
Constraints manuscript No.
(will be inserted by the editor)

Computing the Ramsey Number R(4,3,3) using
Abstraction and Symmetry breaking

Michael Codish · Michael Frank ·
Avraham Itzhakov · Alice Miller

Received: date / Accepted: date

Abstract The number R(4, 3, 3) is often presented as the unknown Ramsey
number with the best chances of being found “soon”. Yet, its precise value has
remained unknown for almost 50 years. This paper presents a methodology
based on abstraction and symmetry breaking that applies to solve hard graph
edge-coloring problems. The utility of this methodology is demonstrated by
using it to compute the value R(4, 3, 3) = 30. Along the way it is required
to first compute the previously unknown set R(3, 3, 3; 13) consisting of 78,892
Ramsey colorings.
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1 Introduction

This paper introduces a general methodology that applies to solve graph edge-
coloring problems and demonstrates its application in the search for Ramsey
numbers. These are notoriously hard graph coloring problems that involve as-
signing colors to the edges of a complete graph. An (r1, . . . , rk;n) Ramsey
coloring is a graph edge coloring in k colors of the complete graph Kn that
does not contain a monochromatic complete sub-graph Kri in color i for each
1 ≤ i ≤ k. The set of all such colorings is denoted R(r1, . . . , rk;n). The Ram-
sey number R(r1, . . . , rk) is the least n > 0 such that no (r1, . . . , rk;n) coloring
exists. In particular, the number R(4, 3, 3) is often presented as the unknown
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Ramsey number with the best chances of being found “soon”. Yet, its precise
value has remained unknown for more than 50 years. It is currently known
that 30 ≤ R(4, 3, 3) ≤ 31. Kalbfleisch [10] proved in 1966 that R(4, 3, 3) ≥ 30,
Piwakowski [17] proved in 1997 that R(4, 3, 3) ≤ 32, and one year later Pi-
wakowski and Radziszowski [18] proved that R(4, 3, 3) ≤ 31. We demonstrate
how our methodology applies to computationally prove that R(4, 3, 3) = 30.

Our strategy to compute R(4, 3, 3) is based on the search for a (4, 3, 3; 30)
Ramsey coloring. If one exists, then because R(4, 3, 3) ≤ 31, it follows that
R(4, 3, 3) = 31. Otherwise, as R(4, 3, 3) ≥ 30, it follows that R(4, 3, 3) = 30.

In recent years, Boolean SAT solving techniques have improved dramati-
cally. Today’s SAT solvers are considerably faster and able to manage larger
instances than were previously possible. Moreover, encoding and modeling
techniques are better understood and increasingly innovative. SAT is currently
applied to solve a wide variety of hard and practical combinatorial problems,
including extremal graph problems (for example to find van der Waerden num-
bers, [5,8,11,1]), often outperforming dedicated algorithms. The general idea
is to encode a (typically, NP) hard problem instance, µ, to a Boolean formula,
ϕµ, such that the satisfying assignments of ϕµ correspond to the solutions of
µ. Given such an encoding, a SAT solver can be applied to solve µ.

Our methodology in this paper combines SAT solving with two additional
concepts: abstraction and symmetry breaking. Section 2 presents: preliminaries
on graph coloring problems, some general notation on graphs, and a simple
constraint model for Ramsey coloring problems. The rest of the paper is struc-
tured to let the application drive the presentation of the methodology in three
steps:

Step 1: Section 3 presents the first step in our quest to compute R(4, 3, 3).
We introduce a basic SAT encoding and detail how a SAT solver is applied
to search for Ramsey colorings. Then we describe and apply a well known
embedding technique, which allows to determine a set of partial solutions in
the search for a (4, 3, 3; 30) Ramsey coloring such that if a coloring exists then
it is an extension of one of these partial solutions. This may be viewed as a
preprocessing step for a SAT solver which then starts from a partial solution.
Applying this technique we conclude that if a (4, 3, 3; 30) Ramsey coloring
exists then it must be 〈13, 8, 8〉 regular. Namely, each vertex in the coloring
must have 13 edges in the first color, and 8 edges in each of the other two
colors. This result is already considered significant progress in the research on
Ramsey numbers as stated in [25]. To further apply this technique to determine
if there exists a 〈13, 8, 8〉 regular (4, 3, 3; 30) Ramsey coloring requires to first
compute the currently unknown set R(3, 3, 3; 13).

Step 2: Sections 4—7 present the second step: computing R(3, 3, 3; 13). Sec-
tion 4 illustrates how a straightforward approach, combining SAT solving with
symmetry breaking, works for smaller instances but not for R(3, 3, 3; 13). Then
Section 5 introduces an abstraction, called degree matrices, Section 6 demon-
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strates how to compute degree matrices for R(3, 3, 3; 13), and Section 7 shows
how to use the degree matrices to compute R(3, 3, 3; 13).

Step 3: Section 8 presents the third step re-examining the embedding tech-
nique described in Section 3 which, given the set R(3, 3, 3; 13), applies to prove
that there does not exist any (4, 3, 3; 30) Ramsey coloring which is also 〈13, 8, 8〉
regular.

Section 9 provides some details on our implementation, on the experiments,
and instructions for obtaining the constraint models. Section 10 presents a
conclusion.

2 Preliminaries and Notation

In this paper, graphs are always simple, i.e. undirected and with no self loops.
For a natural number n let [n] denote the set {1, 2, . . . , n}. A graph coloring,
in k colors, is a pair (G, κ) consisting of a simple graph G = (V,E) and a
mapping κ : E → [k]. When G is clear from the context we refer to κ as the
graph coloring. We typically represent G = ([n], E) as a (symmetric) n × n
adjacency matrix, A, defined such that

Ai,j =

{
κ((i, j)) if (i, j) ∈ E
0 otherwise

Given a graph coloring (G, κ) in k colors with G = ([n], E), the set of neigh-
bors of a vertex u ∈ [n] in color c ∈ [k] isNc(u) =

{
v
∣∣ (u, v) ∈ E, κ((u, v)) = c

}
and the color-c degree of u is degc(u) = |Nc(u)|. The color degree tuple of u
is the k-tuple deg(u) = 〈deg1(u), . . . , degk(u)〉. The sub-graph of G on the
c colored neighbors of x ∈ [n] is the projection of G to vertices in Nc(x)
defined by Gcx = (Nc(x),

{
(u, v) ∈ E

∣∣u, v ∈ Nc(x)
}

). For example, take as
G the graph coloring depicted by the adjacency matrix in Figure 4 with
u the vertex corresponding to the first row in the matrix. Then, N1(u) =
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, N2(u) = {14, 15, 16, 17, 18, 19, 20, 21}, and
N3(u) = {22, 23, 24, 25, 26, 27, 28, 29}. The subgraphs G1

u, G2
u, and G3

u are
highlighted by the boldface text in Figure 4.

