

(min(f3, f9)− f15) + (min(f6, f12)− f18) = 0

(min(f6, f12)− f18) + (min(f3, f9)− f15) = 0

If eq(x,y) were false in headif or in headelse, then the constraints would correspond to:

min(f3, f9) = f15

min(f6, f12) = f18

For each one of the variables and fields in tail, the access permission of each to the

object pointed by each, follows the same reasoning as explained before. The difference

is that instead of talking about the permission to a field, we would be talking about

133

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

the permission for the object pointed by a variable or field. For example, given that

the permission for the object pointed by x is f2, f8 and f14 in headif , headelse and tail

(respectively), and the permission for the object pointed by y is f5, f11 and f17 in headif ,

headelse and tail (respectively), then the following constraints would be produced:

(min(f2, f8)− f14) + (if eq(x,y) then min(f5, f11)− f17 else 0) = 0

(min(f5, f11)− f17) + (if eq(y,x) then min(f2, f8)− f14 else 0) = 0

For each one of the variables and fields in tail, the type of each is, in general, the

union of the types in headif and headelse. If aliases are known in headif and headelse, then

the type is refined by intersecting with the types of the aliases. For example, given two

variables x and y, and given that the type of x is t1, t3 and t5 in headif , headelse and tail

(respectively), and the type of y is t2, t4 and t6 in headif , headelse and tail (respectively),

then the following constraints would be produced:

intersection(union(t1, t3), if eq(x,y) then union(t2, t4) else Unknown) = t5

intersection(union(t2, t4), if eq(y,x) then union(t1, t3) else Unknown) = t6

In practice, if eq(x,y) were true in both headif and headelse, then the constraints would

correspond to:

intersection(union(t1, t3), union(t2, t4)) = t5

intersection(union(t2, t4), union(t1, t3)) = t6

If eq(x,y) were false in headif or in headelse, then the constraints would correspond to

the following. Note that intersection(t,Unknown) is always t.

union(t1, t3) = t5

union(t2, t4) = t6

For each pair of possible equalities between variables and fields, an equality holds in

tail if it holds both in headif and headelse.

Additionally, to make sure that the assertions remain well-formed after some permis-

sion transfer has happened, and following the properties presented in section 7.1.3, we

constraint the symbolic permissions and the symbolic types in the tail assertion so that:

• An access permission greater than zero to the object pointed by a variable or field

134

7.2. INFERENCE ALGORITHM

is only available if the permission to the variable or field is also greater than zero

(property 1);

f13 = 0 =⇒ f14 = 0

f16 = 0 =⇒ f17 = 0

• An access permission greater than zero to a field is only available if the permission

to the variable or field that holds the corresponding object is also greater than zero

(property 2);

f13 = 0 =⇒ f15 = 0

f16 = 0 =⇒ f18 = 0

• An equality only holds if there are permissions greater than zero for the variables

or fields the predicate refers to (property 3);

• A type may be Null or Primitive only if there is a permission greater than zero for

the corresponding variable and field. Otherwise, the type is Unknown (properties 4

and 5);

• A type may be an object type only if there is a permission greater than zero for the

variable and field that holds the reference to that object and if there is a permission

greater than zero to the object itself. Otherwise, the type is Unknown (properties 4

and 6).

xIsObject = ¬isSubtype(union(t1, t3),Null | P rimitive)
yIsObject = ¬isSubtype(union(t2, t4),Null | P rimitive)

f13 = 0∨ (f14 = 0∧ xIsObject) =⇒ t5 =Unknown

f16 = 0∨ (f17 = 0∧ yIsObject) =⇒ t6 =Unknown

Properties 7, 8 and 9, which speak about the packed and unpacked predicates, always

hold because in the current implementation, objects are always unpacked. Property 10,

which ensures that the sum of the access permissions that refer to the same memory

location do not exceed one, is enforced by the constraints presented before, which pre-

serve the total amount of permissions. In conclusion, as long as the assertions headif and

headelse are well-formed, tail will always be well-formed.

7.2.3 Implementation details

In this section, we will discuss some details regarding the implementation of the inference

algorithm that we not explained before for simplicity.

135

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

7.2.3.1 Expressions

Expressions in Java may evaluate to object references for which we need to track the access

permissions and types. In the implementation, expressions are like variables or fields,

which means that they appear in the assertions like any other variable or field.

But since, for example, typeof("new Object()",Object) was not considered as part of the

language of assertions, we can instead suppose the existence of ghost variables that are

unique for each expression and that track all the permissions and types of each expression.

Listing 7.37: Tracking permissions and types of expressions

expr1 = new Object()

// access(expr1,1) ∧ access(expr1.0,1) ∧
// typeof(expr1,Object)

7.2.3.2 Analysis of expressions

In the first version of the tool, the result of analyzing each expression was composed by

a then store and an else store, which include the type information that is true when the

expression is true or when it is false, respectively. In this version of the tool, a similar

thing is employed. The difference is that instead of two stores, we have two assertions. If

the expression does not evaluate to a boolean value, then these two assertions are actually

the same.

7.2.3.3 Z3 definitions

For Z3 [22] to solve the constraints, it requires some definitions.

Each symbolic fraction is associated with a constant declaration of a real value, con-

strained to be between zero and one. Since real values are represented in Z3 as fractional

values, precision is not lost.

Listing 7.38: Symbolic fraction in Z3

1 (declare-const f20 Real)

2 (assert (<= 0 f20))

3 (assert (<= f20 1))

Each symbolic equality is associated with a constant declaration of a boolean value

which is true when an equality between two locations holds in a given assertion. This

implies that for each assertion and for each pair of possible equalities, there is an unique

boolean value that expresses if that equality holds.

Listing 7.39: Symbolic equality in Z3

1 (declare-const eq4 Bool)

During the implementation process, we attempted to represent types in various ways.

First we attempted to define constants for each singleton type, use a function with two

136

7.2. INFERENCE ALGORITHM

arguments to represent the union between two types, and then define some properties

over that function. Then we tried to represent union types with a list of singleton types.

And finally, we attempted to represent union types with a set of singleton types. Unfortu-

nately, for each one of these experiments, Z3 was too slow in proving properties over the

subtyping relationships between types. Because of this, it was likely that the inference

algorithm would perform poorly in trying to find satisfiable types that would fulfill the

subtyping constraints.

