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ABSTRACT 

Recent developments in Information Retrieval diversity are based 

on the consideration of a space of information need aspects, a notion 

which takes different forms in the literature. The choice of a suitable 

aspect space for diversification is a critical issue when designing an 
IR diversification strategy, which has not been explicitly addressed 

to some depth in the literature. This paper aims to identify relevant 

properties of the aspect space which may help the system designer 

in making a suitable choice in selecting and configuring this space, 
and diagnosing malfunctions of the diversification algorithms. In 

particular, we identify the mutual information between aspects and 

documents as a meaningful magnitude, in terms of which anoma-

lous cases can be characterized. We further seek to discern favora-
ble cases through a combination of theoretic and empirical analysis. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: information filtering. 

General Terms 

Algorithms, Measurement, Performance, Experimentation, 

Theory. 

Keywords 

Diversity, query intent, query aspect spaces, mutual information. 

1. INTRODUCTION 
IR diversity theory, diversification algorithms, and evaluation 

methodologies are based on the consideration of a gap between a 

user need expression and the complete, precise actual user need 
[1,8,12,14,18]. In order to grasp this gap of uncertainty, search 

enhancement methods and metrics proposed in the area introduce 

a space of user need subunits or features –for use of a generic 

word– upon which the search is diversified and evaluated for 
diversity. These features have taken different forms, motivations, 

and names in the research literature, such as query interpretations, 

query intents, query aspects, nuggets, subqueries, subtopics, cate-

gories, etc. Common to the different approaches and angles, these 
information need features are understood to be unobserved varia-

bles –as are true information needs and relevance themselves– 

from the retrieval system point of view.  

The models and approaches proposed in this area seek to capture 
or approximate these unobserved features by some form of proxy 

space. The nature, source and procedures to obtain these proxies 

have been diverse in the literature. Agrawal et al [1] use catego-

ries from the Open Directory Project (ODP) taxonomy; Santos et 
al [12] extract subqueries from query reformulations issued by 

search engines; Rafiei et al [11] test Wikipedia disambiguation 

entries and ODP as sources for aspect extraction, using a query 

log to determine the relation between queries and categories; 

Welch et al [17] also use Wikipedia disambiguation and investi-

gate the use of Wordnet term relationships; He et al [10] use 

automatically created query clusters; Campannini et al [2] extract 
query specializations from query logs; query subtopics are provid-

ed manually in the TREC diversity task [6]; and so forth. We shall 

henceforth use the term “aspect” to refer generically to the space 

of query features for diversification –as far as the different forms 
this space may take can viewed generically. 

In a practical setting, there are thus different alternatives in the 

nature, source, and approach for the definition, extraction, and 

handling of the aspect space for diversification, and some may be 
more effective than others. The comparison of alternatives, their 

potential advantages and drawbacks, or what makes a suitable 

choice, has not been systematically addressed per se in the litera-

ture. Different prototypical aspect sources for diversification have 
been tested in empirical studies nonetheless (most notably Santos 

et al [13] explicitly comparing different aspect sources on TREC 

data), and we find the analysis of aspect configurations worthy of 

further research. In this broad context, we focus here on a particu-
lar characteristic of aspect extraction approaches, namely the 

grain size and distributional properties of the resulting aspect 

spaces, which are typically configurable even within the frame of 

a specific aspect source, representation, and extraction strategy. 

It has been observed that diversification algorithms may degrade to 

no diversification, or random diversification under certain condi-

tions of the aspect distribution over queries and documents [17]. 

Several options are often available to the developer when designing 
a diversification algorithm in practical situations, some of which 

may easily drive the algorithm towards the “bowling gutters” of 

either randomness or innocuousness. In this paper we analyze the 

properties of an aspect space that determine these situations. The 
broad motivation of our research is the definition of criteria to 

assess the suitability of aspect spaces for diversification. Within this 

general goal, we study and characterize distributional properties of 

the aspect space that determine extreme cases, and present theoreti-
cal and empirical observations of the intermediate spectrum.  