An (r1, . . . , rk;n) Ramsey coloring is a graph coloring in k colors of the
complete graph Kn that does not contain a monochromatic complete sub-
graph Kri in color i for each 1 ≤ i ≤ k. For brevity we sometimes simply
refer to an (r1, . . . , rk;n) coloring. The set of all such colorings is denoted
R(r1, . . . , rk;n). The Ramsey number R(r1, . . . , rk) is the least n > 0 such
that no (r1, . . . , rk;n) coloring exists. In the multicolor case (k > 2), the only
known value of a nontrivial Ramsey number is R(3, 3, 3) = 17. Prior to this
paper, it was known that 30 ≤ R(4, 3, 3) ≤ 31. Moreover, while the sets of
(3, 3, 3;n) colorings were known for 14 ≤ n ≤ 16, the set of colorings for
n = 13 was never published. Recently, the set R(3, 3, 3; 13) has also been com-
puted independently by: Stanislaw Radziszowski, Richard Kramer and Ivan
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ϕn,k
adj (A) =

∧
1≤q<r≤n

(
1 ≤ Aq,r ≤ k ∧ Aq,r = Ar,q ∧ Aq,q = 0

)
(1)

ϕn,c
r (A) =

∧
I∈℘r([n])

∨{
Ai,j 6= c

∣∣ i, j ∈ I, i < j
}

(2)

ϕ(r1,...,rk;n)(A) = ϕn,k
adj (A) ∧

∧
1≤c≤k

ϕn,c
rc

(A) (3)

Fig. 1 Constraints for graph labeling problems: Ramsey colorings (r1, . . . , rk;n)

Livinsky [20]. Their calculations were performed (and double checked) using
two independent methods (both different from ours): (1) starting with all
(3, 3, 3; 2)-colorings and performing a single vertex extension, as described in
[13,19,7,18], thus moving from (3, 3, 3;n) to (3, 3, 3;n + 1); and (2) starting
with all known (3, 6;n)-graphs (with two colors), splitting the edges in the
second color into triangle-free colors 2 and 3, and then removing isomorphs
[20]. Both techniques apply a “generate and prune” approach, first extending
a set of graphs, possibly introducing redundant graphs, and then using tools
on-top of nauty [12] to remove graphs which are weakly isomorphic to oth-
ers already generated. More information on recent results concerning Ramsey
numbers can be found in the electronic dynamic survey by Radziszowski [21].

A graph coloring problem on k colors is about the search for a graph
coloring which satisfies a given set of constraints. Formally, it is specified as
a formula, ϕ(A), where A is an n × n adjacency matrix of integer variables
with domain {0} ∪ [k] and ϕ is a constraint on these variables. A solution is
an assignment of integer values to the variables in A which satisfies ϕ and
determines both the graph edges and their colors. We often refer to a solution
as an integer adjacency matrix and denote the set of solutions as sol(ϕ(A)).

Figure 1 presents the k-color graph coloring problems we focus on in this
paper: (r1, . . . , rk;n) Ramsey colorings. Constraint (1), ϕn,kadj (A), states that
the graph represented by matrix A has n vertices, is k colored, and is sim-
ple. Constraint (2) ϕn,cr (A) states that the n × n matrix A has no embedded
sub-graph Kr in color c. Each conjunct, one for each set I of r vertices, is
a disjunction stating that one of the edges between vertices of I is not col-
ored c. Notation: ℘r(S) denotes the set of all subsets of size r of the set S.
Constraint (3) states that A is a (r1, . . . , rk;n) Ramsey coloring.

For graph coloring problems, solutions are typically closed under permu-
tations of vertices and of colors. Restricting the search space for a solution
modulo such permutations is crucial when trying to solve hard graph coloring
problems. It is standard practice to formalize this in terms of graph (coloring)
isomorphism.

Let G = (V,E) be a graph (coloring) with V = [n] and let π be a permu-
tation on [n]. Then π(G) = (V,

{
(π(x), π(y))

∣∣ (x, y) ∈ E
}

). Permutations act
on adjacency matrices in the natural way: If A is the adjacency matrix of a
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graph G, then π(A) is the adjacency matrix of π(G) and π(A) is obtained by
simultaneously permuting with π both rows and columns of A.

Definition 1 ((weak) isomorphism of graph colorings) Let (G, κ1) and
(H,κ2) be k-color graph colorings with G = ([n], E1) and H = ([n], E2).
We say that (G, κ1) and (H,κ2) are weakly isomorphic, denoted (G, κ1) ≈
(H,κ2) if there exist permutations π : [n] → [n] and σ : [k] → [k] such that
(u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2 and κ1((u, v)) = σ(κ2((π(u), π(v)))). We
denote such a weak isomorphism: (G, κ1) ≈π,σ (H,κ2). When σ is the identity
permutation, we say that (G, κ1) and (H,κ2) are isomorphic.

The following lemma emphasizes the importance of weak graph isomor-
phism as it relates to Ramsey numbers. Many classic coloring problems exhibit
the same property.

Lemma 1 (R(r1, r2, . . . , rk;n) is closed under ≈) Let (G, κ1) and (H,κ2)
be graph colorings in k colors such that (G, κ1) ≈π,σ (H,κ2). Then,

(G, κ1) ∈ R(r1, r2, . . . , rk;n) ⇐⇒ (H,κ2) ∈ R(rσ(1), rσ(2), . . . , rσ(k);n)

Proof Assume that (G, κ1) ∈ R(r1, r2, . . . , rk;n) and in contradiction that
(H,κ2) /∈ R(rσ(1), rσ(2), . . . , rσ(k);n). Let R denote a monochromatic clique
of size rs in H and R−1 the inverse of R in G. From Definition 1, (u, v) ∈
R ⇐⇒ (π−1(u), π−1(v)) ∈ R−1 and κ2(u, v) = σ−1(κ1(u, v)). Consequently
R−1 is a monochromatic clique of size rs in (G, κ1) in contradiction to (G, κ1)
∈ R(r1, r2, . . . , rk;n).

We make use of the following theorem from [18] and [19].

Theorem 1 30 ≤ R(4, 3, 3) ≤ 31 and, R(4, 3, 3) = 31 if and only if there
exists a (4, 3, 3; 30) coloring κ of K30 such that: (1) For every vertex v and
i ∈ {2, 3}, 5 ≤ degi(v) ≤ 8, and 13 ≤ deg1(v) ≤ 16. (2) Every edge in the third
color has at least one endpoint v with deg1(v) = 13. (3) There are at least 25
vertices v for which deg1(v) = 13, deg2(v) = deg3(v) = 8.

Corollary 1 Let G = (V,E) with V = [n] be a (4, 3, 3; 30) coloring, v ∈ V a
selected vertex, and assume without loss of generality that deg2(v) ≥ deg3(v).
Then, deg(v) ∈

{
〈13, 8, 8〉, 〈14, 8, 7〉, 〈15, 7, 7〉, 〈15, 8, 6〉, 〈16, 7, 6〉, 〈16, 8, 5〉

}
.

Consider a vertex v in a (4, 3, 3;n) coloring and focus on the three sub-
graphs induced by the neighbors of v in each of the three colors. The following
states that these must be corresponding Ramsey colorings.

Observation 1 Let G be a (4, 3, 3;n) coloring and v any vertex with deg(v) =
〈d1, d2, d3〉. Then, d1 + d2 + d3 = n − 1 and G1

v, G2
v, and G3

v are respectively
(3, 3, 3; d1), (4, 2, 3; d2), and (4, 3, 2; d3) colorings.
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𝐺2 𝐺3

𝐺

𝐺1

𝐾14 𝐾8 𝐾7

v

𝐺1

Fig. 2 Illustration of Observation 1: If deg(v) = 〈14, 8, 7〉 then G1
v , G2

v , and G3
v are

(3, 3, 3; 14), (4, 2, 3; 8), and (4, 3, 2; 7) colorings respectively.

Figure 2 illustrates the for Observation 1. Imagine that there exists a
R(4, 3, 3; 30) coloring G and consider a selected vertex v with degrees 〈14, 8, 7〉
in the three colors. The graphs G1

v, G
2
v, and G3

v are the subgraphs determined
by the neighbors of v in each of the three colors: N1(v), N2(v), and N3(v) and
these graphs are colorings of K14, K8, and K7. Now, imagine that G1

v would
contain a triangle in the first color. Then, since every node in G1

v is connected
to v by an edge in the first color it follows, as depicted in the figure, that G
contains a subgraph K4 in the first color - which contradicts G as a (4, 3, 3; 30)
coloring. Hence G1

v cannot contain a triangle in the first color. It also cannot
contain a triangle in the other two colors, as it is a subgraph of G which is
a (4, 3, 3; 30) coloring. So G1

v is a (3, 3, 3; 14) coloring. The figure illustrates
the similar arguments concerning the fact that G2

v and G3
v are (4, 2, 3; 8) and

(4, 3, 2; 7) colorings respectively. Figure 3 depicts the partially instantiated ad-
jacency matrix for one such embedding of (4, 3, 3; 30) when the degree of the
first vertex is 〈14, 8, 7〉.