For these reasons, each symbolic type is associated with a constant declaration of a

value that belongs to an enumeration. This enumeration includes values representing

each one of the singleton types and values representing some union types. To avoid the

need to compute all the possible unions types, the set of union types that we consider are

those that are mentioned in the constraints produced. This seems to be a good compro-

mise between performance and precision. With this approach, all the types considered all

discretely defined, allowing us to define functions over types for all the possible combi-

nations using the Z3 API. The functions over types used in the Z3 context are: isSubtype,

union and intersection.

Listing 7.40: Symbolic types in Z3

1 (declare-datatypes () ((Type

2 Unknown Bottom Object NoProtocol Null Primitive Ended State1 State0 Union_State1_State2

3)))

4 (assert (distinct

5 Unknown Bottom Object NoProtocol Null Primitive Ended State1 State0 Union_State1_State2

6))

7 (declare-const t15 Type)

To define the isSubtype function, we combine the types in pairs and for each pair we

call the isSubtype function written in Kotlin, and place the result (true or false) directly

in the function definition.

Listing 7.41: isSubtype function in Z3

1 (define-fun isSubtype ((a Type) (b Type)) Bool

2 (and

3 (=> (= a Unknown) (and

4 (=> (= b Unknown) true)

5 (=> (= b Bottom) false)

6 (=> (= b Object) false) ...

7))

8 (=> (= a State1) (and

9 (=> (= b State0) false)

10 (=> (= b Union_State1_State2) true) ...

11))

12 ...

13)

14)

137

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

To define the union function, we combine the types in pairs and for each pair we call

the union function written in Kotlin. For each result, we check if it belongs to the list

of types considered. If it does, the result is placed directly in the function definition.

Otherwise, the closest supertype that does belong in the list is placed in the function

definition. This is important because we are not considering all the possible types, just

an approximation.

Listing 7.42: union function in Z3

1 (define-fun union ((a Type) (b Type)) Type

2 (ite (= a Unknown)

3 (ite (= b Unknown)

4 Unknown

5 (ite (= b Object)

6 Unknown ...

7)

8)

9 (ite (= a State1)

10 (ite (= b State0)

11 Union_State1_State2 ...

12) ...

13) ...

14)

15)

To define the intersection function, we combine the types in pairs and for each pair

we call the intersection function written in Kotlin. For each result, we check if it belongs

to the list of types considered. If it does, the result is placed directly in the function

definition. Otherwise, the closest supertype that does belong in the list is placed in the

function definition.

Listing 7.43: intersection function in Z3

1 (define-fun intersection ((a Type) (b Type)) Type

2 (ite (= a Unknown)

3 (ite (= b Unknown)

4 Unknown

5 (ite (= b Object)

6 Object ...

7)

8)

9 (ite (= a State1)

10 (ite (= b State0)

11 Bottom ...

12) ...

13) ...

14)

15)

Previously, to explain which constraints are produced when analyzing method calls on

138

7.2. INFERENCE ALGORITHM

objects, we used the available and transition functions. The available function indicates if a

method is available in a given typestate. The transition function, given an initial typestate

and a method, returns the typestate to which the object transits via that method call. The

available function does not need to be defined in Z3. When analyzing the method call,

we pre-compute the typestates in which the object must be in, and constraint the current

type to be subtype of the union of those typestates. To handle transitions, specialized

transition functions are defined in Z3 for each method, which given the current typestate,

returns the new typestate resulting from that method call. Note that these specialized

functions only need to consider as input the typestates in which the method is available

to be called.

Listing 7.44: Specialized transition function for the setItem method in Z3

1 (define-fun transition_setItem ((a Type)) Type

2 (ite (= a State_NoItem)

3 State_OneItem

4 (ite (= a State_OneItem)

5 State_OneItem

6 (ite (= a Union_NoItem_OneItem)

7 State_OneItem

8 Unknown

9)

10)

11)

12)

7.2.4 Limitations of the implementation

The current implementation of the inference algorithm includes some limitations. Cur-

rently, all objects are considered to be unpacked. This causes problems if for example

we want to work with recursive data structures, like a linked-list, where each node has a

reference for the following node via a field (e.g. next). The problem is that it is impossible

to gather all the possible “chains” (e.g. node.next.next) to build the structure of the asser-

tions, since a linked-list may have an arbitrary number of connected nodes. The ideal

solution would be to infer when an object may be packed and when it must be unpacked,

but we leave that as subject of future work.

Another limitation is that the analysis of threads only works if the thread is started

and waited upon in the context in which it was created. If a thread object is passed to

another method, the information about which permissions it retains (upon the start call)

and which permissions it gives back (upon the join call) is lost.

Like mentioned, subtyping is not yet considered. When analyzing a method call, the

pre-conditions and post-conditions of the method are obtained by looking at the pre-

and post-conditions associated with the method declaration (instantiated in the initial

phases of the algorithm). This ignores dynamic method dispatch in Java, where the actual

139

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

method to be called is resolved at runtime, rather than compile-time.

Finally, we need to investigate how to better report errors to the programmer. When

Z3 reports that it did not find any satisfiable solution for the constraints, it returns a set of

constraints that together produce a contradiction. We would like to take this information

and indicate to the programmer the code location where the error is. Assuming that this

set of constraints is simplified to highlight the concrete contradiction, and by tracking in

which code locations certain constraints were inferred, we can give the programmer an

approximation of where the error lies.

7.2.5 Protocol inference

Although the programmer is free from explicitly writing all the assertions, it still needs

to write the protocol for classes. It would be possible to try to infer the protocol itself,

by finding which methods’ post-conditions imply the pre-conditions of other methods,

and building the protocol that allows for those sequences of method calls, following a

strategy like [85].

The problem with inferring the protocol specification is that we might hit, what some

would call, the Assertion Inference Paradox [31]. In general, a program is correct if the

implementation satisfies the specification. But if we also infer the specification, we might

be reasoning in a circle. Nonetheless, inferring the specification is useful to compare it

for consistency with the intended behavior. Additionally, the inference process might

produce an inconsistent specification, which can reveal a flaw in the implementation.

Another concern is that inferring the protocols would not be useful given the current

language of assertions. This language of assertions deals with access permissions, aliasing

and the types of objects, and it is not expressive enough to, for example, assert some

properties over integers values. Because of that, it is likely that the inferred protocols

would allow for many undesired sequences of method calls, which the programmer would

need to remove anyway.

Considering the points presented, we still believe that inferring the protocols is use-

ful, providing a base specification from which the programmer can work, but given the

current expressiveness of the language, we leave this topic as subject of future work.

