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Abstract
With the advent of many-core architectures, scalability is a key
property for programming languages. Actor-based frameworks like
Erlang are fundamentally scalable, but in practice they have some
scalability limitations.

The RELEASE project aims to improve the scalability of Erlang
on emergent commodity architectures with 105 cores. This paper
investigates the scalability limits of distributed Erlang on up to 150
nodes by using DE-Bench. We discuss the design and implemen-
tation of DE-Bench, a scalable peer-to-peer benchmarking tool for
distributed Erlang.

Our benchmarking results demonstrate that the frequency of
global commands limits the scalability of distributed Erlang. There
is also a common belief that distributed Erlang does not scale on
large architectures with hundreds of nodes and thousands of cores.
We provide evidence against this belief and show that distributed
Erlang scales linearly up to 150 nodes and 1200 cores with rela-
tively heavy data and computation loads when no global command
is made.

Measuring the latency of commonly-used distributed Erlang
commands reveals that the latency of rpc calls rises as cluster size
grows. Our results also show that server processes like gen server
and gen fsm have low latency and good scalability.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Distributed programming

Keywords Scalability; Benchmarking; Distributed Erlang

1. Introduction
The trend toward horizontally scalable architectures such as clus-
ters, grids, and clouds will continue because they offer scalable
hardware platform in a cost-effective way [1]. These scalable in-
frastructures typically consist of loosely-connected commodity
servers in which node and network failures are common. To take
full advantage of such architectures, the need for reliable scalable
programming paradigms is essential.
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Recently, Erlang has become a popular platform to develop
large-scale distributed applications, e.g. Facebook chat backend,
T-Mobile advanced call control services, Ericsson AXD301 ATM
switch, and Riak DBMS [2], [3]. This popularity is due to a combi-
nation of factors, including data immutability, share-nothing con-
currency, asynchronous message passing based on the actor model,
process’s location transparency, and fault tolerance [4].

However, in practice the scalability of Erlang is constrained by
aspects of the language and virtual machine [5]. For instance, our
measurement shows that Riak 1.1.1 does not scale beyond 60 nodes
because of overloaded single supervisor processes [6].

The RELEASE project aims to scale the Erlang’s radical
concurrency-oriented programming paradigm to build reliable
general-purpose software, such as server-based systems, on emer-
gent commodity architectures with 105 cores [5]. The RELEASE
consortium works to scale Erlang at the virtual machine, language
level, infrastructure levels, and to supply profiling and refactoring
tools.

At the language level we aim to scale distributed Erlang, thus
identifying the scalability bottlenecks of distributed Erlang is a key
requirement before proceeding to next steps. For this purpose, we
needed a benchmarking tool to perform the necessary measure-
ments on a large-scale architecture with hundreds of nodes and
thousands of cores. Since there was not such a tool to fulfil our re-
quirement, we have designed and implemented DE-Bench [7]. DE-
Bench, which stands for ”Distributed Erlang benchmark”, is a scal-
able peer-to-peer benchmarking tool that measures the throughput
and latency of distributed Erlang commands on a cluster of Erlang
nodes. In the rest of the paper, we will explain how DE-Bench has
been developed (Section 2) and what results have been achieved by
employing it (Section 3). Finally, conclusions and future works are
discussed (Section 4).

2. How Does the Benchmark Work?
2.1 Platform
The benchmark was carried out on the Kalkyl cluster at UPP-
MAX (Kalkyl has now been decommissioned and replaced with
Milou) [8]. The Kalkyl cluster consists of 348 nodes with 2784
64-bit processor cores which are connected via 4:1 oversubscribed
DDR Infiniband fabric. Nodes have 24GB RAM memory and 250
GB hard disk. The Kalkyl cluster is running Scientific Linux 6.0,
a Red Hat Enterprise Linux. Each node comprises Intel quad-core
Xeon 5520 2.26 GHz processors with 8MB cache. In this report, to
avoid confusion with Erlang nodes (Erlang VM), we use the term
host to refer to the Kalkyl nodes (physical machines). Erlang ver-
sion R16B has been used in all our experiments.



Figure 2: DE-Bench’s Internal Workflow

Figure 1: 2 hosts and 2 Erlang VMs per each host

2.2 Hosts and Nodes Organization
The same as an ordinary distributed Erlang application, our bench-
mark consists of a number of Erlang Virtual Machines (Erlang
VMs) communicating with each other over a network. The bench-
mark is run on a cluster of hosts and there can be multiple Erlang
VMs on each host, however, each Erlang VM runs only one in-
stance of DE-Bench. For example, Figure 1 depicts a cluster with 2
hosts and 2 Erlang nodes (Erlang VMs) per host. As shown, a node
can communicate with all the other nodes in the cluster regardless
of whether nodes are located on the same host or not. DE-Bench
follows a peer-to-peer model in which all nodes perform the same
role independently, and so there is no specific node for coordination
or synchronisation. The peer-to-peer design of DE-Bench improves
scalability and reliability by eliminating central coordination and
single points of failure.