Note that by definition a (4, 2, 3;n) (Ramsey) coloring is a (4, 3;n) Ramsey
coloring in colors 1 and 3 and likewise a (4, 3, 2;n) Ramsey coloring is a (4, 3;n)
coloring in colors 1 and 2. This is because the “2” specifies that the coloring
does not contain a subgraph K2 in the corresponding color and this means that
it contains no edge with that color. For n ∈ {14, 15, 16}, the sets R(3, 3, 3;n)
are known and consist respectively of 115, 2, and 2 colorings (modulo weak
isomorphism). Similarly, for n ∈ {5, 6, 7, 8} the sets R(4, 3;n) are known and
consist respectively of 9, 15, 9, and 3 colorings (modulo weak isomorphism).

In this paper computations are performed using the CryptoMiniSAT [22]
SAT solver. SAT encodings (CNF) are obtained using the finite-domain con-
straint compiler BEE [15]. The use of BEE facilitates applications to find a
single (first) solution, or to find all solutions for a constraint, modulo a speci-
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fied set of variables. When solving for all solutions, our implementation iterates
with the SAT solver, adding so called blocking clauses each time another solu-
tion is found. This technique, originally due to McMillan [14], is simplistic but
suffices for our purposes. All computations were performed on a cluster with
a total of 228 Intel E8400 cores clocked at 2 GHz each, able to run a total of
456 parallel threads. Each of the cores in the cluster has computational power
comparable to a core on a standard desktop computer. Each SAT instance is
run on a single thread.

3 Basic SAT Encoding and Embeddings

Throughout the paper we apply a SAT solver to solve CNF encodings of con-
straints such as those presented in Figure 1. In this way it is straightforward to
find a Ramsey coloring or prove its non-existence. Ours is a standard encoding
to CNF. To this end: nothing new. For an n vertex graph coloring problem in
k colors we take an n × n matrix A where Ai,j represents in k bits the edge
(i, j) in the graph: exactly one bit is true indicating which color the edge takes,
or no bit is true indicating that the edge (i, j) is not in the graph. Already at
the representation level, we use the same Boolean variables to represent the
color in Ai,j and in Aj,i for each 1 ≤ i < j ≤ n. We further fix the variables
corresponding to Ai,i to false. The rest of the SAT encoding is straightforward.

Constraint (1) is encoded to CNF by introducing clauses to state that for
each Ai,j with 1 ≤ i < j ≤ n at most one of the k bits representing the
color of the edge (i, j) is true. In our setting typically k = 3. For three colors,
if b1, b2, b3 are the bits representing the color of an edge, then three clauses
suffice: (b̄1∨ b̄2), (b̄1∨ b̄3), (b̄2∨ b̄3). Constraint (2) is encoded by a single clause
per set I of r vertices expressing that at least one of the bits corresponding to
an edge between vertices in I does not have color c. Finally Constraint (3) is
a conjunction of constraints of the previous two forms.

In Section 4 we will improve on this basic encoding by introducing symme-
try breaking constraints (encoded to CNF). However, for now we note that,
even with symmetry breaking constraints, using the basic encoding, a SAT
solver is currently not able to solve any of the open Ramsey coloring problems
such as those considered in this paper. In particular, directly applying a SAT
solver to search for a (4, 3, 3; 30) Ramsey coloring is hopeless.

To facilitate the search for a (4, 3, 3; 30) Ramsey coloring using a SAT
encoding, we apply a general approach where, when seeking a (r1, . . . , rk;n)
Ramsey coloring one selects a “preferred” vertex, call it v1, and based on its
degrees in each of the k colors, embeds k subgraphs which are corresponding
smaller colorings. Using this approach, we apply Corollary 1 and Observation 1
to establish that a (4, 3, 3; 30) coloring, if one exists, must be 〈13, 8, 8〉 regular.
Specifically, all vertices must have 13 edges in the first color and 8 each, in
the second and third colors. This result is considered significant progress in
the research on Ramsey numbers [25]. This “embedding” approach is often
applied in the Ramsey number literature where the process of completing (or
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
1 0 1 1 1 1 2 2 2 2 3 3 3 3 3
1 1 0 2 2 3 1 1 3 3 1 2 2 3 3
1 1 2 0 3 2 1 2 1 3 1 1 3 2 3
1 1 2 3 0 2 2 1 3 1 1 3 1 3 2
1 1 3 2 2 0 1 1 2 2 2 3 3 1 1
1 2 1 1 2 1 0 3 3 1 2 3 1 2 3
1 2 1 2 1 1 3 0 1 3 2 1 3 3 2
1 2 3 1 3 2 3 1 0 1 3 2 3 2 1
1 2 3 3 1 2 1 3 1 0 3 3 2 1 2
1 3 1 1 1 2 2 2 3 3 0 2 2 1 1
1 3 2 1 3 3 3 1 2 3 2 0 1 1 2
1 3 2 3 1 3 1 3 3 2 2 1 0 2 1
1 3 3 2 3 1 2 3 2 1 1 1 2 0 2
1 3 3 3 2 1 3 2 1 2 1 2 1 2 0
2 0 3 3 3 1 1 1 1
2 3 0 1 1 3 3 1 1
2 3 1 0 1 3 1 3 1
2 3 1 1 0 1 1 3 3
2 1 3 3 1 0 1 1 3
2 1 3 1 1 1 0 3 3
2 1 1 3 3 1 3 0 1
2 1 1 1 3 3 3 1 0
3 0 2 2 1 1 1 1
3 2 0 1 2 1 1 1
3 2 1 0 1 2 1 1
3 1 2 1 0 1 2 1
3 1 1 2 1 0 1 2
3 1 1 1 2 1 0 2
3 1 1 1 1 2 2 0


Fig. 3 One embedding to search for a (4, 3, 3; 30) coloring when deg(v1) = 〈14, 8, 7〉.

trying to complete) a partial solution (an embedding) to a Ramsey coloring is
called gluing. See for example the presentations in [13,19,7,18].

Theorem 2 Any (4, 3, 3; 30) coloring, if one exists, is 〈13, 8, 8〉 regular.

Proof By computation as described in the rest of this section.

We seek a (4, 3, 3; 30) coloring of K30, represented as a 30 × 30 adjacency
matrix A. Let v1 correspond to the the first row in A with deg(v1) = 〈d1, d2, d3〉
as prescribed by Corollary 1. For each possible triplet 〈d1, d2, d3〉, except
〈13, 8, 8〉, we take each of the known corresponding colorings for the subgraphs
G1
v1 , G2

v1 , and G3
v1 and embed them into A. We then apply a SAT solver, to

(try to) complete the remaining cells in A to satisfy ϕ4,3,3;30(A) as defined by
Constraint (3) of Figure 1. If the SAT solver fails, then no such completion
exists.