In our study, we analyze the effect of aspect spaces in terms of 

their potential for change in the diversification of retrieval system 

results, rather than their specific potential for improvement, which 
is highly domain-dependent. The potential for change that an 

aspect space enables can be seen as a proxy of the discriminative 

power of the aspect space for diversification. This does naturally 

not guarantee the quality of diversified results. Whether a diversi-
fication strategy properly takes advantage of this power and room 

for change is a matter of the quality of the strategy itself, and 

other properties of the aspect space (beyond the quantitative room 

for change they enable), which are outside the scope of this study. 
There is nonetheless a strong link between the room for change 

and the room for improvement by diversification (which is the 

ultimate underlying concern), inasmuch as the latter requires the 
former, which motivates this study. 
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2. DIVERSIFICATION ALGORITHMS 
Most approaches to IR diversification in the literature state the 
diversification goal as the maximization of some objective func-

tion that reflects the degree of diversity of a set of retrieved doc-

uments [1,3,5,12,19,20]. The maximization is found to be an NP-

hard problem [4], the solution to which is commonly approximat-
ed by a greedy algorithm. The algorithm uses itself an objective 

function (not necessarily the same as the initial one), and incre-

mentally builds a reranked version S of the baseline document set 

R by iteratively picking one document at a time which maximizes 

this objective function. This function, which we shall denote as  , 

generally takes a document and a set of documents as input, that 

is.      ( )   , where   denotes the document collection, 

and the diversification procedure can be generically described as 
shown in Algorithm 1. 

Algorithm 1 Generic greedy diversification 

Diversify (R) 
    
while     

        
   

 (   ) 

    { } 
    { } 

return S 

Two components can be commonly identified within the greedy 
objective function: the baseline retrieval function (or some mono-

tonic derivation thereof), which we shall denote as       , and 

a diversity (or perhaps more precisely, novelty) component 

     ( )   , where  (   ) measures the lack of redundan-

cy of a document   with respect to a set of documents  . In terms 

of these two components,   can be expressed as  (   )  

  (  ( )  (   )), with    being monotonically increasing with 

respect to its two inputs. A convenient property for the diversity 

component is that  (   ) be constant for all d, whereby 

 (   )    ( ), and so the top document in the baseline remains 

at the top in the diversified ranking.  

When diversity is defined in terms of query aspects,   can be seen 

as returning a function on the set of user need aspects. Further-

more, the diversity component may depend on the baseline re-

trieval function (as in IA-Select [1]). In such case, for maximum 

generality, we may consider      ( )  [     ], where 

  is the set of all aspects, and [     ] denotes the set of all 

functions from     to  . The first input of such functions is an 

information need aspect    , and the second is expected to be a 

baseline retrieval score    ,where     ( ) for some  . Table 

1 shows example instantiations of this scheme for diversification 

algorithms in the literature. 

Since in our study we are interested in the effect of aspect spaces, 

we focus on diversity approaches that are based on such notion. 

As far as schemes such as MMR [3] do not use query aspects, our 

analysis does not apply to them (note however that the distance 
function in MMR could be defined in terms of aspects, but we 

will not explore that direction here). 

As to the aspect-based approaches, one may observe that the 

respective diversity components  (   ) of IA-Select and xQuAD 
share some common characteristics. They are both based on the 

conditional distribution between documents and aspects (or vice-

versa), and a product of probability complements (with an addi-

tional multiplying parameter in IA-Select). Despite the differences 
between them, both formulations may exhibit similar behavior 

patterns with respect to probabilistic relations between aspects and 

documents, as we analyze in the next section.  

The implications of the analysis that follows may exceed these 
two specific diversification algorithms, and would apply to other 

variations that are based on a similar probabilistic assessment of 

the redundancy between the documents to be reranked and the 

partial greedy ranking. 

3. ASPECT SPACE INFORMATIVENESS 
We study the suitability of aspect spaces from the point of view of 

their informational properties. As we have reviewed in the previ-

ous section, conditional distributions between aspects and docu-
ments lie at the core of the analyzed diversification methods of 

interest for our study. We therefore analyze the informational 

properties of this dependence, as a potential major criterion for the 

suitability of an aspect space. More specifically, we investigate 
whether and how the strength of this dependence may affect the 

resulting behavior of the diversifiers.  

In Information Theory, the strength with which two variables 

depend on each other is measured by their mutual information. In 
the case of documents and aspects, this is defined as: 

 (   )  ∑  (   )    
 (   )

 ( ) ( )
       

 

where   and   above denote random variables ranging over 

aspects and documents respectively –as a shorthand we abuse 

notation by using the same symbol for the random variables and 

the set where they take values. A mutual information zero indi-
cates that the two variables are independent, and higher mutual 

information reflects progressively stronger degrees of depend-

ence. 