7.3 Comparison with other languages

The following tables compare the access annotations from different languages as they

relate with how one can require access to some part of the memory. As one can observe,

our language is not completely new and it is inspired by already existent ideas, even if

the notation is slightly different.

The annotations in table 7.1 are used when one requires full permission to a memory

location, so that it can be read and modified.

140

7.3. COMPARISON WITH OTHER LANGUAGES

Our language Spec# Chalice Dafny VeriFast
access(x,1) modifies x acc(x) modifies `x x 7→ _

access(x.y,1) modifies x.y acc(x.y) modifies x`y x.y 7→ _

Table 7.1: Full access annotations

Our language (0 < f < 1) Chalice VeriFast (0 < f < 1)
access(x,f) rd(x) [f]x 7→ _

access(x.y,f) rd(x.y) [f]x.y 7→ _

Table 7.2: Read access annotations

The annotations in table 7.2 are used when one only needs read permission to a

memory location.

Additionally, the concept of packing and unpacking, as well as unpacking of poten-

tially aliased objects, can be replicated in VeriFast. One just needs to consider the use of

an Invariant predicate which represents the object being packed.

Listing 7.45: Summing two number objects: VeriFast

1 //@ predicate Invariant(Number num; int value) = num.value |-> value;

2

3 int sum(Number a, Number b)

4 //@requires [1/2]Invariant(a, ?i1) &*& [1/2]Invariant(b, ?i2);

5 //@ensures [1/2]Invariant(a, i1) &*& [1/2]Invariant(b, i2);

6 {

7 //@assert [?f1]a.value |-> _ &*& [?f2]b.value |-> _;

8 //@assert f1 == 1/2 &*& f2 == 1/2;

9 return a.value + b.value;

10 }

Consider for example two Number objects which store an integer value in their value
fields, and a sum method which returns the sum of those two integer values. The method

requires that the invariants of the objects be meet with fraction 1/2, allowing the same

object to be passed in both parameters. This implies that we have 1/2 permission to the

heap location corresponding to the field, which is verified by the assertions in lines 7 and

8. Similar annotations in our language are shown in listing 7.46.

Listing 7.46: Summing two number objects: Language of assertions

1 int sum(Number a, Number b)

2 //requires: access(a.0, 1/2) ∧ packed(a) ∧ access(b.0, 1/2) ∧ packed(b)

3 //ensures: access(a.0, 1/2) ∧ packed(a) ∧ access(b.0, 1/2) ∧ packed(b)

4 {

5 // access(a.0, 1/2) ∧ unpacked(a) ∧ access(a.value, 1/2)

6 // access(b.0, 1/2) ∧ unpacked(b) ∧ access(b.value, 1/2)

7 return a.value + b.value;

8 }

141

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Even though it is possible to replicate ideas of our language of assertions in other lan-

guages and tools, our tool has a particular focus on providing typestate-oriented features

without much annotation burden, thanks to the inference algorithm. Additionally, our

tool ensures that the protocols of objects are completed. To our knowledge, this is not sup-

ported by mainstream tools, even those which allow for very expressive specifications.

7.4 Working examples

In this section are presented six examples: four with well-behaved code (i.e. methods

are called in correct order, there are no data-races at the level of variables or fields, and

there is no interference between concurrent calls of methods that change the state of the

object), and two with code that is not well-behaved, because it allows for interference.

These examples make use of a cell object and an item object, like the motivating

example in section 5.5. The protocol of the item was slightly modified by the addition

of the getState method that returns the current value of the state field, while leaving the

object in the same typestate.

The inferred assertions for well-behaved code are presented as comments. Note that

when an access predicate is not mentioned, it is assumed that there is no permission to

that access location, and when a typeof predicate is not mentioned, it is assumed that the

asserted type is Unknown. Additionally, if an equality is not mentioned, it means that it

does not hold in that program point. When the code is not well-behaved, no assertions

are inferred.

All six examples start with the initialization of a cell object, the initialization of an

item object, which is stored inside the cell via the setItem method, and the retrieval of

the stored item via the getItem, which is then assigned to the local variable item. For

the well-behaved examples, the inferred assertions for the first three code statements are

presented as comments in listings 7.47, 7.48, and 7.49.

Listing 7.47: Examples introduction (Part 1)

1 Cell cell = new Cell();

2 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "NoItem")

3 // access(cell.item,1)

After the cell object is initialized and assigned to the cell variable (line 1), there is full

access to the variable, full access to the object pointed by the variable (i.e. the cell), the

cell is in the NoItem state, and there is full permission to the item field of the cell. At

initialization, the field has the null value, but since the field will be overwritten in the

next statement, Z3 just attributed the Unknown type instead of Null. This is correct since

Unknown is the supertype of all types.

142

7.4. WORKING EXAMPLES

Listing 7.48: Examples introduction (Part 2)

5 cell.setItem(new Item());

6 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

7 // access(cell.item,1) ∧ access(cell.item.0,1) ∧ typeof(cell.item,State "S0")

8 // access(cell.item.state,1) ∧ typeof(cell.item.state,Primitive)

After the item is stored on the cell (line 5), there is still full permission to the cell
variable and the cell object, but now the cell is in the OneItem state (line 7). There is full

permission to the item field, and full permission to the item object, which is the S0 state

(line 8). Additionally, there is full permission to the state field of the item, which holds a

primitive value (line 8).

Listing 7.49: Examples introduction (Part 3)

10 Item item = cell.getItem();

11 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

12 // access(cell.item,1)

13 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S0")

14 // access(item.state,1) ∧ typeof(item.state,Primitive)

15 // eq(item,cell.item)

After the item is retrieved from the cell (line 10), there is still full permission to the

cell variable and the cell object, the cell remains in the OneItem state, and there is full

permission to the item field (lines 11 and 12). However, the permission to the item object

is now available via the item variable instead of the item field on the cell (lines 13 and

14), and an equality between both is now asserted (line 15). Notice how the total amount

of permissions is preserved, without duplication, and the fact that item and cell.item are

aliases is known.