To illustrate the approach, consider the case where deg(v1) = 〈14, 8, 7〉.
Figure 3 details one of the embeddings corresponding to this case. The first
row and column of A specify the colors of the edges of the 29 neighbors of v1 (in
bold). The symbol “ ” indicates an integer variable that takes a value between
1 and 3. The neighbors of v1 in color 1 form a submatrix of A embedded in
rows (and columns) 2–15 of the matrix in the Figure. By Corollary 1 these
are a (3, 3, 3; 14) Ramsey coloring and there are 115 possible such colorings
modulo weak isomorphism. The Figure details one of them. Similarly, there
are 3 possible (4, 2, 3; 8) colorings which are subgraphs for the neighbors of v1
in color 2. In Figure 3, rows (and columns) 16–23 detail one such coloring.
Finally, there are 9 possible (4, 3, 2; 7) colorings which are subgraphs for the
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Table 1 Proving that any (4, 3, 3; 30) Ramsey coloring is 〈13, 8, 8〉 regular (summary).

v1 degrees # instances # clauses # vars unsat unsat
(avg.) (avg.) (avg.) (total)

(16,8,5) 54 = 2*3*9 32432 5279 51 sec. 0.77 hrs.
(16,7,6) 270 = 2*9*15 32460 5233 420 sec. 31.50 hrs.
(15,8,6) 90 = 2*3*15 33607 5450 93 sec. 2.32 hrs.
(15,7,7) 162 = 2*9*9 33340 5326 1554 sec. 69.94 hrs.
(14,8,7) 3105 = 115*3*9 34069 5324 294 sec. 253.40 hrs.

neighbors of v1 in color 3. In Figure 3, rows (and columns) 24–30 detail one
such coloring.

To summarize, Figure 3 is a partially instantiated adjacency matrix. The
first row determines the degrees of v1, in the three colors, and 3 corresponding
subgraphs are embedded. The uninstantiated values in the matrix must be
completed to obtain a solution that satisfies ϕ4,3,3;30(A) as specified in Con-
straint (3) of Figure 1. This can be determined using a SAT solver. For the
specific example in Figure 3, the CNF generated using our tool set consists of
33,959 clauses, involves 5,318 Boolean variables, and is shown to be unsatis-
fiable in 52 seconds of computation time. For the case where v1 has degrees
〈14, 8, 7〉 in the three colors this is one of 115 × 3 × 9 = 3105 instances that
need to be checked.

Table 1 summarizes the experiment which proves Theorem 2. For each
of the possible degrees of vertex 1 in a (4, 3, 3; 30) coloring as prescribed by
Corollary 1, except 〈13, 8, 8〉, and for each possible choice of colorings for the
derived subgraphs G1

v1 , G2
v1 , and G3

v1 , we apply a SAT solver to show that the
instance ϕ(4,3,3;30)(A) of Constraint (3) of Figure 1 cannot be satisfied. The
table details for each degree triple, the number of instances, their average size
(number of clauses and Boolean variables), and the average and total times to
show that the constraint is not satisfiable.

All of the SAT instances described in the experiment summarized by Ta-
ble 1 are unsatisfiable. The solver reports “unsat”. To gain confidence in
our implementation, we illustrate its application on a satisfiable instance: to
find a, known to exist, (4, 3, 3; 29) coloring. This experiment involves some
reverse engineering. In 1966 Kalbfleisch [10] reported the existence of a cir-
culant (3, 4, 4; 29) coloring. The adjacency matrix of a circulant coloring has
the property that each row, except the first, is the circular right shift by one
of the previous row. Encoding ϕ(4,3,3;29)(A) of Constraint (3) together with a
constraint that states that the adjacency matrix A is circulant, results in a
CNF with 146,506 clauses and 8,394 variables. Using a SAT solver, we obtain
a corresponding (4, 3, 3; 29) coloring in less than two seconds of computation
time. The solution is 〈12, 8, 8〉 regular and isomorphic to the adjacency matrix
depicted as Figure 4. We obtain the matrix depicted in Figure 4 by permuting
the nodes of the graph induced by A so that the first row is monotonically
increasing. Now we can apply the embedding approach. We take the par-
tial solution (the boldface elements) corresponding to the three subgraphs:
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0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 0 1 3 1 3 2 2 2 2 1 3 1 2 2 1 3 1 1 1 2 3 3 1 2 3 1 1 3
1 1 0 1 3 3 1 2 1 3 2 1 3 1 2 3 3 1 2 2 2 1 3 1 1 3 1 2 2
1 3 1 0 1 2 3 2 2 3 3 2 1 1 1 3 1 1 2 3 2 1 1 3 3 2 1 2 1
1 1 3 1 0 1 3 1 2 1 3 3 2 3 2 2 2 1 2 3 1 2 1 3 1 1 1 2 3
1 3 3 2 1 0 1 3 3 2 2 1 2 1 2 1 2 1 3 3 1 2 1 2 3 1 3 1 1
1 2 1 3 3 1 0 1 3 1 2 2 2 1 1 1 2 2 2 1 3 3 3 2 1 1 3 3 1
1 2 2 2 1 3 1 0 1 3 3 1 2 3 1 2 2 2 1 1 1 1 3 3 1 1 2 3 3
1 2 1 2 2 3 3 1 0 1 2 3 3 1 3 3 1 2 1 2 1 1 1 3 1 3 2 1 2
1 2 3 3 1 2 1 3 1 0 1 3 1 1 3 2 1 2 2 2 3 3 2 1 1 1 3 1 2
1 1 2 3 3 2 2 3 2 1 0 1 3 2 3 2 1 1 3 1 1 1 2 1 2 3 3 1 1
1 3 1 2 3 1 2 1 3 3 1 0 1 2 2 2 1 3 3 2 1 2 2 1 3 1 1 3 1
1 1 3 1 2 2 2 2 3 1 3 1 0 2 1 1 1 3 1 2 2 3 1 1 3 2 1 3 3
2 2 1 1 3 1 1 3 1 1 2 2 2 0 1 3 3 3 1 1 1 3 1 1 3 3 2 2 2
2 2 2 1 2 2 1 1 3 3 3 2 1 1 0 1 3 1 1 3 1 1 3 1 3 2 2 1 3
2 1 3 3 2 1 1 2 3 2 2 2 1 3 1 0 1 1 3 1 1 1 1 2 1 2 3 3 3
2 3 3 1 2 2 2 2 1 1 1 1 1 3 3 1 0 1 1 1 3 1 2 3 2 1 3 3 2
2 1 1 1 1 1 2 2 2 2 1 3 3 3 1 1 1 0 1 3 3 2 3 3 1 2 3 2 1
2 1 2 2 2 3 2 1 1 2 3 3 1 1 1 3 1 1 0 1 3 3 3 3 2 1 2 1 1
2 1 2 3 3 3 1 1 2 2 1 2 2 1 3 1 1 3 1 0 1 3 1 2 2 3 1 3 1
2 2 2 2 1 1 3 1 1 3 1 1 2 1 1 1 3 3 3 1 0 2 2 2 3 3 1 1 3
3 3 1 1 2 2 3 1 1 3 1 2 3 3 1 1 1 2 3 3 2 0 1 1 2 1 2 1 2
3 3 3 1 1 1 3 3 1 2 2 2 1 1 3 1 2 3 3 1 2 1 0 1 1 2 2 2 1
3 1 1 3 3 2 2 3 3 1 1 1 1 1 1 2 3 3 3 2 2 1 1 0 1 1 2 2 2
3 2 1 3 1 3 1 1 1 1 2 3 3 3 3 1 2 1 2 2 3 2 1 1 0 2 1 2 1
3 3 3 2 1 1 1 1 3 1 3 1 2 3 2 2 1 2 1 3 3 1 2 1 2 0 1 1 2
3 1 1 1 1 3 3 2 2 3 3 1 1 2 2 3 3 3 2 1 1 2 2 2 1 1 0 1 1
3 1 2 2 2 1 3 3 1 1 1 3 3 2 1 3 3 2 1 3 1 1 2 2 2 1 1 0 1
3 3 2 1 3 1 1 3 2 2 1 1 3 2 3 3 2 1 1 1 3 2 1 2 1 2 1 1 0


Fig. 4 Embedding (boldface) and solution (gray text) for a (4, 3, 3; 29) Ramsey coloring.

