Formal modelling of robot behaviour with learning

R. Kirwan*, A. Miller*, B. Porr†, P. Di Prodi†

*R. Kirwan and A. Miller, School of Computing Science, University of Glasgow, Glasgow, Scotland

†B. Porr and P. Di Prodi, School of Engineering, University of Glasgow, Glasgow, Scotland

Abstract

We present formal specification and verification of a robot moving in a complex network, using temporal sequence learning to avoid obstacles. Our aim is to demonstrate the benefit of using a formal approach to analyse such a system, as a complementary approach to simulation. We describe first a classical closed-loop simulation of the system and compare this approach to one in which the system is analysed using formal verification. We show that the formal verification has some advantages over classical simulation and finds deficiencies our classical simulation did not identify. Specifically we present a formal specification of the system, defined in the Promela modelling language, and show how the associated model is verified using the SPIN model checker. We then introduce an abstract model which is suitable for verifying the same properties, but for any environment with obstacles under a given set of assumptions. We outline how we can prove that our abstraction is sound: any property that holds for the abstracted model will hold in the original (unabstracted) model.

1 Introduction

Simulation is commonly used to investigate closed-loop systems. Here, we focus on biologically inspired closed-loop systems where an agent interacts with its environment (Walter, 1953; Braitenberg, 1984; Verschure and Pfeifer, 1992). The loop here is established as a result of the agent responding to signals from its sensors by generating motor actions which in turn change the agent’s sensor inputs. More recently simulation has been used to analyse closed-loop systems in which the response of an agent changes with time due to learning from the environment (Verschure and Voegtlin, 1998; Kulvicius et al., 2010). This adds a new layer of complexity where the dynamics of the closed-loop will change and an initially stable system might become unstable over time.

Simulation is a relatively inexpensive method for determining the behaviour of a system. Even single experiments are informative and, by applying statistical methods to a series of experiments, inferences can be drawn concerning overall trends in behaviour. However, simulation alone is not sufficient to determine properties of the form: in all cases property P holds, or it is never true that property Q holds.
Formal methods have two major benefits when applied to this type of system. First, formal specification of the system requires precision in system description (e.g. in the rules determining an agent’s response to a particular signal), so avoiding redundancy and inconsistency. Second, verification of a system can allow us to prove properties that hold for any run of the system (i.e. that should hold for any experiment).

Formal methods have been used to analyse agent-based systems (Hilaire et al., 2000, 2004; Da Silva and De Lucena, 2004; Wooldridge et al., 2004; D’Inverno et al., 2004; Fisher, 2005). These approaches involve new formal techniques for theoretical agent-based systems. In contrast, in this paper we apply an appropriate automatic formal technique to a real system that has previously been analysed using classical closed-loop simulation. We do this in order to accurately compare the two approaches, and demonstrate the effectiveness of the application of formal methods in this domain.

Model checking is even more important for agents that learn because most learning rules are inherently unstable (Oja, 1982; Miller, 1996), especially at high learning rates. There is always the risk that weights grow endlessly and eventually render the resulting system dysfunctional. Model checking can guarantee that, under a given learning rate, the system will always learn successfully.

In this paper, we describe two formal models of a closed-loop system in which an agent’s behaviour adapts via temporal sequence learning (Sutton and Barto, 1987; Porr and Wörgötter, 2006). Our first model is obtained from a fairly low level description of a particular environment. The second, which we refer to as the Abstract model, is obtained from a higher level representation of a set of environments. The second model is more instructive, but requires expert knowledge to construct. We give a brief overview of how we would prove that the Abstract model is sound, in that it preserves properties that hold for the underlying set of environments.

Our models are obtained from specifications defined in the model specification language Promela, and verified using the model checker SPIN. For the remainder of the paper we will focus on the experiments described in Kulvicius et al. (2010) as an example of temporal sequence learning. We describe how we have reproduced the experiments using classical closed-loop simulation, and compare this classical approach to that using formal verification.

Our models are defined for a simplified environment/set of environments. The purpose of this paper is to provide a proof of concept for the approach. In Section 7 we describe how to generate models for more complex scenarios (i.e. with a fixed boundary, with additional robots, more closely-packed obstacles etc.).

2 The system

In this paper we show how model checking can be used to verify properties of a system that has previously been analysed using simulation. The system we focus on is that described in Kulvicius et al. (2010) in which simulation
is used to investigate how learning is affected by an environment and by the perception of the learning agent. The ability of a robot to successfully navigate its environment is used to assess its learning algorithm and sensor configuration.

We first describe how the robot learns to move towards or away from objects. This is achieved by using the difference between the signals received from the left and right sensors which can be interpreted as error signals (Braitenberg, 1984). At any time an error signal x is generated of the form:

$$x = \text{sensor}_{\text{left}} - \text{sensor}_{\text{right}}$$

(1)

where \text{sensor}_{\text{left}} and \text{sensor}_{\text{right}} denote the signals from the left and right sensors respectively. The error is then used to generate the steering angle v, where $v = \omega x$, for some constant ω. The polarity of ω determines whether the behaviour is classed as attraction or avoidance (Walter, 1953). The steering then influences the sensor inputs of the robot and we have formed a closed loop.

After having introduced the general concept of behaviour based robotics we now formalise the agent, the environment and the closed loop formed by this setup. We have two loops, as shown in Fig. 1C, because we have two pairs of sensors passing signals to the robot. One pair of sensors reacts to close range
impacts and are referred to as proximal sensors, with associated signals \(x_p \). The other sensor pair react to more distant events and are referred to as distal sensors, with associated signals \(x_d \). If the robot collides with an obstacle, there is an impact on the proximal sensor, which may be preceded by an impact on a distal sensor. This situation is referred to as a delay in the environment. This can happen at any time while the robot interacts with the environment and can be modelled as a stochastic process. It should be noted that this principle is not limited to avoidance but can also be used to learn attraction behaviour (Porr and Wörgötter, 2006). However here we focus on avoidance behaviour and how this is learned.

We introduce learning with the goal to avoid triggering the proximal sensors by using information from the distal sensors. In order to learn to utilize the distal sensor information we employ sequence learning which works on the basis that different sensors react at different times to the presence of an obstacle, causing a sequence of reactions. Fig. 1A shows the pairs of proximal and distal sensors at the front of the robot. Note that, in our simulation, the proximal and distal sensors are in fact collinear, i.e. the right proximal and distal sensors both point in same direction (and so on). For ease of viewing in Fig. 1A this is not the case. Note that although the sensors are collinear, there is no dual contact (i.e. with both sensors) at the places where the sensors overlap. The distal sensor is non-responsive to contact over the overlapping sections.

The proximal signals cause a reactive behaviour which is predefined (or “genetic”) and guarantees success (Fig. 1B1). Specifically, when the proximal sensor is hit directly by an obstacle, the robot will behave in such a way as to ensure that it moves away from the obstacle (i.e. escapes). Fig. 1C shows the formalisation of the learning system indicated by the box “agent” which contains a summation node \(\sum \) which sums the lowpass \((h_p, h_d)\) filtered input signals \(x_p \) and \(x_d \) where \(x_p \) and \(x_d \) are determined from the signals from the corresponding sensor pairs (see Eq. 1). The filtered input signals \(u_p \) and \(u_d \) and the angular response \(v \) after an impact to either sensor are determined via equations 2, 3 and 5.

\[
\begin{align*}
 u_p &= x_p * h_p \\
 u_d &= x_d * h_d
\end{align*}
\]

where \(* \) is the convolution operation and \(h_p, h_d \) are lowpass filters which are defined in discrete time as:

\[
h(n) = \frac{1}{b} e^{a n} \sin(b n) \leftrightarrow H(z) = \frac{1}{(z - e^p)(z - e^{p^*})}
\]

The real and imaginary parts of \(p \) are defined as \(a = \text{real}(p) = -\pi f/Q \) and \(b = \text{imag}(p) = \sqrt{(2\pi f)^2 - a^2} \) respectively. \(Q = 0.51 \) and \(f = 0.1 \) are identical for both \(h_p \) and \(h_d \) which results in a smoothing of the input over at least ten time-steps.

These smoothed distal and proximal signals are then summed to form the steering angle:

\[
v = \omega_p u_p + \omega_d u_d
\]
The distal weight ω_d is set to zero at the start of the experiment so that only the reactive (predefined) loop via signal x_p and ω_p is active. This loop is set in such a way that the behaviour when touching an obstacle is successful (proximal reflex). However, such behaviour is sub-optimal because the proximal sensor signal x_p first has to be triggered which might be dangerous or even lethal for the agent. The task of learning is to use the distal sensors (with signal x_d) so that the agent can react earlier. Learning adjusts the weight ω_d in a way that the agent successfully performs this pro-active behaviour by using the loop via signal x_d. The learning we employ here is ICO learning (Input Correlation Learning, Porr and Wörgötter 2006) which utilises lowpass filters to create correlations between distal and proximal events (see Fig. 1C). Lowpass responses (Eq. 2,3) smear out the signals and create a temporal overlap between the proximal and distal signals which can then be correlated by our learning rule to adjust the predictive behaviour:

$$\dot{\omega}_d = \lambda \dot{u}_p u_d$$

The derivative of the low pass filtered proximal signal u_p is used to create a phase lead which is equivalent to shifting its peak to an earlier moment in time so that a correlation can be performed at the moment the proximal input has been triggered. This is illustrated in Fig. 2 which shows the signals from the distal and proximal sensors. Signals are represented as simple pulses in Fig. 2A and lowpass filtered signals in in Fig. 2B. It can be seen that the smearing out of the signals is necessary to achieve a correlation. Learning stops if u_p is constant which is the case when the proximal sensor is no longer triggered. A sequence of impacts consisting of at least one impact on a distal sensor followed by an impact on a proximal sensor causes an increase in the response (by a factor λ known as the learning rate). See Porr and Wörgötter (2006) for a more detailed elaboration of differential Hebbian learning.
While in Kulvicius et al. (2010) the main objective was to measure the performance of the robot, here we will concentrate on the performance of the closed loop which can be benchmarked in different ways, using the proximal sensor input x_p and the weight ω_d (the proactive weight). For model checking, satisfaction of the following properties would indicate correct behaviour of the robot:

1. The sensor input x_p of the proximal sensor will eventually stay zero, indicating that the agent is only using its distal sensors.
2. The weight ω_d will eventually become constant, indicating that the agent has finished learning.