Listing 7.50: Example 1 (Part 1)

1 item.changeState();

2 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S1")

3 // access(item.state,1) ∧ typeof(item.state,Primitive)

4 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

5 // access(cell.item,1)

6 // eq(item,cell.item)

7

8 Item item2 = cell.getItem();

9 // access(item,1)

10 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

11 // access(cell.item,1)

12 // access(item2,1) ∧ access(item2.0,1) ∧ typeof(item2,State "S1")

13 // access(item2.state,1) ∧ typeof(item2.state,Primitive)

14 // eq(item,item2) ∧ eq(item,cell.item) ∧ eq(cell.item,item2)

143

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Listing 7.51: Example 1 (Part 2)

16 item2.changeState();

17 // access(item,1)

18 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

19 // access(cell.item,1)

20 // access(item2,1) ∧ access(item2.0,1) ∧ typeof(item2,State "S1")

21 // access(item2.state,1) ∧ typeof(item2.state,Primitive)

22 // eq(item,item2) ∧ eq(item,cell.item) ∧ eq(cell.item,item2)

In the first example (listings 7.50 and 7.51), with the item object now available in

the item local variable, the state of the item is changed from S0 to S1 (line 1). All the

permissions remains the same and the cell remains in the same state. Then the item

is retrieved again from the cell, being now referenced from the item2 variable as well

(line 8), which means that there is aliasing between cell.item, item and item2. Since in the

following statement there is an attempt to change the state of the item again (line 16), but

now via the item2 variable, the permissions concerning the item are transferred to item2
to allow for that operation. Since the item was already in the S1 state, it remains in the

S1 state according to the protocol.

Listing 7.52: Example 2 (Part 1)

1 Thread t = new Thread(() -> {

2 // access(item,3/4) ∧ access(item.0,1) ∧ typeof(item,State "S0")

3 // access(item.state,1) ∧ typeof(item.state,Primitive)

4 item.changeState();

5 // access(item,3/4) ∧ access(item.0,1) ∧ typeof(item,State "S1")

6 // access(item.state,1) ∧ typeof(item.state,Primitive)

7 });

8

9 // access(t,1) ∧ access(t.0,1) ∧ typeof(t,State "NotStarted")

10 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

11 // access(cell.item,1)

12 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S0")

13 // access(item.state,1) ∧ typeof(item.state,Primitive)

14 // eq(cell.item,item)

In the second example (listings 7.52 and 7.53), with the item object available in the

item local variable, the state of the item will be changed from S0 to S1 in a thread (line 4).

All the permissions and types remain the same after the thread object was created (with

the exception of the thread being introduced in the NotStarted state), since threads only

start upon the start call.

144

7.4. WORKING EXAMPLES

Listing 7.53: Example 2 (Part 2)

16 t.start();

17

18 // access(t,1) ∧ access(t.0,1) ∧ typeof(t,State "Started")

19 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

20 // access(cell.item,1)

21 // access(item,1/4)

22 // eq(cell.item,item)

23

24 t.join();

25

26 // access(t,1) ∧ access(t.0,1) ∧ typeof(t,Ended)

27 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

28 // access(cell.item,1)

29 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S1")

30 // access(item.state,1)

31 // eq(cell.item,item)

32

33 Item item2 = cell.getItem();

34

35 // access(t,1) ∧ access(t.0,1) ∧ typeof(t,Ended)

36 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

37 // access(cell.item,1)

38 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S1")

39 // access(item.state,1) ∧ typeof(item.state,Primitive)

40 // access(item2,1)

41 // eq(cell.item,item) ∧ eq(item2,item) ∧ eq(item2,cell.item)

42

43 item2.changeState();

44

45 // access(t,1) ∧ access(t.0,1) ∧ typeof(t,Ended)

46 // access(cell,1) ∧ access(cell.0,1) ∧ typeof(cell,State "OneItem")

47 // access(cell.item,1) ∧ access(item,1)

48 // access(item2,1) ∧ access(item2.0,1) ∧ typeof(item2,State "S1")

49 // access(item2.state,1)

50 // eq(cell.item,item) ∧ eq(item2,item) ∧ eq(item2,cell.item)

After the thread is started (line 16), 3/4 of permission is used in the thread to read

the item variable, and only 1/4 is left in the current context. Additionally, the thread

requests full access to the item object and its state field, so that its typestate and field

can change. The thread is now in the Started state. After that, the join method is called

(line 24), which waits for the thread to finish. After the thread finishes, full permission

to the item variable, the item object and its field are restored. Following that, like in the

previous example, the item is retrieved again from the cell and used (lines 33 and 43).

The operation is allowed because full permission to the item is available.

145

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Listing 7.54: Example 3

1 Thread t = new Thread(() -> {

2 item.changeState();

3 });

4

5 t.start();

6

7 Item item2 = cell.getItem();

8

9 item2.changeState();

10

11 t.join();

The third example (listing 7.54) is similar to the second example except there is an

attempt to change the state of the item before waiting for the thread to finish (line 9).

This code is not well-behaved because it presents interference: both the thread and the

main thread attempt to change the state of the item concurrently. This is detected by the

fact that the thread as requested full permission to the item but has not given it back yet.

This creates a contradiction in the constraints, since the permission for the item in the

main thread before line 9 is zero, while one is required.

Listing 7.55: Example 4 (Part 1)

1 Thread t1 = new Thread(() -> {

2 // access(item,1/4) ∧ access(item.0,1) ∧ typeof(item,State "S0" | State "S1")

3 // access(item.state,1) ∧ typeof(item.state,Primitive)

4 item.changeState();

5 // access(item,1/4) ∧ access(item.0,1) ∧ typeof(item,State "S1")

6 // access(item.state,1) ∧ typeof(item.state,Primitive)

7 });

8

9 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,State "NotStarted")

10 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S0")

11 // access(item.state,1) ∧ typeof(item.state,Primitive)

12

13 Thread t2 = new Thread(() -> {

14 // access(item,1/4) ∧ access(item.0,1) ∧ typeof(item,State "S0" | State "S1")

15 // access(item.state,1) ∧ typeof(item.state,Primitive)

16 item.changeState();

17 // access(item,1/4) ∧ access(item.0,1) ∧ typeof(item,State "S1")

18 // access(item.state,1) ∧ typeof(item.state,Primitive)

19 });

20

21 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,State "NotStarted")

22 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,State "NotStarted")

23 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S0")

24 // access(item.state,1) ∧ typeof(item.state,Primitive)

25

146

7.4. WORKING EXAMPLES

In the fourth example (listings 7.55 and 7.56), two threads are instantiated (lines 1

and 13), and both of them will attempt to change the state of the item (lines 4 and 16).

Additionally, both threads require 1/4 of permission to read from the item variable and

require full permission to the item object to change its state.