G1
v1 , G2

v1 and G3
v1 which are respectively (3, 3, 3; 12), (4, 2, 3; 8) and (4, 3, 2; 8)

Ramsey colorings. Applying a SAT solver to complete this partial solution to
a (4, 3, 3; 29) coloring satisfying Constraint (3) involves a CNF with 30,944
clauses and 4,736 variables and requires under two hours of computation time.
Figure 4 portrays the solution (the gray elements).

To apply the embedding approach described in this section to determine
if there exists a (4, 3, 3; 30) Ramsey coloring which is 〈13, 8, 8〉 regular would
require access to the set R(3, 3, 3; 13). We defer this discussion until after
Section 7 where we describe how we compute the set of all 78,892 (3, 3, 3; 13)
Ramsey colorings modulo weak isomorphism.

4 Symmetry Breaking: Computing R(r1, . . . , rk;n)

In this section we prepare the ground to apply a SAT solver to find the set of
all (r1, . . . , rk;n) Ramsey colorings modulo weak isomorphism. The constraints
are those presented in Figure 1 and their encoding to CNF is as described in
Section 3. Our final aim is to compute the set of all (3, 3, 3; 13) colorings modulo
weak isomorphism. Then we can apply the embedding technique of Section 3
to determine the existence of a 〈13, 8, 8〉 regular (4, 3, 3; 30) Ramsey coloring.
Given Theorem 2, this will determine the value of R(4, 3, 3).

Solving hard search problems on graphs, and graph coloring problems in
particular, relies heavily on breaking symmetries in the search space. When
searching for a graph, the names of the vertices do not matter, and restricting
the search modulo graph isomorphism is highly beneficial. When searching for
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Table 2 Computing Ramsey colorings with and without the symmetry break Constraint (4)
(time in seconds with 24 hr. timeout marked by ∞).

Instance #\≈ no sym break with sym break
vars clauses time # vars clauses time #

(4,3;5) 9 10 15 0.02 322 24 85 0.01 13
(4,3;6) 15 15 35 0.35 2812 48 200 0.01 31
(4,3;7) 9 21 70 9.27 13842 85 390 0.01 45
(4,3;8) 3 28 126 19.46 17640 138 676 0.01 20

(3,3,3;16) 2 360 2160 ∞ ? 3328 17000 0.14 6
(3,3,3;15) 2 315 1785 ∞ ? 2707 13745 0.37 66
(3,3,3;14) 115 273 1456 ∞ ? 2169 10936 259.56 24635
(3,3,3;13) ? 234 1170 ∞ ? 1708 8540 ∞ ?

a graph coloring, on top of graph isomorphism, solutions are typically closed
under permutations of the colors: the names of the colors do not matter and the
term often used is “weak isomorphism” [18] (the equivalence relation is weaker
because both node names and edge colors do not matter). When the problem is
to compute the set of all solutions modulo (weak) isomorphism the task is even
more challenging. Often one first attempts to compute all the solutions of the
coloring problem, and to then apply one of the available graph isomorphism
tools, such as nauty [12] to select representatives of their equivalence classes
modulo (weak) isomorphism. This is a generate and test approach. However,
typically the number of solutions is so large that this approach is doomed to
fail even though the number of equivalence classes itself is much smaller. The
problem is that tools such as nauty apply after, and not during, generation. To
this end, we follow [4] where Codish et al. show that the symmetry breaking
approach of [3] holds also for graph coloring problems where the adjacency
matrix consists of integer variables. This is a constrain and generate approach.
But, as symmetry breaking does not break all symmetries, it is still necessary
to perform some reduction using a tool like nauty.1 This form of symmetry
breaking is an important component in our methodology.

Definition 2 [3]. Let A be an n× n adjacency matrix. Then,

sb∗` (A) =
∧{

Ai �{i,j} Aj
∣∣ i < j

}
(4)

where Ai �{i,j} Aj denotes the lexicographic order between the ith and jth

rows of A (viewed as strings) omitting the elements at positions i and j (in
both rows).

We omit the precise details of how Constraint (4) is encoded to CNF. In
our implementation this is performed by the finite domain constraint compiler
BEE and details can be found in [15]. Table 2 illustrates the impact of the
symmetry breaking Constraint (4) on the search for the Ramsey colorings
required in the proof of Theorem 2.

1 Note that nauty does not directly handle edge colored graphs and weak isomorphism
directly. We applied an approach called k-layering described by Derrick Stolee [23].
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The first four rows in the table portray the required instances of the forms
(4, 3, 2;n) and (4, 2, 3;n) which by definition correspond to (4, 3;n) colorings
(respectively in colors 1 and 3, and in colors 1 and 2). The next three rows cor-
respond to (3, 3, 3;n) colorings where n ∈ {14, 15, 16}. The last row illustrates
our failed attempt to apply a SAT encoding to compute R(3, 3, 3; 13). The
first column in the table specifies the instance. The column headed by “#\≈”
specifies the known (except for the last row) number of colorings modulo weak
isomorphism [21]. The columns headed by “vars” and “clauses” indicate, the
numbers of variables and clauses in the corresponding CNF encodings of the
coloring problems with and without the symmetry breaking Constraint (4).
The columns headed by “time” indicate the time (in seconds) to find all color-
ings iterating with a SAT solver. The timeout assumed here is 24 hours. The
column headed by “#” specifies the number of colorings found by iterated
SAT solving.

In the first four rows, notice the impact of symmetry breaking which re-
duces the number of solutions by 1–3 orders of magnitude. In the next three
rows the reduction is more acute. Without symmetry breaking the colorings
cannot be computed within the 24 hour timeout. The sets of colorings obtained
with symmetry breaking have been verified to reduce, using nauty [12], to the
known number of colorings modulo weak isomorphism indicated in the second
column.

5 Abstraction: Degree Matrices for Graph Colorings

This section introduces an abstraction on graph colorings defined in terms
of degree matrices. The motivation is to solve a hard graph coloring prob-
lem by first searching for its degree matrices. Degree matrices are to graph
coloring problems as degree sequences [6] are to graph search problems. A
degree sequence is a monotonic nonincreasing sequence of the vertex degrees
of a graph. The problem of finding graphs with a given number of vertices
and with given properties can be subdivided into smaller problems. In each
of the smaller problems graphs are assumed to have one of the possible set of
degree sequences. This approach was used as a first step towards classifying
diamond-free graphs [16]. A graphic sequence is a sequence which can be the
degree sequence of some graph.

The idea underlying our approach is that when the combinatorial problem
at hand is too hard, then possibly solving an abstraction of the problem is
easier. In this case, a solution of the abstract problem can be used to facilitate
the search for a solution of the original problem.

Definition 3 (degree matrix) Let A be a graph coloring on n vertices with
k colors. The degree matrix of A, denoted dm(A) is an n× k matrix, M such
that Mi,j = degj(i) is the degree of vertex i in color j.



Computing the Ramsey Number R(4,3,3) 13[ 12 8 8
...

12 8 8

]}
29 rows

Fig. 5 A degree matrix.

Figure 5 illustrates the degree matrix of the
graph coloring given as Figure 4. The three
columns correspond to the three colors and the
29 rows to the 29 vertices. The degree matrix
consists of 29 identical rows as the correspond-
ing graph coloring is 〈12, 8, 8〉 regular.

A degree matrix M represents the set of
graphs A such that dm(A) = M . Due to properties of weak-isomorphism
(vertices as well as colors can be reordered) we can exchange both rows and
columns of a degree matrix without changing the set of graphs it represents.
In the rest of our construction we adopt a representation in which the rows
and columns of a degree matrix are sorted lexicographically.