Note that the two properties are shown by simulation to be true in most cases. However, one simulation leads to a counter-intuitive result. This is discussed further in Section 3.1. In Section 5.2 we show how formal verification showed us that this seemingly incorrect result was due to premature termination of the simulation run.

Fig. 1B1 and Fig. 1B2 show two example behaviours before learning and after learning respectively. The behaviour shows a typical transformation from a purely reflexive behaviour to proactive behaviour. The agent begins with a zig-zag movement by reacting to the collisions (Fig. 1B1) then progresses to smoother trajectories when it learns to respond to its distal antennae (Fig. 1B2). This behaviour is generated by the growth of the weight ω_d which represents the loop via the distal sensors. After successful learning the proximal antennae will no longer be triggered which causes the weight ω_d to stabilise.

Our goal is to verify the properties above using model checking. In Section 5 we describe how the system is specified in Promela. In Section 5.2 we show how these properties can be expressed in Linear Time temporal Logic (LTL) (Pnueli, 1981) and describe the process of verification. We demonstrate that the LTL properties are satisfied for (our model of) the system.

3 Preliminaries

3.1 Simulation environment

In order to recreate the simulation results of Kulvicius et al. (2010), we created our own simulation environment, using classical closed-loop simulation tools and ICO learning. In Section 8 we compare this approach with that using formal verification. We focus our modelling on how learning is affected by the complexity of environment. Note that the purpose of this paper is to present a proof of concept, i.e. that of using model checking combined with abstraction to verify properties of this type of environment. We have simplified our models, via a set of assumptions, in order to clarify our exposition. In Section 7 we indicate how our models could be extended to incorporate more realistic, or complex, scenarios.
We restricted the definition of environmental complexity to be a measure of the minimum spacing between obstacles (i.e. a more complex environment implies a smaller minimum space between obstacles). This makes our models simpler. Environment boundaries are removed – when a robot reaches the edge of the environment it simply emerges again at the opposite point on the environment edge. This simplification is unlike the situation in Kulvicius et al. (2010), but agrees with the set-up for our verifications, with which we are comparing results. Removing the boundaries also helps us to abstract our model in Section 6. Fig. 3 represents the geometry of the simulated environment.

In our behaviour-based simulation environment the robot is positioned at coordinates \(r_x(t), r_y(t) \) and moves in a grid of pixels. At every time-step the robot moves forward one pixel at angle \(\theta \) (from North):

\[
\begin{align*}
 r_x(t) &= r_x(t-1) + \cos(\theta) \\
 r_y(t) &= r_y(t-1) + \sin(\theta)
\end{align*}
\]

where \(r_x, r_y \) and any derived coordinates for the sensor signals are stored as floating point values. The coordinates are rounded to integer values when used to determine whether a collision has occurred (for example), but their floating point values are retained for future calculations. The steering angle \(v \) is added to \(\theta \) every time-step. i.e. \(\theta(t+1) = \theta + v \). Obstacles are coded as non-zero values in the grid. The sensor signals \(x_d \) and \(x_p \) are generated by probing the pixel values along the left and right antenna coordinates and calculating their differences (see Eq. 1). The resulting differences for the proximal and distal sensors are
then fed into first order low pass filters (see Eq. 2 and Eq. 3) and then summed to generate the new steering angle (see Eq. 5). Learning is implemented using Eq. 6. The simulation environment is implemented in MATLAB (MATLAB, 2010).

Various simulations were run using this system. The results of some of these simulations are plotted in Fig. 4. For each simulation the agent is positioned in the centre of the environment, facing a varying number of degrees clockwise from North.

The graphs in Fig. 4 plot the total number of impacts on the distal and proximal antennae over time, for a range of starting directions (i.e. the angle from North faced by the robot). Note that the weight development follows exactly the curve for the accumulated proximal events (scaled using λ). This is due to the fact that (in our simplified system) the weight increases every time the proximal sensor is been triggered.

In the graphs the distal and proximal values are initially close together, as the system cannot yet avoid using its proximal signals. As the agent learns to use its distal antennae the distal and proximal total impacts begin to diverge. This is an indication that the agent is avoiding colliding with its proximal antennae by learning avoidance behaviour. Eventually, the proximal total stays constant, indicating that the agent is no longer colliding. This is because the robot eventually finds a path between the obstacles and, after reaching the boundary, emerges along the same path. This causes continuous collision-avoiding behaviour and is both desired and expected.

The simulation where the agent begins facing 58° from North (Fig. 4F) appears to be an exceptional case. In this graph the proximal value continues to rise. We will consider this case in detail in Section 5.2.

3.2 Model Checking vs Simulation

In this paper we demonstrate how model checking can be used to verify properties of a system comprised of a robot moving in an environment. The environment we use is identical to that used for simulation, as described in Section 3.1, so that we can compare the two approaches. Our system is simple, and subject to a number of assumptions. Indeed either approach requires assumptions to be made. The important issue is that the same assumptions are made in all cases, so that a fair comparison can be made. Our goal here is to illustrate the technique rather than to present a comprehensive suite of models. We explain how our approach can be extended to other environments, or to situations involving more robots, or a rigid boundary wall in Section 7. We illustrate the relationship between classical closed-loop simulation and our approach in Fig. 5.

Model checking involves analysis of a state-space (a graphical representation of all possible states reached by the system, and the transitions between them). While in the classical simulation we could implement all variables as floating point (given analytical expressions of the entire environment), in model checking we need to discretise variables so that we can set up our state space. Generally the granularity of any discretisation of a robot simulation is determined by the
Figure 4: Simulation runs for a range of starting directions. A) 0°, B) 15°, C) 30°, D) 40°, E) 50°, F) 58°, G) 58° – with extended running time.
Figure 5: Comparison of approaches
signal to noise ratio of the sensors of the real robot and imperfections of its actuators (Graña, 2007; Tronsco et al., 2007; Chesi, 2009). This holds true for both classical simulation and model checking.

Simulation is equivalent to examining individual paths through a state-space. Exhaustive simulation (to cover all eventualities) is either very time-consuming or impossible. Model checking allows us to examine all possible paths, and to precisely express the property of interest (rather than relying on observation of simulation output). As illustrated in Fig. 5, a single simulation is equivalent to a single path in our model. Often a simulation run is actually equivalent to a prefix of a path in our model (consisting of the first \(N \) states of the path, for some finite number \(N \)). A simulation is necessarily terminated at some point, whereas verification involves exploring all paths until either there are no further states, or until a cycle is detected.

Both simulation and model checking involve a degree of abstraction. The user of the technique must decide which aspect of the system to represent in their simulation/model. Our initial model (the Explicit model) is deliberately abstracted to the same degree as the simulation setup, so no additional information is lost. It is therefore straightforward to infer that we are modelling the same thing in each case. The power of model checking in this case is that, as described above, we can formally define a property and automatically check every path. Note that in the single robot model there are few decision points in our model (and so there are few paths), but in general a state-space contains many paths. For example if there were multiple robots, the ordering of steps taken by the different robots would lead to different paths, with different outcomes.

Having demonstrated the power of model checking with our Explicit model, we introduce a further model, the Abstract model, which is a far more compact model, which not only merges symmetrically equivalent views (from the robot’s perspective), but combines several equivalent environments into the same model. There are two major benefits to this type of abstraction. The Abstract specification is a much neater representation than the Explicit specification, e.g. fewer individual transitions need to be considered. In addition, results of verification hold for all environments considered in the single model, which avoids the necessity of repeating the same experiments for similar, but different, environments. A drawback of the approach is that it requires expert knowledge of the system (e.g. intimate prior experience with the Explicit model). In addition, it differs so greatly from the physical system (and the simulation environment) that complex mathematical proof is required to ensure that the abstraction is sound, i.e. that it preserves the properties in question.

A comparison of model checking and closed-loop simulation, applied to this system, is presented in Section 8.

3.3 Formal Definitions

In order to be able to reason about our models, we need formal semantics. We define a Kripke structure (Kripke, 1963) as the formal model of our system. Note that for model checking we do not need to be aware of the underlying semantics
indeed, the model checker represents the system as a Büchi automaton (Büchi, 1960) - see Section 4). However, to prove that our Abstract model preserves LTL (Linear Time temporal Logic) properties (in Section 6.1) we will reason about the underlying Kripke structures of our Promela programs.