Table 1. Decomposition of the objective function of three state of the art diversification algorithms into a diversity component 

 (   ) and an aggregative function   (   ). In the latter, x is the relevance seeking component (which is defined by the baseline 

retrieval function), and y is the diversity component. 

Diversification algorithm Diversity component  (   ) Aggregative function   (   ) 

MMR [3]     
    

    (    )     (   )  

IA-Select [1] (   )   ( | )∏(   ( |  )  )

    

 ∑ ( | )    (   )

   

 

xQuAD [12]    ( | )∏(   (  | ))

    

     (   )∑ ( | )  ( )

   

 

 



3.1 Minimum mutual information 
As a general trend, the higher  (   ) is, the larger are the differ-

ences in  ( | ) and  ( | ) between documents for a fixed aspect 

 . It is natural to figure out that a high mutual information is 
desirable, since it helps better discriminate between documents in 

terms of their covered aspects and hence their mutual diversity. 

This is true to some extent, but the issue is somewhat more com-

plex, as we see next. 

Indeed, if  (   )   , we have  ( | )   ( ), whereby in 

xQuAD the diversity component does not depend on   and becomes 

 (   )   ( )∏ (   (  ))    . If we assume a uniform docu-

ment prior, this term becomes constant for all documents    , the 

objective function becomes   (  ( )  (   ))    ( ), and the 

diversification algorithm thus degrades to the original ranking. That 

is, the diversifier has no effect and leaves the baseline ranking 

unchanged. Similarly, with  (   )    we have  ( | )   ( ), 

whereby in IA-Select the diversity component  (   ) does not 

depend on   and is therefore constant for all documents    . It is 

easy to see that in this situation we also have   (  ( )  (   ))  

  ( ), thus degrading again to the baseline with no diversification. 

In other words, with zero mutual information, the observation of a 

document says nothing about the information need aspects that are 

being covered. Any aspect is covered to the same extent by all 
documents. Given a document, any aspect is as probable as any 

other, and the aspect space is therefore useless for diversification. 

3.2 Maximum mutual information 
After the preceding analysis, one might hypothesize that a maximal 

mutual information might then be a desirable situation, but this is 
not quite the case. The maximum informativeness is reached when 

for any document   there is a unique aspect with  (  | )   , and 

 ( | )    for any other     . We also have that inversely, for 

any aspect   there is a single document    with  (  | )   , all 

other documents      having  ( | )   . That is, with maxi-

mum mutual information, observing a document is equivalent to 

observing its single aspect, and vice versa. When this is the case, it 

can be seen that  (   )   ( )   ( ) and this is equal to 

   | | if the prior document distribution is uniform. 

In this extreme, we may see that in IA-Select we have 

 (   )( )   ( | ) which equals   for the unique aspect    that 

is covered by  , and   for all other document-aspect pairs. Hence, 

  (  ( )  (   ))   (  | )   ( )   ( | )  ( ). Inasmuch 

as  ( | ) and   ( ) are monotonically related (e.g. when    is a 

retrieval function based on statistical language models), the result 

again degrades to the baseline with no diversification –even if the 

baseline retrieval function diverged from  ( | ), the effect would 

not be that of diversification, but a mix of retrieval strategies both 
seeking the maximization of total returned relevant documents, 

regardless of their diversity or the mutual dependency of their 

covered relevance aspects. 

In xQuAD, we have a similar situation with  (   )( )   ( | ) 

being   for the aspect    uniquely covered by  , and   for all 

other aspects. This results in   (  ( )  (   ))      ( )  
(   ) ( | ), where again,   ( ) and  ( | ) are equivalent or 

push in the same direction –that of null diversification. 

These effects match the intuition: each aspect is exclusively cov-
ered by a unique document, therefore any set of documents covers 

as many different aspects as documents it contains. There is total 

absence of redundancy between documents, and any set has max-

imal diversity, which cannot be improved any further (which is 

naturally an illusion by effect of a poor aspect space choice). 

3.3 Practical considerations 
We have thus seen that indeed the degree of dependence between 

documents and aspects can be identified as a major factor in the 

choice of an aspect space for diversification. The minimum and 

maximum extremes may seem too obvious to fall into, but they 
are easier to get close to than it might seem. For instance, if the 

aspect space is taken from available document features or classifi-

cation schemes, it is not unusual to find long-tailed distributions 

of classes among documents. Such distributions may in practice 
approach minimum mutual information for the few most frequent 

classes, and maximum in the vast majority of long tail ones. This 

becomes still more extreme by the class subsampling involved in 

working with the small set of top n documents to be diversified. 