Definition 4 (lex sorted degree matrix) For an n × k degree matrix M
we denote by lex(M) the smallest matrix with rows and columns in the lex-
icographic order (non-increasing) obtained by permuting rows and columns
of M .

Definition 5 (abstraction) Let A be a graph coloring on n vertices with k
colors. The abstraction of A to a degree matrix is α(A) = lex(dm(A)). For a
set A of graph colorings we denote α(A) =

{
α(A)

∣∣A ∈ A }.

Note that if A and A′ are weakly isomorphic, then α(A) = α(A′).

Definition 6 (concretization) Let M be an n × k degree matrix. Then,
γ(M) =

{
A
∣∣α(A) = M

}
is the set of graph colorings represented by M . For

a set M of degree matrices we denote γ(M) = ∪
{
γ(M)

∣∣M ∈M }
.

Let ϕ(A) be a graph coloring problem in k colors on an n × n adjacency
matrix, A. Our strategy to compute A = sol(ϕ(A)) is to first compute an over-
approximationM of degree matrices such that γ(M) ⊇ A and to then useM
to guide the computation of A. We denote the set of solutions of the graph
coloring problem, ϕ(A), which have a given degree matrix, M , by solM (ϕ(A)).
Then

sol(ϕ(A)) =
⋃

M∈M
solM (ϕ(A)) (5)

solM (ϕ(A)) = sol(ϕ(A) ∧ (α(A)=M)) (6)

Equation (5) implies that, we can compute the solutions to a graph col-
oring problem ϕ(A) by computing the independent sets solM (ϕ(A)) for any
over approximation M of the degree matrices of the solutions of ϕ(A). This
facilitates the computation for two reasons: (1) The problem is now broken
into a set of independent sub-problems for each M ∈ M which can be solved
in parallel, and (2) The computation of each individual solM (ϕ(A)) is now
directed using M .

The constraint α(A)=M in the right side of Equation (6) is encoded to
SAT by introducing (encodings of) cardinality constraints. For each row of
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the matrix A the corresponding row in M specifies the number of elements
with value c (for 1 ≤ c ≤ k) that must be in that row. We omit the precise
details of the encoding to CNF. In our implementation this is performed by
the finite domain constraint compiler BEE and details can be found in [15].

When computing solM (ϕ(A)) for a given degree matrix we can no longer
apply the symmetry breaking Constraint (4) as it might constrain the rows
of A in a way that contradicts the constraint α(A) = M in the right side of
Equation (6). However, we can refine Constraint (4), to break symmetries on
the rows of A only when the corresponding rows in M are equal. Then M
can be viewed as inducing an ordered partition of A and Constraint (7) is,
in the terminology of [3], a partitioned lexicographic symmetry break. In the
following, Mi and Mj denote the ith and jth rows of matrix M .

sb∗` (A,M) =
∧
i<j

( (
Mi = Mj ⇒ Ai �{i,j} Aj

) )
(7)

The following refines Equation (6) introducing the symmetry breaking predi-
cate.

solM (ϕ(A)) = sol(ϕ(A) ∧ (α(A)=M) ∧ sb∗` (A,M)) (8)

To justify that Equations (6) and (8) both compute solM (ϕ(A)), modulo
weak isomorphism, we must show that if sb∗` (A,M) excludes a solution then
there is another weakly isomorphic solution that is not excluded.

Theorem 3 (correctness of sb∗` (A,M)) Let A be an adjacency matrix with
α(A) = M . Then, there exists A′ ≈ A such that α(A′) = M and sb∗` (A

′,M)
holds.

Proof Let C =
{
A′
∣∣A′ ≈ A ∧ α(A′) = M

}
. Obviously C 6= ∅ because A ∈ C

and therefore there exists a Amin = min�C. Therefore, Amin � A′ for all
A′ ∈ C. Now we can view M as inducing an ordered partion on A: vertices
u and v are in the same component if and only if the corresponding rows of
M are equal. Relying on Theorem 4 from [3], we conclude that sb∗` (Amin,M)
holds.

6 Computing Degree Matrices for R(3, 3, 3; 13)

This section describes how we compute a set of degree matrices that approx-
imate those of the solutions of instance ϕ(3,3,3;13)(A) of Constraint (3). We
apply a strategy mixing SAT solving with brute-force enumeration as follows.
The computation of the degree matrices is summarized in Table 3. In the
first step, we compute bounds on the degrees of the nodes in any (3, 3, 3; 13)
coloring.

Lemma 2 Let A be a (3, 3, 3; 13) coloring then for every vertex x in A, and
color c ∈ {1, 2, 3}, 2 ≤ degc(x) ≤ 5.
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Proof By solving instance ϕ(3,3,3;13)(A) of Constraint (3) we are seeking a
graph with some degree less than 2 or greater than 5. The CNF encoding is of
size 13,672 clauses with 2,748 Boolean variables and takes under 15 seconds
to solve and yields an UNSAT result which implies that such a graph does not
exist.

In the second step, we enumerate the degree sequences with values within
the bounds specified by Lemma 2. Recall that the degree sequence of an undi-
rected graph is the non-increasing sequence of its vertex degrees. Not every
non-increasing sequence of integers corresponds to a degree sequence. A se-
quence that corresponds to a degree sequence is said to be graphical. The
number of degree sequences of graphs with 13 vertices is 836,315 (see Se-
quence number A004251 of The On-Line Encyclopedia of Integer Sequences
published electronically at http://oeis.org). However, when the degrees are
bound by Lemma 2 there are only 280.

Lemma 3 There are 280 degree sequences for graphs with 13 vertices with
color-c degrees between 2 and 5.

Proof Straightforward enumeration using the algorithm of Erdös and Gal-
lai [6].

In the third step, we test the 280 degree sequences identified by Lemma 3
to determine which of them might occur as the left column in a degree matrix.

Lemma 4 Let A be a (3, 3, 3; 13) coloring and let M = α(A). Then, (a) the
left column of M is one of the 280 degree sequences identified in Lemma 3; and
(b) there are only 80 degree sequences from the 280 which are the left column
of α(A) for some coloring A in R(3, 3, 3; 13).

Proof By solving instance ϕ(3,3,3;13)(A) of Constraint (3). For each degree
sequence from Lemma 3, seeking a solution with that degree sequence in the
first color. This involves 280 instances with average CNF size: 10861 clauses
and 2215 Boolean variables. The total solving time is 375.76 hours and the
hardest instance required about 50 hours. Exactly 80 of these instances were
satisfiable.

In the fourth step we extend the 80 degree sequences identified in Lemma 4
to obtain all possible degree matrices.

Lemma 5 Given the 80 degree sequences identified in Lemma 4 as potential
left columns of a degree matrix, there are 11,933 possible degree matrices.

Proof By enumeration. For a degree matrix: the rows and columns are lex
sorted, the rows must sum to 12, and the columns must be graphical (when
sorted). We enumerate all such degree matrices and then select their smallest
representatives under permutations of rows and columns. The computation
requires a few seconds.



16 Michael Codish et al.

Table 3 Computing the degree matrices for R(3, 3, 3; 13) step by step.

Step Notes ComputationTimes CNF Size

1
compute degree bounds

12.52 sec.
#Vars #Clauses

(Lemma 2) (1 instance, unsat) 2748 13672
2 enumerate 280 possible degree Prolog, fast (seconds)

sequences (Lemma 3)

3
test degree sequences 16.32 hrs. #Vars #Clauses
(Lemma 4) (280 instances: hardest: 1.34 hrs 1215 (avg) 7729(avg)
200 unsat, 80 sat)

4 enumerate 11,933 degree Prolog, fast (seconds)
matrices (Lemma 5)

5
test degree matrices 126.55 hrs. #Vars #Clauses
(Lemma 6) (11,933 instances: hardest: 0.88 hrs. 1520 (avg) 7632 (avg)
10,934 unsat, 999 sat)

In the fifth step, we test the 11,933 degree matrices identified by Lemma 5
to determine which of them are the abstraction of some (3, 3, 3; 13) coloring.