Listing 7.56: Example 4 (Part 2)

26 t1.start();

27

28 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,State "Started")

29 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,State "NotStarted")

30 // access(item,3/4)

31

32 t1.join();

33

34 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,Ended)

35 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,State "NotStarted")

36 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S1")

37 // access(item.state,1)

38

39 t2.start();

40

41 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,Ended)

42 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,State "Started")

43 // access(item,3/4)

44

45 t2.join();

46

47 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,Ended)

48 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,Ended)

49 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S1")

50 // access(item.state,1)

The thread t1 is started first (line 26). Notice how only 3/4 of permission is left for

the item variable and no permission is available for the item object in the main thread.

After that, the join method is called on t1, which restores full permission to the item (line

32). Following that, the thread t2 can be started (line 39) and waited upon (line 45). The

code is well-behaved because the two threads do not concur.

147

CHAPTER 7. TYPESTATE-ORIENTED TOOL: VERSION 2

Listing 7.57: Example 5

1 Thread t1 = new Thread(() -> {

2 item.changeState();

3 });

4 Thread t2 = new Thread(() -> {

5 item.changeState();

6 });

7

8 t1.start();

9 t2.start();

10

11 t1.join();

12 t2.join();

The fifth example (listing 7.57) is similar to the previous one except that the two

threads will concur. Notice how t1 is started and then t2 is also started without waiting

for the thread t1 to finish. Since both of them will attempt to change the state of the item

concurrently, thus requiring both full permission to it, the inference algorithm does not

find any satisfiable answer, as expected.

Listing 7.58: Example 6 (Part 1)

1 Thread t1 = new Thread(() -> {

2 // access(item,1/6) ∧ access(item.0,1/6) ∧ typeof(item,State "S0")

3 // access(item.state,1/6) ∧ typeof(item.state,Primitive)

4 item.getState();

5 // access(item,1/6) ∧ access(item.0,1/6) ∧ typeof(item,State "S0")

6 // access(item.state,1/6) ∧ typeof(item.state,Primitive)

7 });

8

9 Thread t2 = new Thread(() -> {

10 // access(item,1/6) ∧ access(item.0,1/6) ∧ typeof(item,State "S0")

11 // access(item.state,1/6) ∧ typeof(item.state,Primitive)

12 item.getState();

13 // access(item,1/6) ∧ access(item.0,1/6) ∧ typeof(item,State "S0")

14 // access(item.state,1/6) ∧ typeof(item.state,Primitive)

15 });

16

17 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,State "NotStarted")

18 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,State "NotStarted")

19 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S0")

20 // access(item.state,1/3) ∧ typeof(item.state,Primitive)

The sixth example (listings 7.58 and 7.59) is similar to the previous one except instead

of both threads trying to change the state of the item, they only attempt to read from it

(lines 4 and 12). Notice how both threads only require 1/6 of permission to read from the

item variable and 1/6 of permission to the item object, and use the item while in the S0
state without changing it.

148

7.4. WORKING EXAMPLES

Listing 7.59: Example 6 (Part 2)

22 t1.start();

23

24 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,State "Started")

25 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,State "NotStarted")

26 // access(item,5/6) ∧ access(item.0,5/6) ∧ typeof(item,State "S0")

27 // access(item.state,1/6) ∧ typeof(item.state,Primitive)

28

29 t2.start();

30

31 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,State "Started")

32 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,State "Started")

33 // access(item,2/3) ∧ access(item.0,2/3) ∧ typeof(cell.item,State "S0")

34

35 t1.join();

36

37 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,Ended)

38 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,State "Started")

39 // access(item,5/6) ∧ access(item.0,5/6) ∧ typeof(item,State "S0")

40 // access(item.state,1/6) ∧ typeof(item.state,Primitive)

41

42 t2.join();

43

44 // access(t1,1) ∧ access(t1.0,1) ∧ typeof(t1,Ended)

45 // access(t2,1) ∧ access(t2.0,1) ∧ typeof(t2,Ended)

46 // access(item,1) ∧ access(item.0,1) ∧ typeof(item,State "S0")

47 // access(item.state,1/3) ∧ typeof(item.state,Primitive)

Although the two threads concur, since they only perform read operations on the item

object, the code is considered safe. Since each thread requires 1/6 of permission to the

item object, only 5/6 is left after the first start call (line 22), and only 4/6 (i.e. 2/3) of

permission is left after the second start call (line 29). After both join calls (lines 35 and

42), 2× 1/6 of permission is restored, which means that the main thread as restored full

access to the item. Notice how the information about the state of the item was never

lost because read access was still available in main thread while the other threads were

running. This example shows that sharing of objects is allowed as long as there is no

interference between method calls that change the state of the object or modify its fields

in any way.

149

C
h
a
p
t
e
r

8
Conclusions and Future work

8.1 Summary

In this thesis, we presented a tool that type-checks a Java program where objects are

associated with typestates. The first version focused on providing basic features while

enforcing the linear use of objects. The features included the support for the association of

protocols with classes and verification of the use of instances of those classes, prevention

of null pointer errors, verification of the completion of protocols, and “droppable” states.

The second version allows aliasing of objects in a controlled way using a language of

assertions. This language guarantees that the usage of objects will follow the protocols, no

data-races occur at the level of variables and fields, and that method calls that change the

state of an object do not interfere. Additionally, the language allows unpacking of aliased

objects and transferring of permissions between aliases. To relieve the programmer from

manually writing the assertions, we implemented an inference algorithm which analyzes

the code statically and constructs all the required assertions.

The features provided are useful for real applications. For example, one can naturally

define a protocol for a Java readable stream to ensure that the data is only read when

available and that upon reading all the data, the stream is closed, freeing any resources

associated with it. Additionally, if the stream is connected to another stream from which

it gets all the data, the usage of the underlying stream is also verified. With the language

of assertions, one can also share objects. For example, one can create a producer object

and a consumer object which have references to each other. The producer notifies the

consumer that more data is available, and the consumer calls the methods of the producer

to retrieve the new data. Examples are available at the project’s repository1.

1https://github.com/jdmota/java-typestate-checker/

151

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future work

The current version of the tool includes some limitations: the inference algorithm does

not infer when an object should be packed or unpacked; dynamic method dispatch in Java,

where the actual method to be called is resolved at runtime, rather than compile-time, is

not considered; and subtyping, as well as generics, are not yet supported. In the future,

we plan to start by fixing these limitations.