Definition Let AP be a set of atomic propositions. A Kripke structure over AP is a tuple $M = (S, s_0, R, L)$ where S is a finite set of states, s_0 is the initial state, $R \subseteq S \times S$ is a transition relation and $L : S \rightarrow 2^{AP}$ is a function that labels each state with the set of atomic propositions true in that state. We assume that the transition is total, that is, for all $s \in S$ there is some $s' \in S$ such that $(s, s') \in R$.

A path in M is a sequence of states $\pi = s_0, s_1, \ldots$ such that for all i, $0 \leq i$, $(s_i, s_{i+1}) \in R$.

When AP is a set of propositions defined over a set of variables X (e.g. $AP = \{(x == 4), (y + z <= 3)\}$, we say that M is a Kripke structure over X.

The logic CTL^* is defined as a set of state formulas (i.e. properties that hold from a given state), and a set of path formulas (i.e. properties that hold along a given path) which are defined inductively below. The quantifiers A and E are used to denote for all paths, and for some path respectively (where, if \neg denotes negation, for path property ϕ, $E\phi = \neg A \neg \phi$). In addition, $X (\text{nexttime})$ denotes in the next state, and $\langle \rangle$ and $[]$ represent the standard eventually and always operators (used to indicate that a proposition is true for every state in a path, or true at some state in a path respectively). The binary operator \cup denotes until, where $p \cup q$ states that proposition p is true in the current state and continues to be true until a state is reached at which proposition q is true (and such a state will eventually be reached). Note that $\langle \rangle \phi = \text{true} \cup \phi$ and $[]\phi = \neg \langle \rangle \neg \phi$.

Let AP be a finite set of propositions. Then, if \land and \lor denote the usual and and or respectively,

- for all $p \in AP$, p is a state formula
- if ϕ and ψ are state formulas, then so are $\neg \phi$, $\phi \land \psi$ and $\phi \lor \psi$
- if ϕ is a path formula, then $A\phi$ and $E\phi$ are state formulas
- any state formula ϕ is also a path formula
- if ϕ and ψ are path formulas, then so are $\neg \phi$, $\phi \land \psi$ and $\phi \lor \psi$, $X\phi$, $\phi \lor p$, $\langle \rangle \phi$ and $[]f$.

The logic LTL (Pnueli, 1981) is obtained by restricting the set of (CTL^*) formulas to those of the form $A\phi$, where ϕ does not contain A or E. When referring to an LTL formula, one generally omits the A operator and instead interprets the formula ϕ as “for all paths ϕ”.

For a model M, if the LTL formula ϕ holds at a state $s \in S$ then we write $M, s \models \phi$ (or simply $s \models \phi$ when the identity of the model is clear from the context).
Table 1: Common LTL properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Common name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \rightarrow q$</td>
<td>if p is true at a state then q is true at that state</td>
<td></td>
</tr>
<tr>
<td>$\mathbb{E}p$</td>
<td>invariance</td>
<td>p is true at every state</td>
</tr>
<tr>
<td>$\mathbb{F}q$</td>
<td></td>
<td>q is true eventually</td>
</tr>
<tr>
<td>$p \cup q$</td>
<td>q will eventually be true. p will be true at the initial state and will remain true until q becomes true</td>
<td></td>
</tr>
<tr>
<td>$p \rightarrow \mathbb{F}q$</td>
<td>response</td>
<td>if p is true at a state then q will be true either at that state or at a later state in the path</td>
</tr>
</tbody>
</table>

Assuming that p, q, and r are propositions, some common LTL properties are given in Table 1. In each case, the common name for the property is given, if such a name exists. Note that we omit the criterion for every path in the description of the properties, as this is implied for all LTL properties. (E.g. $\mathbb{E}p$ should be read as “for every path p holds at every state”). More examples of common LTL property patterns can be found in Dwyer et al. (1998).

3.4 Büchi automata and LTL

One of the most efficient algorithms for model checking LTL properties is the automata-theoretic approach (see Section 4.1). Although we will not describe the algorithms in detail, we provide a little background theory here.

Definition A finite state automaton (FSA) A is a tuple $A = (S, s_0, L, T, F)$ where:

1. S is a non-empty, finite set of states
2. $s_0 \in S$ is an initial state
3. L is a finite set of labels
4. $T \subseteq S \times L \times S$ is a set of transitions, and
5. $F \subseteq S$ is a set of final states.

A run of A is an ordered, possibly infinite, sequence of transitions $$(s_0, l_0, s_1), (s_1, l_1, s_2), \ldots$$ where $s_i \in S$ and $l_i \in L$ for all $i > 0$. An accepting run of A is a finite run in which the final transition (s_{n-1}, l_{n-1}, s_n) has the property that $s_n \in F$.

In order to reason about infinite runs of an automaton, alternative notions of acceptance, e.g. Büchi acceptance, are required. We say that an infinite run (of an FSA) is an accepting ω-run (i.e. it satisfies Büchi acceptance) if and only if some state in F is visited infinitely often in the run. A Büchi automaton is
an FSA defined over infinite runs (together with the associated notion of Büchi acceptance).

Every LTL formula can be represented as a Büchi automaton. See, for example Wolper et al. (1983), Vardi and Wolper (1994), and references therein.

4 Model checking

Errors in system design are often not detected until the final testing stage when they are expensive to correct. Model checking (Clarke and Emerson, 1981; Clarke et al., 1986, 1999) is a popular method that helps to find errors quickly by building small logical models of a system which can be automatically checked.

Verification of a concurrent system design by temporal logic model checking involves first specifying the behaviour of the system at an appropriate level of abstraction. The specification \(P \) is described using a high level formalism (often similar to a programming language), from which an associated finite state model, \(M(P) \), representing the system is derived. A requirement of the system is specified as a temporal logic property, \(\phi \).

A software tool called a model checker then exhaustively searches the finite state model \(M(P) \), checking whether \(\phi \) is true for the model. In LTL model checking, this involves checking that \(\phi \) holds for all paths of the model. If \(\phi \) does not hold for some path, an error trace or counter-example is reported. Manual examination of this counter-example by the system designer can reveal that \(P \) does not adequately specify the behaviour of the system, that \(\phi \) does not accurately describe the given requirement, or that there is an error in the design. In this case, either \(P, \phi \), or the system design (and thus also \(P \) and possibly \(\phi \)) must be modified, and re-checked. This process is repeated until the model checker reports that \(\phi \) holds in every initial state of \(M(P) \), in which case we say \(M(P) \) satisfies \(\phi \), written \(M(P) \models \phi \).

Assuming that the specification and temporal properties have been constructed with care, successful verification by model checking increases confidence in the system design, which can then be refined towards an implementation.

4.1 LTL model checking

The model checking problem for LTL can be restated as: “given \(M \) and \(\phi \), does there exist a path of \(M \) that does not satisfy \(\phi \)” One approach to LTL model checking is the automata-theoretic approach (Lichtenstein and Pnueli, 1985; Vardi and Wolper, 1986).

In order to verify an LTL property \(\phi \), a model checker must show that all paths of a model \(M \) satisfy \(\phi \) (alternatively, find a counterexample, namely a path which does not satisfy \(\phi \)). To do this, an automaton \(A \) representing the reachable states of \(M \) is constructed, together with an automaton \(B_{\neg\phi} \) which accepts all paths for which \(\neg\phi \) holds. The asynchronous product of the two automata, \(A' \) is constructed. In practice \(A' \) is usually constructed implicitly, by letting \(A \) and \(B_{\neg\phi} \) take alternate steps. Whenever a transition is executed in \(A \),
the propositions in ϕ are evaluated to determine which transitions are enabled in $B_{\neg \phi}$. If a path in A does not satisfy ϕ, the automaton $B_{\neg \phi}$ may execute a trace along a path in which it repeatedly visits an acceptance state. This is known as an accepting run (of A') and signifies an error. If there are no accepting runs, the property holds and $M \models \phi$. Generally to prove LTL properties, a depth-first search is used. As the search progresses, all states visited are stored (in a reduced form) in a hash array (or heap), and states along the current path are pushed on to the stack. If an error path is found, a counter-example can be produced from the contents of the stack.

In Fig. 6 we give Büchi automata for LTL properties $\Box p$ (p is true at every state) and $\Diamond q$ (q is true eventually). Note any path of an automaton A has associated paths in the Büchi automaton. For example, consider the Büchi automaton of Fig. 6A. If π is a path in A for which p becomes false at some state s say, it would be possible to loop around the state labelled $T_0: \text{init}$ until s is reached, then make a transition to the (acceptance) state labelled accept_all. The infinite continuation of π would result in infinite looping around the acceptance state in the Büchi automaton. Thus π would be accepted. Similarly, a path π' in A for which q is never true would be accepted by the Büchi automaton of Fig. 6B. Note that the names of the states are not significant (although an acceptance state is generally prefixed with the term accept). The Büchi automaton in this example was generated using SPIN.

When we use model checking to prove properties of a system, the underlying automata are constructed by the model checker itself. The user must supply a specification of the system that is recognisable as a true representation of the system and the translation to automata is unseen. In Section 4.2 we introduce Promela, the specification language for the model checker SPIN.
4.2 Promela and Spin

The model checker SPIN (Holzmann, 2004) allows one to reason about specifications written in the model specification language Promela. SPIN has been used to trace logical errors in distributed systems designs, such as operating systems (Cattel, 1994; Kumar and Li, 2002), computer networks (Yuen and Tjioe, 2001), railway signalling systems (Cimatti et al., 1997), wireless sensor network communication protocols (Sharma et al., 2009) and industrial robot systems (Weissman et al., 2011).