Lemma 6 From the 11,933 degree matrices identified in Lemma 5, 999 are
α(A) for a coloring A in R(3, 3, 3; 13).

Proof By solving instance ϕ(3,3,3;13)(A) of Constraint (3) together with a given
degree matrix to test if it is satisfiable. This involves 11,933 instances with
average CNF size: 7632 clauses and 1520 Boolean variables. The total solving
time is 126.55 hours and the hardest instance required 0.88 hours.

7 Computing R(3, 3, 3; 13) from Degree Matrices

We describe the computation of the set R(3, 3, 3; 13) starting from the 999
degree matrices identified in Lemma 6. Table 4 summarizes the two step ex-
periment.

Table 4 Computing R(3, 3, 3; 13) step by step.

Step Notes Computation Times

1
compute all (3, 3, 3; 13) Ramsey colorings per total: 136.31 hr.
degree matrix (999 instances, 129,188 solutions) hardest: 4.3 hr.

2 reduce modulo ≈ (78,892 solutions) nauty, fast (minutes)

step 1: For each degree matrix we compute, using a SAT solver, all cor-
responding solutions of Equation (8), where ϕ(A) = ϕ(3,3,3;13)(A) of Con-
straint (3) and M is one of the 999 degree matrices identified in (Lemma 6).
This generates in total 129,188 (3, 3, 3; 13) Ramsey colorings. Table 4 details
the total solving time for these instances and the solving times for the hardest
instance for each SAT solver. The largest number of graphs generated by a
single instance is 3720.
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0 1 1 1 3 3 3 3
1 0 3 3 1 1 3 3
1 3 0 3 1 3 1 3
1 3 3 0 3 3 1 1
3 1 1 3 0 3 3 1
3 1 3 3 3 0 1 1
3 3 1 1 3 1 0 3
3 3 3 1 1 1 3 0

,

0 1 1 1 3 3 3 3
1 0 3 3 1 3 3 3
1 3 0 3 3 1 1 3
1 3 3 0 3 1 3 1
3 1 3 3 0 1 1 3
3 3 1 1 1 0 3 3
3 3 1 3 1 3 0 1
3 3 3 1 3 3 1 0

,

0 1 1 1 3 3 3 3
1 0 3 3 1 3 3 3
1 3 0 3 3 1 1 3
1 3 3 0 3 1 3 1
3 1 3 3 0 1 3 3
3 3 1 1 1 0 3 3
3 3 1 3 3 3 0 1
3 3 3 1 3 3 1 0

 ⊆


0 1 1 1 3 3 3 3
1 0 3 3 1 A 3 3
1 3 0 3 A B 1 3
1 3 3 0 3 B A 1
3 1 A 3 0 B C A
3 A B B B 0 A A
3 3 1 A C A 0 B
3 3 3 1 A A B 0

∣∣∣∣ A, B, C ∈ {1, 3}A 6= B


Fig. 6 Approximating the three (4,2,3;8) colorings by a single matrix with constraints.

Table 5 Time required per instance for proof that there are no (4, 3, 3; 30) colorings with
degrees (13, 8, 8)

time (hrs) # instances % instances (∆)

10 56,363 71.443 %
20 65,914 12.106 %

100 77,263 14.385 %
500 78,791 1.937 %

1000 78,869 0.099 %
1500 78,886 0.022 %
2000 78,890 0.005 %
2400 78,892 0.003 %

step 2: The 129,188 (3, 3, 3; 13) colorings from step 1 are reduced modulo
weak-isomorphism using nauty [12]. This process results in a set with 78,892
graphs.

We note that recently, the set R(3, 3, 3; 13) has also been computed inde-
pendently by Stanislaw Radziszowski, and independently by Richard Kramer
and Ivan Livinsky [20].

8 There is no 〈13, 8, 8〉 Regular (4, 3, 3; 30) Coloring

In order to prove that there is no 〈13, 8, 8〉 regular (4, 3, 3; 30) coloring using
the embedding approach of Section 3, we need to check that 78,892× 3× 3 =
710,028 corresponding instances are unsatisfiable. These correspond to the
elements in the cross product of R(3, 3, 3; 13), R(4, 2, 3; 8) and R(4, 3, 2; 8).

To decrease the number of instances by a factor of 9, we approximate the
three (4, 2, 3; 8) colorings by a single description as demonstrated in Figure 6.
The constrained matrix on the right has four solutions which include the three
(4, 2, 3; 8) colorings on the left. We apply a similar approach for the (4, 3, 2; 8)
colorings. So, in fact we have a total of only 78,892 embedding instances to
consider.

In addition to the constraints in Figure 1, we add constraints to specify
that each row of the adjacency matrix has the prescribed number of edges in
each color (13, 8 and 8). By application of a SAT solver, we have determined all
78,892 instances to be unsatisfiable. The average size of an instance is 36,259
clauses with 5187 variables. The total solving time is 128.31 years (running
in parallel on 456 threads). The average solving time is 14 hours while the
median is 4 hours. Only 797 instances took more than one week to solve. The
worst-case solving time is 96.36 days. Table 5 specifies, in the second column,
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 0 1 1 2 2 3 3 1 1 2 3 3 1
1 1 0 2 1 3 1 2 2 3 3 1 2 3
1 1 2 0 3 2 1 1 3 3 1 2 3 2
1 2 1 3 0 1 2 3 1 1 3 3 2 2
1 2 3 2 1 0 1 2 3 2 1 3 3 1
1 3 1 1 2 1 0 2 2 3 3 2 1 3
1 3 2 1 3 2 2 0 3 3 2 1 1 1
1 1 2 3 1 3 2 3 0 2 3 1 1 3
1 1 3 3 1 2 3 3 2 0 1 3 1 2
1 2 3 1 3 1 3 2 3 1 0 1 3 2
1 3 1 2 3 3 2 1 1 3 1 0 2 3
1 3 2 3 2 3 1 1 1 1 3 2 0 3
1 1 3 2 2 1 3 1 3 2 2 3 3 0
2 0 1 1 1 3 3 3 3
2 1 0 3 3 1 A 3 3
2 1 3 0 3 A B 1 3
2 1 3 3 0 3 B A 1
2 3 1 A 3 0 B C A
2 3 A B B B 0 A A
2 3 3 1 A C A 0 B
2 3 3 3 1 A A B 0
3 0 1 1 1 2 2 2 2
3 1 0 2 2 1 D 2 2
3 1 2 0 2 D E 1 2
3 1 2 2 0 2 E D 1
3 2 1 D 2 0 E F D
3 2 D E E E 0 D D
3 2 2 1 D F D 0 E
3 2 2 2 1 D D E 0





0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 0 1 1 2 1 2 3 3 3 2 1 2 3
1 1 0 3 1 3 2 1 1 3 2 2 3 2
1 1 3 0 3 2 1 2 3 1 2 3 2 1
1 2 1 3 0 1 1 3 2 3 1 2 3 2
1 1 3 2 1 0 2 3 3 1 3 2 1 3
1 2 2 1 1 2 0 3 3 3 3 1 1 3
1 3 1 2 3 3 3 0 2 1 1 3 1 2
1 3 1 3 2 3 3 2 0 1 2 1 3 1
1 3 3 1 3 1 3 1 1 0 2 3 2 2
1 2 2 2 1 3 3 1 2 2 0 3 3 1
1 1 2 3 2 2 1 3 1 3 3 0 2 3
1 2 3 2 3 1 1 1 3 2 3 2 0 3
1 3 2 1 2 3 3 2 1 2 1 3 3 0
2 0 1 1 1 3 3 3 3
2 1 0 3 3 1 A 3 3
2 1 3 0 3 A B 1 3
2 1 3 3 0 3 B A 1
2 3 1 A 3 0 B C A
2 3 A B B B 0 A A
2 3 3 1 A C A 0 B
2 3 3 3 1 A A B 0
3 0 1 1 1 2 2 2 2
3 1 0 2 2 1 D 2 2
3 1 2 0 2 D E 1 2
3 1 2 2 0 2 E D 1
3 2 1 D 2 0 E F D
3 2 D E E E 0 D D
3 2 2 1 D F D 0 E
3 2 2 2 1 D D E 0


Fig. 7 The two hardest instances.

the total number of instances that can be shown unsatisfiable within the time
specified in the first column. The third column indicates the increment in
percentage (within 10 hours we solve 71.46%, within 20 hours we solve an
additional 12.11%, etc). The last rows in the table indicate that there are 4
instances which require between 1500 and 2000 hours of computation, and 2
that require between 2000 and 2400 hours.