Just to mention an anecdotic but representative example, we run 

into this type of situation when considering, for instance, movie 

directors as the aspect space to diversify movie recommendation in 

the MovieLens dataset.1 In the small version of this collection 
(about 1,600 movies), most directors appear in a unique movie, and 

only 3% have more than 5 films –and the chances to find a few 

repeated directors within the top n recommended movies is even 

lower. Mutual information is excessive, so that diversification 
algorithms just do not work. Features such as the movie language 

or country approach the opposite extreme, where a single most 

frequent feature value (English and USA respectively) accounts for 

more than half the films (over 70% and 60% respectively), result-
ing in insufficient mutual information, with less than 5% of the 

remaining feature values having any use for diversification. In 

contrast, movie genre is an example of an effective, more balanced 

space for diversification in this dataset (as shown e.g. in [15,16]).  

Long-tailed distributions are also typical of collaborative tagging 

environments, which are being increasingly used as a large scale 

document labeling resource for IR techniques (see e.g. [9] as just 

one example). As a general trend, aspect distributions emerging 
from spontaneous (social, etc.) phenomena often exhibit a power 

law or long tail structure. In contrast, editorial labeling (ODP, 

Wikipedia disambiguation pages, etc.) tends to display a more 

balanced structure, often by intentional design –since balance is 
typically part of classification scheme design guidelines. 

The distributional considerations can also be seen from a query-

specific point of view. It is not necessary that  (   ) reaches 

extremes on the whole collection and the whole aspect space for 

diversification to be ineffective. Given a query  , it suffices that 

 (     ) be extreme for all the above analysis to hold, where 

   {   | ( | )   } is the set of possible aspects of  , and 

   is the set of relevant documents for  . In this perspective, 

 (     )    means   has minimum ambiguity (all relevant 

documents correspond to a single aspect), and  (     )    

means the opposite (each relevant document covers a unique as-

pect). This formalizes the rationale that meaningful diversification is 
not possible for extremely ambiguous or extremely specific queries. 

4. THE INTERMEDIATE SPECTRUM 
Having analyzed the extremes of the dependence strength between 

documents and aspects, the question remains: what is the ideal 

balance in mutual information (in the terms stated in this study, 

i.e. the potential for change)? 

                                                                   
1 http://www.grouplens.org/node/73 



The question is complex to answer. Once departing from the 

extremes, the degree of aspect-document dependence strength 
influences the resulting amount of change in different interrelated 

ways, which are difficult to capture and describe formally. An 

increase in dependence strength might, for instance, cause further 

changes in rank position, but shorter in distance, thereby balanc-
ing the global amount of change in the ranking –as measured by 

some rank distance measure. It is possible though to analyze and 

observe specific aspects in this direction, as we discuss next. 

4.1 Aspect distribution skewness 
Multinomial and long-tail aspect distributions are two prototypical 
cases of the distributions that are frequently found in practical 

application domains. For a fixed collection size and a fixed num-

ber of aspects, assuming only one aspect per document (that is, 

 ( | )     
( ) for some      –where    might also be cov-

ered by other documents besides  ) and a uniform prior document 
distribution, it can be seen that a uniform aspect distribution max-

imizes the mutual information of aspects and documents. Indeed, 

under these assumptions, we have  (   )   ( ) which is 

maximum with  ( )      | | when the prior aspect distribu-
tion is uniform, i.e. each aspect is covered by the same number of 

documents. The uniform aspect distribution (i.e. an even number 

of covering documents per aspect in the collection) is thus an 

upper bound of mutual information for a fixed aspect space size.  

As the distribution moves away from uniform, the mutual infor-

mation decreases monotonically. We may illustrate the evolution 

towards increasingly long-tailed distributions as, for instance, an 

adjusted power law defined by |  |        , where |  |  
|{   | (  | )   }|   . This distribution is uniform for 

    and its skewness increases with  . Let us denote by    an 

aspect distribution following a power law of exponent  . It can be 

seen –we omit the details here– that the entropy of the power law is 

monotonically decreasing, from  (    )   (  )      |  | to 

 (    )   (  )      | |  
| | | |  

| |
    (| |  | |   ) 

as    , an extreme at which all aspects but one are covered by a 

single document, and one aspect is covered by all the rest of docu-

ments. It can be seen that this expression is  (    ) 
| |

| |
    | | 

with a negligible error. This situation is actually reached at some 

finite     . 