2.3 The Design and Implementation of DE-Bench
To evaluate the scalability of distributed Erlang, we measure how
adding more nodes to a cluster of Erlang nodes would increase the
throughput. By throughput we mean the total number of success-
fully executed distributed Erlang commands per experiment. DE-
Bench is based on Basho Bench, an open source benchmarking tool
for Riak NoSQL DBMS [9].

One interesting feature of Erlang is its support for failure re-
covery. Processes in an Erlang application can be organised into a
hierarchical structure in which parent processes monitor failures of
their children and are responsible for their restart [10]. DE-Bench
uses this feature to provide a fault-tolerant service. Figure 2 rep-
resents the internal workflow of DE-Bench. Initially, a supervisor
process runs a number of worker processes in parallel on a node.
The number of worker processes on each node is definable through
a configuration file. As each host in the Kalkyl cluster has 8 cores,
we run 40 worker processes on each node to exploit available cores.
The supervisor process supervises all the worker processes and
keeps them alive by restarting them in case of failure. A worker
process randomly selects an Erlang node and a distributed Erlang
command from the configuration file and runs that command on the
selected node. There are three kinds of commands in DE-Bench:

• Point-to-Point (P2P): In P2P commands, a function with tun-
able argument size and computation time is run on a remote
node. Figure 3 depicts the argument size and computation time
for a P2P command. As the figure shows, firstly, a function with
argument size X bytes is called. Then, a non-tail recursive func-
tion is run on the target node for Y microseconds. Finally, the ar-
gument is returned to the source node as result. P2P commands
include spawn, rpc, and synchronous calls to server processes,
i.e. gen server or gen fsm.

• Global commands: When a global command is run, all the
nodes in a cluster get involved, and the result will be ready once
the command runs successfully on all nodes. Global commands
such as global:register name and global:unregister name are
defined in the OTP global module.

• Local commands: In local commands such as register name,
unregister name and whereis name, just the local node gets
involved and there is no need to communicate with other nodes
in the cluster. The command whereis name is a look up in the
local name table regardless of whether it is from the global
module or not.



After running a command, the latency and throughput of that
command is measured and recorded in appropriate CSV files. The
CSV files are stored on the local disk of each node to avoid disk
access contention and network communication latency.

Figure 3: Argument size (X) and computation time (Y) in a P2P
command

DE-Bench is extensible and one can easily add new commands
into DE-Bench through the de commands.erl module. At the time
of writing this paper, the following commands are defined and
measurable in DE-Bench:

1. P2P commands:

(a) spawn(Node, Fun): a function is called at a remote node
with tunable argument size and computation time as de-
picted in Figure 3. Since spawn is an asynchronous call, the
elapsed time is recorded after receiving an acknowledgment
from the remote node.

(b) rpc(Node, Fun): synchronously calls a function at a remote
node with tunable argument size and computation time.

(c) server process call: makes a synchronous call to a generic
server process (gen server) or a finite state machine process
(gen fsm) by sending a request and waiting for the reply.

2. Global commands:

(a) global:register name(Name, Pid): globally associates a
name with a pid. The registered names are stored in name
tables on every node in the cluster.

(b) global:unregister name(Name): removes a globally regis-
tered name from all nodes in the cluster.

3. Local commands:

(a) register name(Name, Pid): associates a name with a process
identifier (pid).

(b) unregister name(Name): removes a registered name, asso-
ciated with a pid.

(c) whereis(Name): returns the pid registered with a specific
name.

(d) global:whereis(Name): returns the pid associated with a
specific name globally. Although, this command belongs to
global module, it falls in local commands because it does a
lookup in the local name table.

These commands are not used at the same rate in a typical
distributed Erlang application. For instance, P2P commands such
as spawn and rpc are the most commonly used ones and global
commands like register name and unregister name are used much
less than the others. Thus, to generate more realistic results, we can
use each command with a different ratio.

In Erlang, a process identifier (pid) only can be registered once,
otherwise an exception is thrown. To prevent the exception, three
internal states are defined for a worker process to ensure that after
registering a process, all necessary commands like whereis name
and unregister name will be executed afterward. Figure 4 shows
the states that a worker process follows to avoid duplicate regis-
tration exception. As shown, P2P commands do not change the
current state (state1). The commands whereis name(Name) and
unregister name(Name) are ignored unless they come after regis-
ter name(Name, Pid). After running a register name(Name, Pid)
command, both whereis name(Name) and unregister name(Name)
will be run respectively. To avoid name clashes, a timestamp func-
tion is used to generate globally unique names for processes in a
cluster.