Promela is an imperative style specification language designed for the description of network protocols. A user of SPIN does not see the Büchi automata associated with their Promela specification. The Promela specification is a clear and understandable representation of the system to be modelled. Indeed, since Promela syntax is close to C-code, a Promela specification is often very close to the implementation of the system to be modelled. Underlying semantics allow a Promela specification, and an LTL property to be converted into their respective automata and combined as described in Section 4.1. The specification can be relatively short, whereas the associated Büchi automata can contain thousands (or indeed millions) of states. It is not, therefore, feasible to construct the Büchi automata by hand.

In general, a Promela specification consists of a series of global variables, channel declarations and proctype (process template) declarations. Individual processes can be defined as instances of parameterised proctypes. A special process – the init process – can also be declared. This process will contain any array initialisations, for example, as well as run statements to initiate process instantiation. If no such initialisations are required, and processes are not parameterised, the init process can be omitted and processes declared to be immediately active, via the active keyword. Properties are either specified using assert statements embedded in the body of a proctype (to check for unexpected reception, for example), an additional monitor process (to check global invariance properties), or via LTL properties. We do not give details of Promela syntax here, but illustrate the structure of a Promela program and some common constructs by way of our example system in Appendix B. LTL properties that are to be checked for the system are defined in terms of Promela within a construct known as a never claim. A never claim can be thought of as a Promela encoding of a Büchi automaton representing the negation of the property to be checked.

SPIN creates a finite state automaton for each process defined in a Promela specification. It then constructs the asynchronous product, A, of these automata and a Büchi automaton $\neg B$ corresponding to any never claim defined. As described in Section 4.1, in practice A and $\neg B$ are executed in alternate steps – the propositions in $\neg B$ being evaluated with respect to the current values of the variables in A. Automaton A can be thought of as a graph in which the nodes are states of the system and in which there is an edge between nodes s_1 and s_2 if at state s_1 some process can execute a statement (make a transition) which results in an update from state s_1 to state s_2.

16
The system that we are modelling here is not concurrent: there is just a single robot moving in an environment. However our model does involve non-deterministic choice. When a head-on collision occurs the robot moves to the left, or right of the obstacle. When the collision occurs at the furthest point on the shell from the center of the robot, i.e. at a point equidistant from the antennae, the direction of movement is chosen non-deterministically. SPIN allows us to check every path through a model for counter-examples (i.e. paths that violate a given property), without having to manually construct a set of test cases. This includes infinite (looping) behaviour, which cannot possibly be checked using simulation alone. Future work (see Section 7) will involve us adding additional robots. This will be a simple case of adding further instantiations of the robot process template.

In our model it is important that the movement of the robot in its environment is represented as accurately as possible. Due to the limitations of the Promela language this precision is not possible with Promela alone. However, it is possible to embed C code within a Promela specification. Note that the calculations performed in the C code are visible to the Promela specification, and the values of variables contained therein used to determine transitions in the automata. However, we can choose that some variables used for intermediate calculations that are not relevant (i.e. do not influence transitions) are not visible, i.e. do not form part of each state. In Appendix A we describe how embedded C code is used in our Promela specification.

5 The Promela Specification (Explicit Model)

In this paper we describe two Promela specifications, the Explicit specification, a specification which describes a low-level representation of the system for a particular environment, and the Abstract specification, which allows us to capture all paths of a robot in any environment (with some restrictions). The associated models are the Explicit model and the Abstract model. Fig. 5 illustrates the relationship between our models and the relationship between simulation and model checking.

Note that the Explicit specification is so low level that it closely resembles simulation code. This is an advantage: it is easy to convince system designers that our specification (and hence the resulting model) is correct. Verification of the underlying model is more powerful than simulation alone, but is restricted to proving properties for a single environment. In addition the state-space associated with such an unabstracted model can be prohibitively large. (This is not true in our case, but applies to systems with a high level of concurrency and non-determinism.) The Abstract specification is much further removed from the simulation code, and requires expert knowledge to construct. The benefit of the Abstract model is that we can verify properties for any environment (under the given assumptions) and memory and time requirements are much smaller (than the combined requirements for all environments). However mathematical proof is required to show that the Abstract model does, indeed, capture the behaviour
of a single robot in any suitable environment.

In this section we describe the Explicit specification.

5.1 Assumptions

We assume that the environment, the robot and the obstacles are all circular (see Fig. 7). The robot setup is illustrated in Fig.7. The length of an antenna is 60 units and the angle between the antennae is 60°. The diameter of the robot is 40 units (see Fig. 7C), and the diameter of an obstacle is 20 units (see Fig. 7B). The environment has diameter at least 100 units – the radius of the robot plus the length of an antenna plus the diameter of an obstacle – (see Fig. 7A).

We assume that the complexity of the environment is such that at most one obstacle can touch any part of the robot at any time. We denote the minimum allowable distance between obstacles as δ_0.

An environment is a circular region, represented by a set of polar co-ordinates $C = \{(r, \theta) : 0 \leq r \leq \rho, 0 \leq \theta < 360\}$, where ρ is the radius of the environment and angles are measured clockwise from North. We use polar coordinates to represent the environment and the current position of the robot and the obstacles. This allows us to store the angular information of the system (without having to recalculate this from Cartesian coordinates at every point) and so determine the robot’s new position when moving at an angle that is not parallel to either Cartesian axis. The use of polar coordinates also allows us to represent the turning angles of the agent to an accuracy of one degree, a level of accuracy that we deemed acceptable.

The robot is initially placed in the centre of the environment, facing a given direction. Since the robot is the only moving obstacle in the environment, the state of the system reflects the position of the robot, the direction it is moving, and (by implication) at what point (if any) an obstacle touches either of the sensors. We do not include the robot’s motors or external wheels in the model.

The precise location of the robot as it moves around an environment is calculated using C-code embedded within our Promela specification. At each time step the new direction of the robot is calculated from the signals received from the sensors. We simply calculate the position of any obstacle touching the sensors to infer this information. As well as deciding the new direction of

Figure 7: Robot Setup A) Distance from centre of robot to far edge of obstacle, B) lengths of antenna and obstacle, C) diameter of robot.
the robot, the angular response to a sensor impact will be incremented by a fixed amount (the learning rate) if a collision occurs at the proximal sensor, after a collision has occurred at a distal sensor. If a head-on collision occurs the robot moves to the left, or right of the obstacle. When the collision occurs at the furthest point on the shell from the center of the robot, i.e. at a point equidistant from the antennae, the direction of movement is chosen non-deterministically.

As in the simulated environment, we ignore the presence of any boundary wall. When a robot reaches the perimeter of the environment it is simply relocated to the opposite edge of the perimeter. This is achieved via a WRAP function that reflects the position of the robot about a ray, \(r_2 \), that runs through the pole (centre of the environment) and is perpendicular to the ray \(r_1 \) that runs through the position \(p \) of the robot at the angle that the robot is facing. The new position of the robot is \(p' \) where \(p \) and \(p' \) are at the same distance from the two points of intersection of \(r_1 \) with the perimeter of the environment. Note the robot continues to face in the same direction. Fig. 8 illustrates the effect of the WRAP function when the new position of the robot is simply diametrically opposite to the old position, and when it is not. Our particular implementation of the movement of the robot at the boundary reflects the implementation in the closed-loop simulation which, in both cases, was chosen to simplify our description and the introduction of our approach. Other implementations are possible, as discussed in Section 7.

![Figure 8: Examples of the WRAP function](image-url)
We include some sample Promela code in Appendix B.

5.2 Verification results for the Explicit model

Our initial experiments with SPIN involved attempting to reproduce the results of the simulations of Fig. 4. In particular, we were interested in the results of the simulation where the agent initially faces 58° from North (Fig. 4). As observed in Section 3.1, in this case the learning weight (ω_d) continues to rise, apparently indefinitely. This continual rise is counter-intuitive. We examined this case using model checking. Our specification was for a robot initially facing due North, and the environment adapted appropriately. Using SPIN we verified that the system should always stabilise (this is in fact Property 2 below, details of the verification of this property are described below). Analysing this inconsistency in more detail, we suggested the simulation of Fig. 4A should simply be run for longer. The results of this extended simulation are shown in Fig. 4G. Running the extended simulation shows that the proximal value does eventually stabilise, indicating that learning has ceased and successful avoidance behaviour has been achieved. Note that this illustrates an advantage of model checking over simulation. Whereas in simulation the user decides when to stop waiting for stabilisation to occur, the model checker automatically checks all possible outcomes. The model checking process does not terminate until all possible paths have been explored, however unlikely they may be. This is illustrated in Fig. 5: a simulation run maps to a prefix of a path in the state-space.

We now give details of how we verified both of the properties identified in Section 2, namely:

1. The sensor input x_p of the proximal sensor will eventually stay zero, indicating that the agent is using only its distal sensors.
2. The weight ω_d will eventually become constant, indicating that the agent has finished learning.

Our models are defined separately for each learning rate λ and environment (i.e. location of obstacles). Using this model we can not verify properties for any environment, we must construct a different model (via a different Promela specification) for every environment. We fix our learning rate to 1, and verify our properties for an example set of environments.