To support more use cases, we would also like to allow for concurrent write operations

to be performed on shared objects. The solution could be to change the access predicate to

inform if mutations can be performed in an object that is aliased. That additional informa-

tion could also indicate if the aliases are available only in a single threaded environment

or may be shared between threads. In a single threaded context, one would just need

to ensure that the object is left in a state from a set of states that all aliases agree upon

and, in this context, state refinements would be allowed. For example, calling the hasNext
method on a iterator in the HasNext state, to refine the state to Next, if the method returns

true, would be safe, since in a single threaded environment, there would be no operations

that could happen in between that would change the state of the object. If the aliases are

shared between threads, then additional care is needed. The object must be left in a state

from a set of states that all aliases agree upon but also, method calls on the object need to

be synchronized, and state refinements would not be performed, since there would be no

guarantee that other operations happened in between in different threads.

Another aspect that is subject of future work is how certain data structures could

be handled. For example, in doubly linked list, each internal node has a reference to

the following node and a reference to the previous node, and there may be an arbitrary

number of internal nodes in the structure. It would be useful to track the aliasing between

these internal nodes. Because of that, and also to deal with other kinds of collections (e.g.

arrays), there might be the need to include quantifiers in our language of assertions, and

extend the inference algorithm to find loop invariants that speak about collections, with

strategies like [31]. The support for collections is also important to verify the usage of

objects stored inside of collections.

Finally, it would be useful to be able to associate access permissions with locks or

monitors, which would become available when these were acquired.

152

Bibliography

[1] W. Ahrendt et al. “Deductive Software Verification–The KeY Book.” In: Lecture
Notes in Computer Science 10001 (2016).

[2] J. Aldrich et al. “Permission-based programming languages: Nier track.” In: 2011
33rd International Conference on Software Engineering (ICSE). IEEE. 2011, pp. 828–

831.

[3] F. E. Allen. “Control flow analysis.” In: ACM Sigplan Notices 5.7 (1970), pp. 1–19.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. “The Spec# programming system: An

overview.” In: International Workshop on Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices. Springer. 2004, pp. 49–69.

[5] M. Barnett et al. “Boogie: A modular reusable verifier for object-oriented pro-

grams.” In: International Symposium on Formal Methods for Components and Objects.
Springer. 2005, pp. 364–387.

[6] N. E. Beckman, D. Kim, and J. Aldrich. “An empirical study of object protocols in

the wild.” In: European Conference on Object-Oriented Programming. Springer. 2011,

pp. 2–26.

[7] K. Bierhoff and J. Aldrich. “Modular typestate checking of aliased objects.” In:

ACM SIGPLAN Notices 42.10 (2007), pp. 301–320.

[8] R. Bornat et al. “Permission accounting in separation logic.” In: Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
2005, pp. 259–270.

[9] J. Boyland. “Alias burying: Unique variables without destructive reads.” In: Soft-
ware: Practice and Experience 31.6 (2001), pp. 533–553.

[10] J. Boyland. “Checking interference with fractional permissions.” In: International
Static Analysis Symposium. Springer. 2003, pp. 55–72.

[11] S. Brookes. “A semantics for concurrent separation logic.” In: Theoretical Computer
Science 375.1-3 (2007), pp. 227–270.

[12] J. Campos and V. T. Vasconcelos. “Channels as objects in concurrent object-oriented

programming.” In: arXiv preprint arXiv:1110.4157 (2011).

[13] J. Campos and V. T. Vasconcelos. Mool: Mini Object-Oriented Language. Accessed:

2020-11-19. url: http://rss.di.fc.ul.pt/tools/mool/.

153

http://rss.di.fc.ul.pt/tools/mool/

BIBLIOGRAPHY

[14] L. Cardelli. “Type systems.” In: ACM Computing Surveys 28.1 (1996), pp. 263–264.

[15] G. de Caso et al. “Program abstractions for behaviour validation.” In: Proceedings of
the 33rd International Conference on Software Engineering. ACM. 2011, pp. 381–390.

[16] Checker Framework - 2019 - Google Summer of Code Archive. Accessed: 2020-04-30.

url: https://summerofcode.withgoogle.com/archive/2019/organizations/

4937505709752320/.

[17] E. M. Clarke Jr et al. Model checking. MIT press, 2018.

[18] Control Flow Statements (The Java Tutorials). Accessed: 2020-11-06. url: https:

//docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html.

[19] K. Crary, D. Walker, and G. Morrisett. “Typed memory management in a calculus

of capabilities.” In: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 1999, pp. 262–275.

[20] Dafny: A Language and Program Verifier for Functional Correctness. Accessed: 2020-

07-01. url: https://www.microsoft.com/en-us/research/project/dafny-a-

language-and-program-verifier-for-functional-correctness/.

[21] G. B. Dantzig. Linear programming and extensions. Vol. 48. Princeton university

press, 1998.

[22] L. De Moura and N. Bjørner. “Z3: An efficient SMT solver.” In: International confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. Springer.

2008, pp. 337–340.

[23] M. Degen, P. Thiemann, and S. Wehr. “Tracking linear and affine resources with

Java (X).” In: European Conference on Object-Oriented Programming. Springer. 2007,

pp. 550–574.

[24] R. DeLine and M. Fähndrich. The Fugue protocol checker: Is your software baroque.

Tech. rep. Technical Report MSR-TR-2004-07, Microsoft Research, 2004.

[25] R. DeLine and M. Fähndrich. “Typestates for objects.” In: European Conference on
Object-Oriented Programming. Springer. 2004, pp. 465–490.

[26] P. Denissen, K. Huizing, and R. Kuiper. “Extending Dafny to Concurrency.” In:

(2017).

[27] W. Dietl et al. “Building and using pluggable type-checkers.” In: Proceedings of the
33rd International Conference on Software Engineering. 2011, pp. 681–690.

[28] T. Ekman and G. Hedin. “The jastadd extensible java compiler.” In: Proceedings of
the 22nd annual ACM SIGPLAN conference on Object-oriented programming systems
and applications. 2007, pp. 1–18.

[29] M. Fahndrich and R. DeLine. “Adoption and focus: Practical linear types for im-

perative programming.” In: Proceedings of the ACM SIGPLAN 2002 conference on
Programming language design and implementation. 2002, pp. 13–24.

154

https://summerofcode.withgoogle.com/archive/2019/organizations/4937505709752320/
https://summerofcode.withgoogle.com/archive/2019/organizations/4937505709752320/
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

BIBLIOGRAPHY

[30] P. Ferrara and P. Müller. “Automatic inference of access permissions.” In: Interna-
tional Workshop on Verification, Model Checking, and Abstract Interpretation. Springer.

2012, pp. 202–218.

[31] C. A. Furia and B. Meyer. “Inferring loop invariants using postconditions.” In:

Fields of logic and computation. Springer, 2010, pp. 277–300.