Figure 7 details the partial adjacency matrices corresponding to the two
hardest instances from the total 78,892. Both include the constraints: A, B, C,∈
{1, 3}, D, E, F ∈ {1, 2}, A 6= B, D 6= E. The corresponding CNF representations
consist in 5204 Boolean variables (each), 36,626 clauses for the left instance
and 36,730 for the right instance. SAT solving times to show these instances
UNSAT are 8,325,246 seconds for the left instance and 7,947,257 for the right.

9 Making the Instances Available

The statistics from the proof that R(4, 3, 3) = 30 are available from the do-
main:

http://www.cs.bgu.ac.il/~mcodish/Benchmarks/Ramsey334

Additionally, we have made a small sample (30) of the instances available. Here
we provide instances with the degrees 〈13, 8, 8〉 in the three colors. The selected
instances represent the varying hardness encountered during the search. The
instances numbered {27765, 39710, 42988, 36697, 13422, 24578, 69251, 39651,
43004, 75280} are the hardest, the instances numbered {4157, 55838, 18727,
43649, 26725, 47522, 9293, 519, 23526, 29880} are the median, and the in-
stances numbered {78857, 78709, 78623, 78858, 28426, 77522, 45135, 74735,
75987, 77387} are the easiest. A complete set of both the BEE models and the
DIMACS CNF files are available upon request. Note however that they weight
around 50GB when zipped.

The files in bee_models.zip detail constraint models, each one in a sep-
arate file. The file named r433 30 Instance#.bee contains a single Prolog
clause of the form
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(1) new int(I, c1, c2) declare integer: c1 ≤ I ≤ c2
(2) bool array or([X1, . . . , Xn]) clause: X1 ∨ X2 · · · ∨ Xn
(3) bool array sum eq([X1, . . . , Xn], I) Boolean cardinality: (Σ Xi) = I

(4) int eq reif(I1, I2, X) reified integer equality: I1 = I2 ⇔ X

(5) int neq(I1, I2) I1 6= I2
(6) int gt(I1, I2) I1 > I2

Fig. 8 Selected BEE constraints

model(Instance#,Map,ListOfConstraints) :- {...details...} .

where Instance# is the instance number, Map is a partially instantiated ad-
jacency matrix associating the unknown adjacency matrix cells with variable
names, and ListOfConstraints are the finite domain constraints defining
their values. The syntax is that of BEE, however the interested reader can
easily convert these to their favorite finite domain constraint language. Note
that the Boolean values true and false are represented in BEE by the constants
1 and −1. Figure 8 details the BEE constraints which occur in the above men-
tioned models.

The files in cnf_models.zip correspond to CNF encodings for the con-
straint models. For each instance there are two associated files namely:
r433 30 instance#.dimacs and r433 30 instance#.map. These consist re-
spectively of a DIMACS file and a map file which associates the Booleans in
the DIMACS file with the integer variables in a corresponding partially instan-
tiated adjacency matrix. The map file specifies for each pair (i, j) of vertices
a triplet [B1, B2, B3] of Boolean variables (or values) specifying the presence
of an edge in each of the three colors. Each such Bi is either the name of
a DIMACS variable, if it is greater than 1, or a truth value 1 (true), or −1
(false).

10 Conclusion

The precise value R(4, 3, 3) has remained unknown for almost 50 years. We
have applied SAT solving techniques together with a methodology using ab-
straction and symmetry breaking to construct a computational proof that
the Ramsey number R(4, 3, 3) = 30. We expect this methodology to apply
to a range of other hard graph coloring problems. Our strategy is based on
the search for a (4, 3, 3; 30) Ramsey coloring, which we show does not exist.
This implies that R(4, 3, 3) ≤ 30 and hence, because of known bounds, that
R(4, 3, 3) = 30.

The question of whether a computational proof constitutes a proper proof
is a controversial one. Most famously the issue caused much heated debate
after publication of the computer proof of the Four Color Theorem [2]. It is
straightforward to justify an existence proof (i.e. a SAT result), as it is easy
to verify that the witness produced satisfies the desired properties. Justifying
an UNSAT result is more difficult. If nothing else, we are certainly required
to add the proviso that our results are based on the assumption of a lack of
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Table 6 Known values of |R(3, 3, 3;n)|, |R(4, 3, 2;n)| and |R(4, 2, 3;n)| computed by our
program. All values are consistent with previously known values.

|R(3, 3, 3; 14)| = 115 |R(4, 3, 2; 5)| = |R(4, 2, 3; 5)| = 9
|R(3, 3, 3; 15)| = 2 |R(4, 2, 3; 6)| = |R(4, 2, 3; 6)| = 15
|R(3, 3, 3; 16)| = 2 |R(4, 2, 3; 7)| = |R(4, 2, 3; 7)| = 9

|R(4, 2, 3; 8)| = |R(4, 2, 3; 8)| = 3

bugs in the entire tool chain (constraint solver, SAT solver, C-compiler etc.)
used to obtain them.

Most modern SAT solvers, support the option to generate a proof cer-
tificate for UNSAT instances (see e.g. [9]), in the DRAT format [24], which
can then be checked by a Theorem prover. This might be useful to prove the
lack of bugs originating from the SAT solver but does not offer any guarantee
concerning bugs in the generation of the CNF. Moreover, the DRAT certifi-
cates for an application like that described in this paper are expected to be of
unmanageable size.

Our proofs are based on two main “computer programs”. The first was ap-
plied to compute the set R(3, 3, 3; 13) with its 78,892 Ramsey colorings. The
fact that at least two other groups of researchers (Stanislaw Radziszowski,
and independently Richard Kramer and Ivan Livinsky) report having com-
puted this set and quote [20] the same number of elements is reassuring. Our
computer program was additionally tested to compute a wide range of known
sets of graphs of the forms: R(3, 3, 3;n), R(4, 3, 2;n) and R(4, 2, 3;n), and it
provided results consistent with the known values. The results of this testing
are summarized in table 6. The second program, was applied to complete par-
tially instantiated adjacency matrices, embedding smaller Ramsey colorings,
to determine if they can be extended to Ramsey colorings. This program was
applied to show the non-existence of a (4, 3, 3; 30) Ramsey coloring. Here we
gain confidence from the fact that the same program does find Ramsey col-
orings when they are known to exist. For example, the (4, 3, 3; 29) coloring
depicted as Figure 4.

All of the software used to obtain our results is publicly available, as well as
the individual constraint models and their corresponding encodings to CNF.
For details, see the penultimate section.

Acknowledgements We thank Stanislaw Radziszowski for his guidance and comments
which helped improve the presentation of this paper. In particular Stanislaw proposed to
show that our technique is able to find the (4, 3, 3; 29) coloring depicted as Figure 4.
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