Let us denote by |  
   

| the number of aspects that maximizes 

the distance for a power law aspect distribution of exponent  . It 

is easy to see that the number of aspects needed for the extreme 

   to reach the same mutual information as the distance-

maximizing uniform    is |  
   

|     |  
   

| | |     | |⁄  

|  
   

| if |  
   

|  | |, which means a considerably higher 

number of aspects are needed in the skewed distribution to level 

up with a uniform distribution. For instance, if |  
   

|      and 

| |         , we have |  
   

|         , almost half as many 

aspects as documents in the collection (an unrealistically high and 

impractical number of aspects). Intermediate distribution skew-

ness        results in intermediate situations |  
   

|  

|  
   

|  |  
   

| between these extremes. 

We may thus consider that for a fixed number of aspects, a uni-

form aspect distribution is a safe option, and so are close devia-

tions around that. In the next section we shall therefore focus on 

this case as a reasonable representative of a suitable option, yet 
conveniently simple and tractable for analysis.  

4.2 Aspect space size 
Taking the simple uniform case described in the previous section, 

we address the assessment of aspect spaces in terms of their grain 
size (which is the only parameter of a uniform distribution). As-

suming a uniform aspect prior, with a single aspect per document 

for simplicity, which implies  (   )      | |, we know that 

both extremes | |    (zero mutual information) and | |  | | 
(maximum mutual information) result in diversifiers degrading to 

no changes in the baseline ranking. 

It is not trivial to analytically describe what happens in between, 

and it is therefore not obvious what point may be optimal. Howev-
er, we may observe the evolution of the diversification behavior 

empirically by running diversifications on simulated aspect spaces. 

Three variables describe our simulation setting for diversification: 

 The total number of aspects | | covered by the collection. 

 The collection size | |. 
 The top   depth for diversification of the baseline ranking 

(i.e. the rank position at which diversification stops). 

Given a combination of values for these parameters, our simulation 

procedure consists of randomly assigning aspects (based on the 

distribution induced by the number of aspects and the collection 
size) to n ranking positions, occupied by simulated documents 

(which just consist of an integer ID). Then we run the diversifica-

tion algorithms using a constant baseline ranking function   ( )  

 . This isolates the diversification effect from any particular base-

line retrieval system, in order to focus on the behavior of the diver-

sity component only. Finally, we measure the Pearson rank correla-
tion between the diversified ranking and the original baseline –the 

latter being thus equivalent to a random diversification. And we 

repeat the simulation across variations in the respective axes of the 
three variables. In all the simulations, the ranking distances were 

averaged for smoothness by a ten-fold cross-validation.  

Figure 1 shows the distance produced by IA-Select and xQuAD 

for different aspect grain sizes (  to    ), with a fixed       

and | |         . It can be observed how the diversification 

distance starts at zero for a single aspect covered by all docu-

 
Figure 1. Distance between initial and diversified ranking 
resulting from different aspect space sizes, for two state of the 
art diversification algorithms. The distance between ranked 
lists is measured as  (     )       (     ), where     
is the Spearman rank correlation. The collection size is fixed 
at | |         , with       documents being reranked. 
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ments, and grows fast, reaching a maximum around 60-80 aspects 

for xQuAD, and around 100 aspects for IA-Select. The difference 
between both diversifiers is due to the fact that when neutralizing 

the baseline retrieval function in the novelty component, IA-

Select treats redundancy in a binary way: once an aspect   is 

covered by one document in the reranked subset   at some point 
in the diversification, any further document covering the aspect is 

considered as totally redundant (since  ( | ) is either 0 or 1), 

regardless of the number of documents covering   in  . xQuAD 

on the contrary captures degrees of redundancy for the covered 

aspects, as reflected in  ( | ) which is non-binary. As a result, 

IA-Select needs more aspects to keep diversifying, whereas 

xQuAD can take advantage further times of the same few aspects. 

If we continue taking further aspects beyond the optimum, the 
amount of diversification slowly degrades until eventually becoming 

zero, when using as many aspects as documents in the collection. 