[32] R. Garcia et al. “Foundations of typestate-oriented programming.” In: ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 36.4 (2014), p. 12.

[33] S. J. Gay et al. “Modular session types for distributed object-oriented program-

ming.” In: ACM Sigplan Notices 45.1 (2010), pp. 299–312.

[34] J.-Y. Girard. “Linear logic.” In: Theoretical computer science 50.1 (1987), pp. 1–101.

[35] Google core libraries for Java. Accessed: 2020-04-30. url: https://github.com/

google/guava/.

[36] M. Gordon. “Background reading on hoare logic.” In: Lecture Notes, April (2012).

[37] T. P. Group. The Plaid programming language. Accessed: 2020-11-19. url: https:

//www.cs.cmu.edu/~aldrich/plaid/.

[38] T. P. Group. The Plaid Programming Language - Introduction. Accessed: 2020-11-19.

url: https://www.cs.cmu.edu/~aldrich/plaid/plaid-intro.pdf.

[39] C. A. R. Hoare. “An axiomatic basis for computer programming.” In: Communica-
tions of the ACM 12.10 (1969), pp. 576–580.

[40] M. Hofmann and M. Pavlova. “Elimination of ghost variables in program logics.”

In: International Symposium on Trustworthy Global Computing. Springer. 2007,

pp. 1–20.

[41] K. Honda, V. T. Vasconcelos, and M. Kubo. “Language primitives and type disci-

pline for structured communication-based programming.” In: European Symposium
on Programming. Springer. 1998, pp. 122–138.

[42] W. Huang et al. “ReIm & ReImInfer: Checking and inference of reference im-

mutability and method purity.” In: ACM SIGPLAN Notices 47.10 (2012), pp. 879–

896.

[43] H. Hüttel et al. “Foundations of session types and behavioural contracts.” In: ACM
Computing Surveys (CSUR) 49.1 (2016), pp. 1–36.

[44] Introducing Kotlin support in Spring Framework 5.0. Accessed: 2020-04-29. url:

https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-

spring-framework-5-0.

[45] S. S. Ishtiaq and P. W. O’hearn. “BI as an assertion language for mutable data struc-

tures.” In: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 2001, pp. 14–26.

155

https://github.com/google/guava/
https://github.com/google/guava/
https://www.cs.cmu.edu/~aldrich/plaid/
https://www.cs.cmu.edu/~aldrich/plaid/
https://www.cs.cmu.edu/~aldrich/plaid/plaid-intro.pdf
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0

BIBLIOGRAPHY

[46] B. Jacobs et al. “VeriFast: A powerful, sound, predictable, fast verifier for C and

Java.” In: NASA Formal Methods Symposium. Springer. 2011, pp. 41–55.

[47] JastAdd. Accessed: 2020-04-28. url: http://jastadd.org/web/.

[48] Java Language Specification: Chapter 14. Blocks and Statements. Accessed: 2020-

09-29. url: https://docs.oracle.com/javase/specs/jls/se7/html/jls-

14.html.

[49] D. Jemerov and S. Isakova. Kotlin in action. Manning Publications Company, 2017.

[50] JetBrains. Kotlin Programming Language. Accessed: 2020-04-28. url: https://

kotlinlang.org/.

[51] C. B. JONES. “SPECIFICATION AND DESIGN OF (PARALLEL) PROGRAMS Cliff
B. JONES.” In: ().

[52] JSR 308 Explained: Java Type Annotations. Accessed: 2020-04-30. url: https:

//www.oracle.com/technical-resources/articles/java/ma14-architect-

annotations.html.

[53] KMS Compliance Checker. Accessed: 2020-05-04. url: https://github.com/

awslabs/aws-kms-compliance-checker.

[54] D. Kouzapas et al. “Typechecking protocols with Mungo and StMungo.” In: Pro-
ceedings of the 18th International Symposium on Principles and Practice of Declarative
Programming. ACM. 2016, pp. 146–159.

[55] O. Lahav and V. Vafeiadis. “Owicki-Gries reasoning for weak memory models.”

In: International Colloquium on Automata, Languages, and Programming. Springer.

2015, pp. 311–323.

[56] K. R. M. Leino. “Dafny: An automatic program verifier for functional correctness.”

In: International Conference on Logic for Programming Artificial Intelligence and Rea-
soning. Springer. 2010, pp. 348–370.

[57] K. R. M. Leino. “Modeling Concurrency in Dafny.” In: School on Engineering Trust-
worthy Software Systems. Springer. 2017, pp. 115–142.

[58] K. R. M. Leino and P. Müller. “A basis for verifying multi-threaded programs.” In:

European Symposium on Programming. Springer. 2009, pp. 378–393.

[59] K. R. M. Leino and P. Müller. “Using the Spec# language, methodology, and tools to

write bug-free programs.” In: Advanced Lectures on Software Engineering. Springer,

2007, pp. 91–139.

[60] K. R. M. Leino, P. Müller, and J. Smans. “Verification of concurrent programs with

Chalice.” In: Foundations of Security Analysis and Design V. Springer, 2009, pp. 195–

222.

[61] J. Mediero Iturrioz. “Verification of Concurrent Programs in Dafny.” In: (2017).

156

http://jastadd.org/web/
https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html
https://kotlinlang.org/
https://kotlinlang.org/
https://www.oracle.com/technical-resources/articles/java/ma14-architect-annotations.html
https://www.oracle.com/technical-resources/articles/java/ma14-architect-annotations.html
https://www.oracle.com/technical-resources/articles/java/ma14-architect-annotations.html
https://github.com/awslabs/aws-kms-compliance-checker
https://github.com/awslabs/aws-kms-compliance-checker

BIBLIOGRAPHY

[62] F. Militão, J. Aldrich, and L. Caires. “Aliasing control with view-based typestate.”

In: Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs.
2010, pp. 1–7.

[63] R. Milner. “A theory of type polymorphism in programming.” In: Journal of com-
puter and system sciences 17.3 (1978), pp. 348–375.

[64] K. Naden et al. “A type system for borrowing permissions.” In: ACM SIGPLAN
Notices 47.1 (2012), pp. 557–570.

[65] T. Nipkow et al. “Getting started with Dafny: A guide.” In: Software Safety and
Security: Tools for Analysis and Verification 33 (2012), p. 152.

[66] P. W. O’Hearn and D. J. Pym. “The logic of bunched implications.” In: Bulletin of
Symbolic Logic (1999), pp. 215–244.