Environments E1 - E6 are shown in Fig. 9. These environments have obstacles placed at random, at a minimum distance of δ_0 from each other (see Section 5.1). Note that the positioning of the obstacles is further restricted by the WRAP function (see Table. 4) in two ways. First, when an obstacle is randomly placed its minimum distance from other obstacles must take into account the wrapping of the environment. Second, obstacles cannot be placed so close to the perimeter that the WRAP function could cause the robot to wrap directly into it.

The experiments were conducted on a 2.5 GHz dual core Pentium E5200n processor with 3.2Gb of available memory, running UBUNTU (9.04) and SPIN 6.0.1.
Figure 9: Environments E1 - E6.
To prove property 1, we used the LTL formula $\diamond \square p$ (in all paths p is eventually true) where p is defined to be the proposition, $((\text{sig} \neq 6) \& \& (\text{sig} \neq -6))$. Note that sig and PrevSig are the variables we use in our Promela specification to denote the current signal from the sensors and the previous signal from the sensors respectively. The latter has default value 0, and is reset to this value when a proximal signal is received.

Attempts to verify this property using SPIN proved the property to be false. Examination of a counter-example trace showed that it was indeed always possible to have an impact on a proximal sensor, even when learning had ceased. This happens when the robot approaches an obstacle head on, and the obstacle impacts without the distal sensor touching the obstacle. This situation was missed during simulation. Of course, on another day, a different simulation may have exposed this possibility. The benefit of model checking here is that it never misses an error path although, of course, it is the definition of the property being checked that determines what an error path is.

Since learning only occurs when an impact on the proximal sensor follows an impact on the distal sensor, we can rephrase the property to eliminate this rare behaviour. The new property (Property 1A) is $\diamond \square (p \rightarrow q)$ (eventually p is always true, unless q is false), where p is defined as above, and q is defined to be $(\text{prevSig} > -6) \& \& (\text{prevSig} < 6))$. This property is shown to be true for our set of example environments (see Table 2 for verification results). Note that the Stored states column gives an indication of the size of the underlying state graph. As the graph is explored (during any verification), states are generated on-the-fly from the transitions indicated in the Promela specification. When a new state is encountered, it is stored (in the state-space). When a previously visited state is encountered, the search backtracks. The max search depth is the length of the longest path that is explored during search, and time denotes the time (in seconds) taken for verification.

To prove property 2, in each case we performed initial experiments to find

<table>
<thead>
<tr>
<th>Environment</th>
<th>Property</th>
<th>Max ω_d</th>
<th>Stored states</th>
<th>max search depth</th>
<th>time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>1A</td>
<td>1</td>
<td>273664</td>
<td>547323</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td>273734</td>
<td>547323</td>
<td>2.26</td>
</tr>
<tr>
<td>E2</td>
<td>1A</td>
<td>1</td>
<td>150562</td>
<td>300979</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td>150492</td>
<td>300979</td>
<td>1.04</td>
</tr>
<tr>
<td>E3</td>
<td>1A</td>
<td>0</td>
<td>670</td>
<td>1339</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td>670</td>
<td>1339</td>
<td>0.00</td>
</tr>
<tr>
<td>E4</td>
<td>1A</td>
<td>0</td>
<td>77034</td>
<td>154067</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td>77034</td>
<td>154067</td>
<td>0.28</td>
</tr>
<tr>
<td>E5</td>
<td>1A</td>
<td>1</td>
<td>218326</td>
<td>436647</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td>218372</td>
<td>436647</td>
<td>1.73</td>
</tr>
<tr>
<td>E6</td>
<td>1A</td>
<td>1</td>
<td>61256</td>
<td>122507</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td>61434</td>
<td>122507</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Table 2: Verification results for the Explicit model
the maximum value of ω_d, call this value Max. These experiments involved choosing an initial (high) value of Max and checking a further LTL property $[\omega_d < Max]$. When the property is proved true, Max is decremented and the process repeated, until the property is shown to be false, in which case Max is fixed to the last value for which the property was shown to be true. We checked a slightly modified version of Property 2, namely Property 2A, to verify that Max is eventually reached, but never exceeded. This is verified using the following LTL property: $(\langle \omega_d == Max \rangle) \&\& ([\omega_d <= Max])$. This property was shown to be true for our set of example environments (see Table 2).

6 The Abstract specification

The Promela specification described in Section 5 models the physical world explicitly. I.e. it represents an explicit environment and an explicit robot. In this section we describe an Abstract specification, in which the environment is abstracted to a much smaller area, known as the cone of influence surrounding the robot. Rather than move the robot around an Explicit environment, at any state we consider only the position of any obstacle within this cone of influence, and its position relative to the robot. Depending on any impact made to the sensors of the robot at a given state, the next state is calculated. In this case rather than the robot move, the robot stays fixed in its original position (at the origin) and any obstacle moves relative to the robot. The advantage of this specification over the Explicit specification is that the model represents a robot moving in any environment with distance between obstacles at least δ_0 (as defined in Section 5.1). The relationship between our models, and between simulation and our models is illustrated in Fig. 5.

As well as the usual benefits of model checking, the Abstract model allows further benefits over simulation, in that it allows us to analyse a set of environments in a single verification. Of course we need to define assumptions on our environment (in the same way that we would need to define restrictions on a simulation environment). The environments represented by a single abstract model must all be equivalent in some way. In our case this equivalence is determined by the minimal distance between obstacles, it could of course be defined differently. In Section 7 we describe how the Abstract model could be extended to more complex scenarios (e.g. a range of distances between obstacles).

To see how the Abstract model represents multiple environments, consider Fig. 10. For a given position of the robot, several environments look identical from the robot’s perspective (i.e. within its cone of influence). Our abstraction merges these symmetrically equivalent cases. In our case, only one obstacle can appear within the cone of influence, and equivalent cases are determined by the distance and angle of any obstacle from the antennae. If there were more obstacles symmetry would still exist between different scenarios (see Section 7). Note that our abstraction also merges situations in which the robot is in different positions, but its view within its cone of influence is the same. This is
Figure 10: Abstraction of environments to a single representation. From a given position of the robot, several environments look identical. Shown are states in six different environments which correspond to the same state in the abstract model.

not illustrated in Fig. 10.

From a state in which there is an obstacle in the cone of influence, the next state is calculated in the same way as it is for the Explicit specification. However, if there is no obstacle within the cone of influence, i.e. the robot is in free space, non-deterministic choice determines the position (if any) of an obstacle appearing at the front of the cone of influence in the next state.

We refer to the model (i.e. Kripke structure) associated with the Abstract specification as the Abstract model. In Section 6.1 we give an outline proof to show that, for any suitable environment E, any LTL property satisfied by the Abstract model is satisfied by any Explicit model with a suitable environment.

We give outline code for the Abstract specification in Appendix C.

6.1 Justification for the Abstract model

We need to show that, for a given learning rate λ, by verifying an LTL property for the Abstract model, with learning rate λ we can infer that ϕ holds for all Explicit models with learning rate λ. In this section we use the term model to denote the underlying Kripke structure (see Definition 3.3) associated with a Promela specification.

Our justification is based on the concept of simulation between two Kripke structures \mathcal{M} and \mathcal{M}'. A simulation relation R between the sets of states of \mathcal{M} and \mathcal{M}' is a set of pairs of states, (s, s') where s and s' are states of \mathcal{M} and \mathcal{M}' respectively, and where any transition in \mathcal{M} is matched to a transition in \mathcal{M}'. Formally: for any transition (s, s_1) in \mathcal{M}, if $(s, s') \in R$ then there is a transition (s', s'_1) in \mathcal{M}' where $(s_1, s'_1) \in R$.

We say that \mathcal{M}' simulates \mathcal{M} if there is a simulation R between the sets of
For every path in M there is a corresponding path in M', in this case we say that a path π in M is matched to a corresponding path π' in M'. Note that, in Figure 11, paths A and B in M are both matched to path A' in M' and path C in M is matched to path B' in M'. Crucially, several paths in M can be matched to a single path in M', and not all paths in M' need to be matched to paths in M. Any LTL property that holds for (all paths in) M' holds for (all paths in) M.

Let M and M' denote an Explicit model and the Abstract model, for a given learning rate λ. It is possible to prove that there is a simulation relation between the Explicit model (i.e. for an example environment) and the Abstract model. Similarly, every path in the Abstract model is mapped to a path in some Explicit model. It follows that if an LTL property ϕ holds for the Abstract model, for a given learning rate λ, it will hold for every path in every Explicit model with learning rate λ. Thus ϕ holds for every Explicit model with learning rate λ.

It is beyond the scope of this paper to give a full proof that there is a simulation relation for every explicit model. However, we describe the general technique, indicating how paths are matched. We have used this approach in previous work (Miller et al., 2007).

The Explicit and Abstract Promela specifications are written in a way that can easily be translated into a form known as Guarded Command Form. The robot process in each case is defined using a single repeating loop in which every statement consists of an atomic step containing a guard followed by an update (or command). Thus every statement in the Promela specification corresponds
Table 3: Verification results for the Abstract model

<table>
<thead>
<tr>
<th>Property</th>
<th>Max ω_d</th>
<th>Stored states ($\times 10^5$)</th>
<th>max search depth</th>
<th>time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>6</td>
<td>121413</td>
<td>28881</td>
<td>0.32</td>
</tr>
<tr>
<td>2A</td>
<td>118129</td>
<td>28881</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

to a transition in the associated model. This allows us to easily match states and transitions in an Explicit model to corresponding states and transitions in the Abstract model (and vice versa).