We thus see that for these settings, 60-80 aspects would be optimal 

for xQuAD, and 80-100 for IA-Select. We now turn to examine 
whether these optima depend on the number of documents being 

reranked, or the collection size. Figure 2 shows the variation of the 

optimum number of aspects (the number that results in the higher 

reranking distance) for a range of collection sizes, from 1,000 to 
100,000. Given the regular behavior of the distance vs. the number 

of aspects, and the range for maximization being reasonably small 

and discrete, we find these optima by simple brute force, scanning 

a large enough range of aspect space sizes. It can be seen that the 
optimum fluctuates, but does not seem to depend on the collection 

size. The average optimum is around 100 aspects for IA-Select, 

and 60 for xQuAD, not far from the previous results. 

 

Figure 2. Optimum number of aspects maximizing the ranking 
distance of diversification for different collection sizes. The size 
of the document set to be diversified is fixed at      . 

Finally, we study the dependence of the optimal number of classes 

for different top n cuts for diversification. Figure 3 shows the 

optimal aspect space size for n ranging from 50 to 150. A linear 

growth trend can be observed in the optimal number of aspects 
with respect to n. The linear fit of the plots gives a slope of ~0.9 

for IA-Select, and ~0.6 for xQuAD. This is not far from the ratio 

optimum aspect space size / diversification depth in the previous 

observations, and a more precise convergence of the estimates 
may be expected by increasing the range variation scale. 

In the experiments so far, the aspects are sampled from their back-

ground distribution, which results in a particular number of aspects 

being covered in the set of documents to be reranked, which is 
smaller, in general, than the total number of aspects in the collec-

tion. In order to observe the effect that a specific number of differ-

ent aspects in the result set has in the diversification, we repeat the 
previous simulation but this time we force a fixed number of aspects 

in the top n documents, evenly distributed (i.e. same number of 

documents covering each aspect). Figure 4 displays the result. The 

number of aspects has here a more direct effect on the result, where 
the linear relation to the size of the result set is clearer. In this case 

the slope is ~0.7 for both diversifiers. Note that the number of as-

pects in the result set and in the whole collection are different varia-

bles and the sampling in this experiment and the previous one is not 
equivalent, hence the slight difference in the observed slope. 

5. DISCUSSION AND CONCLUSION 
We have addressed in this paper a relevant question when one 

designs a diversification framework, namely the choice and con-

figuration of the aspect space. We show that this is a fundamental 
decision that strongly impacts the results and the potential range 

for the action of a diversifier.  

We have characterized extreme cases that are easier to run into than 

one might think, and we have described their effect. We further 
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Figure 3. Optimum number of aspects maximizing the ranking 
distance of diversification for different sizes of the document set 
being diversified. The collection size is fixed at | |         .  
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Figure 4. Optimum number of aspects maximizing the ranking 
distance for different result set sizes. This simulation is similar 
to the one displayed in Figure 3, but the number of aspects is 
forced to occur exactly as such within the result set, instead of 
randomly sampling aspects from the whole collection. 
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analyze the intermediate spectrum between both ends aiming to 

provide some observations of trends by means of empirical simula-
tions. The underlying goal of the experiments is to seek some invar-

iant that helps recognize an optimum aspect space in terms of such 

an invariant, independently from the variability of other factors such 

as the collection size or the number of documents to be reranked.  

In our study the observed invariant for the ideal prior aspect dis-

tribution seems to be –under the simplifying assumptions of the 

experiments–  ( )   ⁄  (since the optimal number of classes 

shows a linear growth trend | |   ⁄ ), where   is the size of the 

set to be diversified, and   seems to range around a constant value 

for each diversification algorithm. As future work, we see interest 

in finding a more general invariant in terms e.g. of the mutual 

information itself, which would require much lighter –if any– 
assumptions on the specific aspect distribution.  

Our study and experiments are intentionally neutral with respect to 

factors in the system or collection properties, other than the aspect 

coverage by documents and the collection size. These properties 
would add up their share in the effect of diversification. Pursuing 

this direction would be a system specific investigation in principle, 

although generic simplified steps could be introduced such as, for 

instance, taking   ( )   | |⁄  rather than   ( )   . Another 

extension worth being addressed is the analysis of other dimen-

sions such as the degree of aspect coverage overlap (i.e. documents 
covering more than one aspect), the introduction of which we 

envision to be reasonably feasible in our framework of study. 

Beyond its theoretical interest, the question researched here has a 

direct practical motivation and potential uses, in common deci-
sions such as the choice of one among several available document 

features for diversification, the granularity of subqueries from a 

query log, or the appropriate level (i.e. the number of classes) one 

should use from a classification taxonomy such as ODP. This 
paper presents some steps in addressing a question which we see 

as important enough to warrant further research, beyond the study 

presented here. 
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