[67] P. O’Hearn, J. Reynolds, and H. Yang. “Local reasoning about programs that alter

data structures.” In: International Workshop on Computer Science Logic. Springer.

2001, pp. 1–19.

[68] P. W. O’hearn. “Resources, concurrency, and local reasoning.” In: Theoretical com-
puter science 375.1-3 (2007), pp. 271–307.

[69] S. Owicki and D. Gries. “Verifying properties of parallel programs: An axiomatic

approach.” In: Communications of the ACM 19.5 (1976), pp. 279–285.

[70] M. M. Papi et al. “Practical pluggable types for Java.” In: Proceedings of the 2008
international symposium on Software testing and analysis. 2008, pp. 201–212.

[71] F. Pfenning. “Benjamin C. Pierce. Types and programming languages. The MIT

Press, Cambridge, Massachusetts, 2002, xxi+ 623 pp.” In: Bulletin of Symbolic Logic
10.2 (2004), pp. 213–214.

[72] References and Borrowing - The Rust Programming Language. Accessed: 2020-05-

04. url: https://doc.rust- lang.org/book/ch04- 02- references- and-

borrowing.html.

[73] J. C. Reynolds. “Separation logic: A logic for shared mutable data structures.” In:

Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. IEEE. 2002,

pp. 55–74.

[74] A. Sadiq, Y.-F. Li, and S. Ling. “A survey on the use of access permission-based

specifications for program verification.” In: Journal of Systems and Software 159

(2020), p. 110450.

[75] J. Siek and W. Taha. “Gradual typing for objects.” In: European Conference on Object-
Oriented Programming. Springer. 2007, pp. 2–27.

[76] J. Smans et al. “Verifying java programs with VeriFast.” In: Aliasing in Object-
oriented Programming, pages XXX–XXX. Springer (2012).

157

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

BIBLIOGRAPHY

[77] J. Sunshine et al. “First-class state change in plaid.” In: ACM SIGPLAN Notices
46.10 (2011), pp. 713–732.

[78] K. Takeuchi, K. Honda, and M. Kubo. “An interaction-based language and its

typing system.” In: International Conference on Parallel Architectures and Languages
Europe. Springer. 1994, pp. 398–413.

[79] The Checker Framework. Accessed: 2020-04-28. url: https://checkerframework.

org/.

[80] M. Tofte and J.-P. Talpin. “Implementation of the typed call-by-value λ-calculus

using a stack of regions.” In: Proceedings of the 21st ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. 1994, pp. 188–201.

[81] M. Tofte and J.-P. Talpin. “Region-based memory management.” In: Information
and computation 132.2 (1997), pp. 109–176.

[82] A. P. University of Glasgow. [St]Mungo. Accessed: 2020-11-19. url: http://www.

dcs.gla.ac.uk/research/mungo/index.html.

[83] Using Kotlin for Android Development. Accessed: 2020-04-29. url: https : / /

kotlinlang.org/docs/reference/android-overview.html.

[84] V. Vafeiadis. Modular fine-grained concurrency verification. Tech. rep. University of

Cambridge, Computer Laboratory, 2008.

[85] C. Vasconcelos and A. Ravara. “From object-oriented code with assertions to be-

havioural types.” In: Proceedings of the Symposium on Applied Computing. 2017,

pp. 1492–1497.

[86] V. T. Vasconcelos et al. “Sessions, from types to programming languages.” In:

Bulletin of the EATCS 103 (2011), pp. 53–73.

[87] D. Walker and G. Morrisett. “Alias types for recursive data structures.” In: Interna-
tional Workshop on Types in Compilation. Springer. 2000, pp. 177–206.

[88] What is Ownership? - The Rust Programming Language. Accessed: 2020-05-05. url:

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html.

[89] J. M. Wing. “FAQ on π-Calculus.” In: Microsoft Internal Memo (2002).

[90] H. Yasuoka and T. Terauchi. “Polymorphic fractional capabilities.” In: International
Static Analysis Symposium. Springer. 2009, pp. 36–51.

[91] E. Zoppi et al. “Contractor. net: inferring typestate properties to enrich code

contracts.” In: Proceedings of the 1st Workshop on Developing Tools as Plug-ins. ACM.

2011, pp. 44–47.

158

https://checkerframework.org/
https://checkerframework.org/
http://www.dcs.gla.ac.uk/research/mungo/index.html
http://www.dcs.gla.ac.uk/research/mungo/index.html
https://kotlinlang.org/docs/reference/android-overview.html
https://kotlinlang.org/docs/reference/android-overview.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

	List of Figures
	List of Tables
	Glossary
	Introduction
	Context
	Problem
	Contributions
	Thesis outline

	Theoretical Work on Behavioral Types
	Typestates
	Session types
	Typestates/Session types/Usage types
	Motivating example: Checker Framework
	Conclusion

	Practical work on Behavioral Types
	Typestate-oriented approaches
	Plaid
	Fugue
	Contractor.NET

	Usage types approaches
	Bica
	Mool
	Mungo

	Summary

	Typestate-oriented tool: version 1
	Design choices
	Checker Framework
	Kotlin

	Type-checker features
	Protocols
	State refinement
	Nullness checking
	Protocol completion
	Droppable states
	Protocols for classes of libraries

	Type-checker implementation
	Type system
	Architecture
	Class analysis
	Inference and checking

	Comparison with Mungo
	Basic checking
	Decisions on boolean values
	Nullness checking
	Linearity checking
	Force protocol completion
	Class analysis
	State refinement via annotations
	Droppable transition
	Protocols for classes of libraries
	Improved flow analysis
	Decisions based on equality checks in conditions

	Conclusion

	Theoretical work on Access Permissions
	Owicki-Gries method and Rely-Guarantee
	Separation Logic
	Access permissions
	Fractional permissions
	Counting permissions
	Symbolic permissions

	Other approaches
	Motivating example: Cell example

	Practical work on Access Permissions
	Spec#
	Chalice
	Dafny
	VeriFast
	Plaid
	Summary

	Typestate-oriented tool: version 2
	Language of assertions
	Introduction
	Assertions' guarantees
	Assertions' well-formedness
	Packing and Unpacking
	Permission transfer
	Protocol completion
	Implication
	Assertions' upper bound
	Nullable values and union types

	Inference algorithm
	Implementation
	Constraints
	Implementation details
	Limitations of the implementation
	Protocol inference

	Comparison with other languages
	Working examples

	Conclusions and Future work
	Summary
	Future work

	Bibliography