For example, in each model, in the initial state the robot is at the origin and facing due North, so the initial states can clearly be matched. For any environment, at any state the response of the robot is determined by the position of the nearest obstacle with respect to its cone of influence. If, in the Explicit model, the robot is in a state at which no obstacle is in this cone, then this state is matched to one in the Abstract model in which the robot is in free space. If an obstacle touches a sensor in the Explicit model then this state can be matched to one in the Abstract model in which an obstacle touches the same area of the antenna.

Any transition in the Explicit model involves a change in the position of the nearest obstacle relative to the robot. This transition can be matched to a transition in the Abstract model in which the position of an obstacle moves likewise, relative to the robot.

6.2 Verification results for the Abstract model

In this case there is only one verification required for each property. The learning rate is again assumed to be 1. Results are given in Table 3.

7 Model Enhancements

The environments and robot behaviour that were represented in both our simulation setup and Promela specifications (with their associated models) were deliberately chosen to be simple. Whether creating a computer-based closed-loop simulation, or a Promela specification, it is necessary to make assumptions about the system that we are modelling. In either case we can not have limitless possibilities about the number of obstacles, or their shape. In addition we have to decide a priori whether to consider a fixed boundary, and, if so, the nature of the boundary. The purpose of this paper was to demonstrate the effectiveness of model checking (as a complementary approach to simulation), not to consider all possible environments or robot behaviour. In this section we discuss how we could adapt our models to consider more complex scenarios. Note that, in all cases modifications are made to the Promela specification (and SPIN will produce the underlying models in each case).

In each of the cases below, we assume that only the specified modification is to be implemented. Clearly we could combine the modifications in any way we
like, but we only consider one at a time here, to make our explanation simpler. For each modification we first consider how the *Explicit* Promela specification would be adapted. The Explicit specification would be modified in much the same way as the simulation code would be modified. The corresponding Abstract specification would, in all cases, require more detailed consideration.

When considering a new model we always start by using an Explicit model that is close to implementation level, and abstract from there (removing unnecessary variables, for example). Creating, what we refer to as an *Abstract* model, requires experience of the Explicit model so as to gauge what the *equivalence classes* are. For example, in the Abstract model considered in this paper, the equivalence classes correspond to the possible positions of a single obstacle in the cone of influence.

In each of the modifications listed below we indicate the corresponding equivalence class. Note that proof of soundness would involve proving that every state in a corresponding Explicit model would map to an equivalence class representative (and so to a state in the Abstract model). We do not include all possible extensions here, just indicate a few that could be implemented very easily.

- **Inclusion of Environment Boundaries** Boundaries can easily be included in our Explicit model. In this case the boundary would be incorporated as a set of unreachable coordinates. The robot would respond to a signal from its sensors resulting from a collision with a boundary in the same way as it would a collision with an obstacle. Depending on the shape of the boundary, (and assuming a single obstacle) the equivalence classes in the Abstract model would correspond to the possible positions of a single obstacle and a segment of boundary in the cone of influence.

- **Arbitrary/Dynamic Boundaries** Any Explicit model would assume that a boundary was fixed. However, there is plenty of scope for allowing arbitrary boundary shapes, or dynamic boundaries in our Abstract model, provided of course that we assume (as we would do for simulation) that the possible types of boundary belong to a finite set. The equivalence classes in this case would be as for the previous example, but the number of possible different types of segment of visible boundary in the cone of influence would increase.

- **Increased Complexity** This would mean allowing for there to be more than one obstacle within the cone of influence at any time. The Explicit specification could be modified to accommodate this very easily (the array containing the positions of the obstacles would simply have to be altered). Assuming that there are at most N obstacles within the cone of influence at any time, the equivalence classes (and hence the states in the Abstract model) correspond to the possible positions of up to N obstacles within the cone of influence.

- **Additional Robots** Our Explicit Promela model involves a process definition of a robot, and a single instantiation of that process. Adding
additional robots would simply involve instantiating multiple robot processes (either with learning, or not). Our Abstract model concerns the view of a single robot. Any additional robots would be viewed as dynamic obstacles. The behaviour of other robots (whether learning or not), would only be relevant within the cone of influence (e.g. all possible movements of the other robot after a collision need to be considered).

- **Alternative Learning Algorithm** Both of our Promela specifications can be adapted very easily to accommodate an alternative learning algorithm. This would involve altering our C-code functions determining the progress of the robot from any state after a collision. We could use our models to compare the consequences of different algorithms.

- **Dynamic Obstacles/Different Obstacles** By defining obstacles as processes, they could be defined as dynamic, either following a prescribed path, or following a non-deterministic path. Similarly, obstacles could be defined to have a variety of shapes and sizes, provided they can be defined and constrained before modelling. In the Abstract model, it would make no difference to make obstacles dynamic – the assumption of a maximum number of obstacles within the cone of influence would be sufficient. Different shapes and sizes of obstacle in the Abstract model would require a minimal revision of the code (again requiring the different possibilities to be defined a priori).

- **Measuring explicit time** It is not possible to represent explicit time (for example to measure the amount of time between events) using SPIN alone, although the temporal ordering of events is clearly representable. When there is only one robot, there is a correlation between the number of global transitions between events, and the time between the events. It would therefore be able to give a (discrete) representation of time using SPIN in this case. However, concurrent events are executed sequentially by SPIN, and so, when there is more than one component (i.e. robot) there is no such correlation. In order to prove quantitative properties, such as time between events, or the probability of an event, a more specialised model checker, such the timed model checker Uppaal (Larsen et al., 1997) or the probabilistic model checker Prism (Hinton et al., 2006) would be required.

8 **Comparison of classical closed-loop simulation and model checking**

New strategies had to be developed to translate the behaviour-based approach into a form suitable for model checking. For simulation we used an existing framework to easily calculate the position of obstacles on the sensors, the new direction of the robot etc. In comparison, the Promela model was rather cumbersome, in that we had to construct a number of C functions, in addition to
just using pure Promela. However, we were able to adapt the code for (the simulated) robot behaviour. In order to simplify the Promela model we kept C functions used for calculation hidden from the user (in included files). These functions can be reused in future models.

The advantage of the model-checking approach was that we could simply specify LTL properties to define behaviour that was expected for all paths for our model. I.e. we did not have to run an exhaustive set of simulations to verify behaviour – the model checker would find any error path if it existed. In addition, our Abstract model allowed us to check certain properties for all possible environments: if there were any distribution of obstacles for which one of our properties did not hold, the model checker would find it. Having the capacity to examine error trails allowed us to not only debug our models, but to identify the pathological case in which one of the initial properties did not hold (i.e. the situation in which the robot hit an obstacle head on, without it first making contact with a distal sensor). This allowed us to strengthen the property to ignore this unusual case.

In addition, model checking allows us to identify deficiencies before, during and after learning. That the robot cannot see obstacles which are hitting it head on is clearly a deficiency of its sensor distribution. While simple to spot in our example, more complex sensor motor setups will make it much more difficult to identify deficiencies which might occur only rarely. However unlikely, if these cases could cause damage to the robot or a deterioration its performance (say) then they need to be tackled appropriately. Model checking can help here (alongside classical simulation) to identify these problems in the design phase of a robot and will lead ultimately to a more reliable system.

The main drawback of the model checking approach is that it requires expert knowledge, both to construct a Promela specification with just the right level of abstraction, and to develop LTL properties to capture identified error behaviour. While the level of mathematical expertise required for our Explicit model is high, an even greater degree of theoretical knowledge is essential for the Abstract model.

9 Related work

When model checking is used in the context of autonomous agents it has been traditionally used to verify successful communications between agents in multi-agent systems (Dekhtyar et al., 2003; Konur et al., 2012). A number of methods for formally specifying multi-agent systems, with a view to prototyping and/or verification have been proposed (Hilaire et al., 2000, 2004; Da Silva and De Lucena, 2004; Wooldridge et al., 2004; D’Inverno et al., 2004). This is a natural use of model checking which was primarily designed for communication protocol analysis. Formal aspects of multi-agent systems are the subject of an annual workshop - Formal Aspects of multi-agent systems (see, for example, (Dunin-Keplicz and Verbrugge, 2004), and (Dunin-Keplicz and Verbrugge, 2009)). Approaches tend to focus on protocol verification, the formalisation of
goals, and plans and knowledge-based agents.

Model checking has also been used to test the success of single agents, for example whether a dynamical system can generate a trajectory navigating from a starting position to a specific target (Fainekos et al., 2009), or if agents always perform a given task without errors (Webster et al., 2011; Molnar and Veres, 2009; Ingrand and Py, 2002; Lerda et al., 2008). However, none of these approaches involve agents with learning. Indeed, learning is only considered in the context of model checking when it is used as a way to enhance model checking algorithms (Leucker, 2007; Mao et al., 2011).

Fisher (2005) uses a temporal logic framework to specify behaviour of individual agents as well as systems of agents. Refinement is used to reason about behaviour, as well as verification via logical deduction. The framework is extended to include the concepts of knowledge and belief, but learning is not considered. Model checking has been used in Bordini et al. (2006) in which agents are specified in the logic-based agent-oriented programming language AgentSpeak and the specification of the system is automatically converted into Promela or Java, for verification with SPIN or the Java Pathfinder tool (Visser et al., 2000). This approach does not consider agent learning, nor does it model collision avoidance or use Abstraction as we do.

To our knowledge we are the first to introduce biologically inspired agent learning into the model checking paradigm. This has been achieved by directly using Promela and SPIN. The implemented ICO learning determines the robot’s reflex (in the specification) and model checking allows us to check if the generated model is successful under all possible conditions. This substantially extends the application domain of model checking to systems which can inform the development of future models or optimise agent learning algorithms. We have presented a preliminary abstract describing the model checking aspects of our work in (Kirwan and Miller, 2011).

10 Conclusions and Future Work

Model checking is a powerful tool that allows us to check temporal properties of a (model of a) system. In this paper we have shown how the SPIN model checker can be used to verify properties of a system that has previously been analysed using simulation. The system, consisting of a robot navigating around an environment using learning to avoid obstacles, serves as an instructive example for the technique of model checking and its use within this context. We have described our Promela model and how we verified some example LTL properties for it. The original properties that were assumed to hold for the system were found to be insufficient. We therefore strengthened our properties so that any error reported would accurately reflect the kind of behaviour we were interested in. Our abstracted model is a powerful one: it allows us to prove properties for any environment for which no two obstacles can interfere with the sensors at any time. This model removes the need to run multiple verifications to check a property (i.e. one per environment).
The learning algorithm implemented in both the simulation environment and the Promela specification is a simplified version of temporal sequence learning. It would be straightforward to adapt both of these to implement alternative learning algorithms and provide a platform for comparison purposes. Our Promela specifications could easily be converted to Prism (the specification language of the probabilistic model checker Prism) (Hinton et al., 2006), e.g. using the Prism2Promela tool (Power and Miller, 2008). Prism would be an ideal tool for analysing probabilistic learning algorithms.

Our work has demonstrated the feasibility and value of using model checking in the context of a robot navigating around a set of obstacles in an environment. The setup cost, in terms of the transfer of knowledge between engineers and computer scientists, creation of the formal specification and development of the temporal properties has been high. However, all of the C functions, template specifications and temporal properties can be reused (or adapted) for more complex systems, i.e. systems involving more robots and/or alternative learning algorithms.

Future work involves the development of a software system to automatically create a Promela specification for a system of robots in an environment, given the number of robots, the location (or number) of obstacles, and the learning algorithms used.

References

Cimatti, Alessandro, Fausto Giunchiglia, Giorgio Mingardi, Dario Romano, Fernando Torielli, and Paolo Traverso. 1997. Model checking safety critical

Kumar, S., and K. Li. 2002. Using model checking to debug device firmware. In Proceedings of the 5th symposium on operating system design and implementation (OSDI 2002). Boston, MA.

MATLAB. 2010. version 7.10.0 (r2010a). Natick, Massachusetts: The MathWorks Inc..

Tronosco, J., J.R.A. Sanches, and F.P. Lopez. 2007. Discretization of ISO-Learning and ICO-Learning to Be Included into Reactive Neural Networks for

Appendix A: The use of Embedded C-code in our Promela specification

In our model it is important that the movement of the robot in its environment is represented as accurately as possible. Due to the limitations of the Promela language this precision is not possible with Promela alone. However, it is possible to embed C code within a Promela specification. The primary reason for this is to provide support for programs already written in C with minimal translation into Promela (Holzmann, 2004), not for use in hand-written Promela specifications. However, in our case, the increased accuracy afforded by the use of mathematical functions available using C outweighed the increased complexity resulting from its use.

Another advantage of using embedded C code is that variables that are declared solely in the C code do not need to be considered as part of the state-space (although it is possible to include them as state variables if necessary) when generating the model. This is a significant advantage in terms of state-space tractability. For example, variables used for intermediate calculations that are not relevant (i.e. do not influence transitions) can be ignored.

We embed our C code using functions that can be called in the main Promela specification. Our C macro functions are declared in a separate file which is included from within the Promela specification. Each function can be stored as an individual file to be tested and debugged separately from the main model. Several of these functions are used in both of our models.

The use of embedded C code does have some drawbacks. Simulations are more cumbersome and the generation of meaningful counterexamples is a more complicated process. Also, any C code variables that affect the value of Promela variables must be tracked during a verification. The Promela c_track primitive allows us to do this. Each c_track declaration refers to the memory location and size of a C variable to be tracked, as seen in Fig. 12. The use of this primitive allows the associated variables to be tracked during verification, so allowing for the normal verification of properties. It is important to note that even if an embedded variable does not directly affect a Promela variable, it may affect it indirectly so will still need to be tracked.

To illustrate, we include below one of our embedded C code functions, namely the (MOVE_FORWARD) function which determines the new position of the robot from a given state.

```c
#define MOVE_FORWARD() { \
    /*Declare Locals*/ \n    if (now.relDist > 30) { \n        long double oZ, nZ, fZ, lOrg, hOrg, lNew, hNew, lFin, hFin = 0; \n        int oFR, oFU, nFR, nFU = 0; \n        \n        oZ = fmodl(enviA, (long double)90); \n        if ((enviA == 90) || (enviA == 270)) {10rg = enviD; h0rg = 0; } \n        else if ((enviA == 0) || (enviA == 180)) {l0rg = 0; h0rg = enviD; } \n```
else {
if ((enviA <= 90) || (enviA >= 180)&&(enviA<=270)) {
  lOrg = (sin(oZ*DEG))*enviD;
  hOrg = (cos(oZ*DEG))*enviD;
} else {
  hOrg = (sin(oZ*DEG))*enviD;
  lOrg = (cos(oZ*DEG))*enviD;
}
}

nZ = fmod(roboA, 90.00);

if ((roboA == 90) || (roboA == 270)) {lNew = moveDist; hNew = 0; }
else if ((roboA == 0) || (roboA == 180)) {lNew = 0; hNew = moveDist; }
else {
if ((roboA<90) || ((roboA>180)&&(roboA<270))) {
  lNew = (sin(nZ*DEG))*moveDist;
  hNew = (cos(nZ*DEG))*moveDist;
} else {
  hNew = (sin(nZ*DEG))*moveDist;
  lNew = (cos(nZ*DEG))*moveDist;
}
}

if ((enviA<180)&&(roboA>180) || (enviA>180)&&(roboA<180)) {
  lFin = fabs(lOrg - lNew);
} else {
  lFin = lOrg + lNew;
}
if ( (((enviA<90)||(enviA>270))&&((roboA>90)&&(roboA<270))) || (((enviA>90)&&(enviA<270))&&((roboA<90)||(roboA>270))) ) {
  hFin = fabs(hOrg - hNew);
} else {
  hFin = hOrg + hNew;
}
if ((hFin!=0)&&(lFin!=0)) {
  fZ = (atan(hFin/lFin)*(180/PI));
} else {
  fZ = 0;
}
enviD = sqrt((lFin*lFin)+(hFin*hFin));

if ((enviA >=0) && (enviA <90)) { oFR = 1; oFU = 1;}
else if ((enviA >= 90) && (enviA <180)) { oFR = 1; oFU = 0;}
else if ((enviA >= 180) && (enviA <270)) { oFR = 0; oFU = 0;}
else if ((enviA >= 270) && (enviA <360)) { oFR = 0; oFU = 1;}
else { oFR = 0; oFU = 0;}
nFR = oFR;
nFU = oFU;
if ((oFR==1) && (oFU==1)) {
  if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;}
  if ((roboA>=90) && (roboA<270) && (hNew > hOrg)) { nFU = 0;}
} else if ((oFR==1) && (oFU==0)) {
  if ((roboA==180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;}
  if ((roboA==90) && (roboA<270) && (hNew > hOrg)) { nFU = 0;}
}
if ((roboA>=180) \&\& (roboA<360) \&\& (lNew > lOrg)) { nFR = 0; } \\
if ( (((roboA>=270)\&\&(roboA<360))||((roboA>=0)\&\&(roboA<90)))\&\& (hNew>hOrg)) \\
    { nFU=1; } \\
} \\
else if ((oFR==0) \&\& (oFU==0)) \\
if ((roboA>=0) \&\& (roboA<180) \&\& (lNew > lOrg) ) { nFR = 1; } \\
if ( (((roboA>=270)\&\&(roboA<360))||((roboA>=0)\&\&(roboA<90)))\&\& (hNew>hOrg)) \\
    { nFU=1; } \\
} \\
else if ((oFR==0) \&\& (oFU==1)) { \\
if ( (roboA>=0) \&\& (roboA<180) \&\& (lNew > lOrg) ) { nFR = 1; } \\
if ((roboA>=90) \&\& (roboA<270) \&\& (hNew > hOrg) ) { nFU = 0; } \\
} \\
/*Many catches for when movement is along/opposing axis line\ 
or when both facing and polar angles are the same.*/ \\
if (roboA==enviA) { enviA = roboA; } \\
else if ((roboA==180)\&\&(enviA==0)\&(hNew>hOrg)) { enviA = 180; } \\
else if ((roboA==180)\&\&(enviA==0)\&(hNew < hOrg)) { enviA = 0; } \\
else if ((roboA==180)\&\&(enviA==0)\&(hNew == hOrg)) { enviA = 0; } \\
else if ((roboA==0)\&\&(enviA==180)\&(hNew>hOrg)) { enviA = 0; } \\
else if ((roboA==0)\&\&(enviA==180)\&(hNew < hOrg)) { enviA = 180; } \\
else if ((roboA==0)\&\&(enviA==180)\&(hNew == hOrg)) { enviA = 0; } \\
else if ((roboA==90)\&\&(enviA==270)\&(lNew>lOrg)) { enviA = 90; } \\
else if ((roboA==90)\&\&(enviA==270)\&(lNew < lOrg)) { enviA = 270; } \\
else if ((roboA==90)\&\&(enviA==270)\&(lNew == lOrg)) { enviA = 0; } \\
else if ((roboA==270)\&\&(enviA==90)\&(lNew>lOrg)) { enviA = 270; } \\
else if ((roboA==270)\&\&(enviA==90)\&(lNew < lOrg)) { enviA = 90; } \\
else if ((roboA==270)\&\&(enviA==90)\&(lNew == lOrg)) { enviA = 0; } \\
else if ((nFR==1)\&\&(nFU==1)) { enviA = 90 - fZ; } \\
else if ((nFR==1)\&\&(nFU==0)) { enviA = 90 + fZ; } \\
else if ((nFR==0)\&\&(nFU==0)) { enviA = 270 - fZ; } \\
else if ((nFR==0)\&\&(nFU==1)) { enviA = 270 + fZ; } \\
if (enviA>360) {now.enviAng = 0;} \\
else {now.enviAng = ((int)(2*enviA)) - ((int)enviA);} \\
enviD = ((int)(2*enviD)) - ((int)enviD); \\
\} \\
if ((enviD>200) \&\& (now.doWrap==0)) { \\
enviD = 200; \\
now.doWrap=1; \\
} \\
now.enviDist = (int)enviD; \\
};
Appendix B: Some example Promela code

Some sample code

Fig. 12 shows a Promela specification in which the learning rate is 1 and there are 2 obstacles.

Note that exMoInLines.txt is an included file that contains a number of C-like macros and inline functions. An inline function in Promela is similar to a macro and is simply a segment of replacement text for a symbolic name (which may have parameters). The body of the inline function is pasted into the body of a proctype definition at each point that it is called. An inline function can not return a value, but may change the value of any variable referred to within the inline function. The purpose of each of the functions contained in exMoInLines.txt is described in Table 4.

Note that we do not include details of all of these inline functions here, although all of our code is available from the authors. Some of the functions (e.g. MOVE_FORWARD and RESPOND_TO_OB_BY_TURNING) require mathematical calculations that are beyond the scope of Promela. Therefore, to perform these calculations we use C code embedded within the Promela specification. To illustrate how this is achieved, we provide the definition of the MOVE_FORWARD below, and the associated embedded C code in Appendix B.

Returning to the outline Promela specification given in Fig. 12. After the inclusion of the inline function file, a constant OBMAX, indicating the number of obstacles, is declared. There follows a typedef definition, by which a type, namely PolarCoord, consisting of two integers d (denoting distance from the origin) and a (denoting angular distance – clockwise from North). Some cTrack (see Appendix B) and global variables are then defined.

The robot and init proctypes are then declared. The robot proctype declaration contains a main do...od loop. The do...od loop contains two choices which are repeated indefinitely. At each invocation, variable doWrap is evaluated. This variable indicates whether the robot is close to the perimeter of the environment. If the variable has value 1 then the robot will be relocated from its current position to a position at an equal distance from the perimeter on the other side of the environment. The new position is determined via the WRAP function, see Table 4, and is described in more detail in the text of the paper. Otherwise the SCAN_APPROACHING_OBS function checks to see if an obstacle has hit any of the sensors and updates the value of variable sig. If sig has value 0 then no antenna sensor has been hit. A negative signal indicates that the left antenna has been hit, and a positive signal indicates that the right antenna has been hit. If the value is −6 or 6 then a proximal sensor has been hit. If neither of the antennae has been hit (and there has been no direct hit) then the robot will simply move forward in its current direction. If an antenna has been hit, or there has been a head-on collision, the robot will respond accordingly before moving forward in the new direction. In all cases, if the robot has reached the perimeter of the environment, the doWrap variable is set to 1. The do...od loop is then repeated.
/*Explicit Model: Using Functions (Macros)*/

c_decl { #include <math.h> }
#include "exMoInLines.txt"
#define OBMAX 2

/*Define a polar coordinate to be a distance and angle from origin (pole)*/
/*(Pole: centre of the environment. Polar axis: vertical line directed north.*)*/
typedef polarCoord {int d; int a};

/*Setting the C_Track variables*/
/*C_track statements keep track of our C globals.*/
c_track**)&x" sizeof(double)"
/*...etc*/

/*Array of obstacles in the fixed environment*/
polarCoord arrObs[OBMAX];

/*Robot is initialized in the centre of the environment*/
int roboAng, enviDist, enviAng, omegaD, sig, prevSig =0;
byte doWrap, headOn = 0;

proctype robot() {
do
:: (doWrap==0) -> d_step{ SCAN_APPROACHING_OBS();
   RESPOND();
   MOVE_ROBOT();
   HEAD_ON();
   };
:: (doWrap==1) -> d_step{ WRAP() };
od;
}

init {
d_step{
/* Set up the polar coordinates of the obstacles - fixed for model */
arrObs[0].d = 45; arrObs[0].a = 350;
arrObs[1].d = 154; arrObs[1].a = 83;
};
atomic{ run robot();
}
};

Figure 12: Promela code for the Explicit model
<table>
<thead>
<tr>
<th>Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCAN_APPROACHING_OBS</td>
<td>scans the area in front of the robot for obstacles. This area is restricted to distance and angle at which an obstacle may interact with the robot. Uses function GET_OB_REL_TO_ROBOT.</td>
</tr>
<tr>
<td>GET_OB_REL_TO_ROBOT</td>
<td>calculates the centre of an obstacle relative to the centre of the robot.</td>
</tr>
<tr>
<td>RESPOND</td>
<td>updates the signal from the robot’s antennas then calls the RESPOND_TO_OB_BY_TURNING function.</td>
</tr>
<tr>
<td>RESPOND_TO_OB_BY_TURNING</td>
<td>turns the robot in response to the signals from its antennas. If the signal indicates proximal reaction then the LEARN function is called. If the obstacle is touching the robot then the CRASH function is called.</td>
</tr>
<tr>
<td>LEARN</td>
<td>causes the robot to learn, i.e. increments $\omega_d$.</td>
</tr>
<tr>
<td>CRASH</td>
<td>evaluates the movement of the robot after it has collided with an obstacle. If collision is head-on then the HEAD_ON function is called. Otherwise a proximal turning response occurs.</td>
</tr>
<tr>
<td>HEAD_ON</td>
<td>evaluates the movement the robot after it has collided head-on with an obstacle. Eventually results in a proximal turning response.</td>
</tr>
<tr>
<td>MOVE_ROBOT</td>
<td>moves the robot forward, in the direction of its current orientation. Calls the MOVE_FORWARD function.</td>
</tr>
<tr>
<td>MOVE_FORWARD</td>
<td>calculates the new position of the robot after moving forward. If the robot has reached the perimeter of the environment, sets a variable (doWrap) to 1.</td>
</tr>
<tr>
<td>WRAP</td>
<td>wraps the position of the robot to the other side of the environment, using the point at which the robot approaches the perimeter of the environment and the orientation of the robot as it approaches.</td>
</tr>
</tbody>
</table>

Table 4: Inline functions
The init process contains the initialisation of the arrObs array of obstacles, and the initiation of the robot process.

Learning occurs during the RESPOND_TO_OB_BY_TURNING function. For learning to occur there needs to be a temporal overlap between the proximal and distal antenna signals. We test for this overlap using the prevSig variable. The test works by checking if whenever there is a proximal signal (sig= ±6) there was previously a distal signal (0 < |prevSig| < 6). If so, the learning weight $\omega_d$ is incremented by the learning rate $\lambda$, which is 1 in this model.

The WRAP function is defined in the paper, and illustrated in Fig. 8.

The Move Forward function

Full code for the MOVE_FORWARD function is given in Appendix B. The MOVE_FORWARD function calculates the new position of the robot after one time step, given the current direction of movement of the robot (relative to a ray pointing due North from the centre of the robot), roboA, and the robot’s current position $a$ (coordinates enviD and enviA). The new position of the robot is $b$. The coordinates of $b$, relative to $a$ are ROBOMOVE and roboA, where ROBOMOVE is a constant, set to 1 in this example. Fig. 13A illustrates this situation.

The coordinates of $b$, relative to the origin are then calculated. These are represented by enviD’ and enviA’ in Fig. 13B. The coordinates of the robot are updated to these values.

Appendix C: The abstract specification in Promela

We give outline code for the abstract specification in Fig. 14. As before we include a file containing inline functions and C macros.
Figure 13: (a) Movement of the robot after one time step. (b) New position relative to origin.
/*Abstract Model: Using Functions (Macros)*/

c_decl { #include <math.h> }
#include "absInlines.txt"

int obDist = 90;
int obAng = 11;
int omegaD = 0;
byte freeSpace = 1;
byte pLearn = 0;

active proctype moving()
{
    do
    :: ((obDist > 30) && (freeSpace == 0)) ->
        d_step{RESPOND_TO_OB_BY_TURNING();};
        d_step{MOVE_FORWARD();};
        d_step{LEARN();};
    :: ((obDist < 30) || (freeSpace == 1)) ->
        atomic{GENERATE_NEW_OB();};
    od;
}

Figure 14: Promela code for the Abstract model