Figure 4: Worker Process’ Internal States

3. Benchmarking Results
In this section, we employ DE-Bench to measure the scalability
of distributed Erlang from different perspectives. In the scalability
benchmark, we measure the throughput for different sizes of Erlang
clusters and observe how adding more Erlang nodes to a cluster
affects the throughput.

The benchmark is conducted on 10, 20, 30, 40, 50, 60, 70,
80, 90, and 100-node clusters and measures the throughput by
counting successful operations over the duration of an experiment.
The duration of an experiment is specified in the configuration file.
All the experiments in this paper run for 5 minutes. There is one
Erlang VM on each host and as always one DE-Bench instance
on each VM. After the end of each experiment, the generated
CSV files from all participating nodes are collected and aggregated
to find out the total throughput and failures. For example, for
benchmarking a 70-node cluster, 70 instances of DE-Bench are run
simultaneously and consequently they will generate 70 CSV files
which need to be aggregated to find out the total throughput of the
70-node cluster. To provide reliable results, all experiments are run
three times and the middle values are represented in diagrams.

We will measure following aspects of the scalability of dis-
tributed Erlang:

1. Global Commands: As illustrated previously in Section 2.3,
in global commands all nodes in the cluster get involved. This
feature of global commands could make them a bottleneck for
scalability. To find out the effects of global commands on the
scalability of distributed Erlang, we run the measurements with
different percentages of global commands.

2. Data Size: As shown in Figure 3, the argument size of P2P
commands is tunable. To understand the effect of data size on
the scalability and performance of an Erlang cluster, we run the
benchmark with different argument sizes.



3. Computation Time: As with argument size, the computation
time of P2P commands is also tunable in DE-Bench (Figure 3).
We investigate the effect of computation time on both scalabil-
ity and performance of distributed Erlang.

4. Data Size & Computation Time:
There is a common belief that distributed Erlang does not scale
in a large distributed environment with hundreds of nodes and
thousands of cores. To assess this belief, we measure how
distributed Erlang scales up to 150 nodes and 1200 cores with
relatively heavy data and computation loads.

5. Server Process: There are two popular types of server process
in Erlang/OTP: generic server processes (gen server) and finite
state machine processes (gen fsm). This section will inspect
the scalability of these server processes, and try to find out
whether the server processes are bottlenecks for the scalability
of distributed Erlang.

3.1 Global Commands
To find out how global commands affect the scalability of dis-
tributed Erlang, we run the benchmark with different frequencies of
global commands. The following commands are used in the mea-
surement:

1. P2P commands: spawn and rpc with 10 bytes argument size and
10 microseconds computation time

2. Global commands: global:register name and global:unregister
name

3. Local commands: global:whereis(Name)

Figure 5 shows how frequency of global commands limits the
scalability of distributed Erlang. As we see from the diagram,
scalability becomes more limited as more global commands are
used. For example, when 0.01 percentage of global commands are
used (the dark blue curve) , i.e. 1 global command per 10000 P2P
commands, distributed Erlang doesn’t scale beyond ≈60 nodes.

Figure 5: Scalability vs. Percentage of Global Commands

Figure 6 represents the latency of all the commands that
we used in this measurement. The diagram reveals that the la-
tency of both global commands, i.e. global:register name and
global:unregister name, increases dramatically when cluster size
grows. For example, we see from the figure that a globally name
registration on a 100-node cluster takes ≈20 seconds which is a
considerably long time. The registered names are stored in name
tables on every node and these tables are strongly consistent, which
means that an update is considered complete only when all nodes
have acknowledged it [11]. This lock mechanism for updating the

replicated information becomes a bottleneck on large clusters. As
we see from Figure 6, the other commands’ latencies (i.e. spawn,
rpc, and whereis) are very low and negligible in comparison with
the global ones.

Figure 6: Latency of Commands

3.2 Data Size
This section studies the effect of data size on the scalability of
distributed Erlang. As shown in Figure 3, P2P commands have
two configurable parameters, i.e computation time and argument
size. In this benchmark, the computation time is constant while the
argument size of P2P commands change for different experiments.
The following commands are used in this benchmark:

• P2P commands, i.e. spawn and rpc, with 10, 100, 1000, and
10000 bytes argument size and 10 microseconds computation
time

Figure 7 represents the scalability of distributed Erlang for dif-
ferent data sizes. The diagram shows that as argument size in-
creases, the performance and scalability decrease. For example the
best scalability belongs to 10 bytes data size (the red curve) and the
worst scalability belongs to 10K bytes data size (the pink curve).

Figure 7: Scalability vs. Data Size

3.3 Computation Time
This section tries to find out how computation time affects the
scalability of distributed Erlang. In this benchmark, the argument
size of P2P commands is constant while the computation time
changes for different experiments. The following commands are
used in the benchmark:



• P2P commands, i.e. spawn and rpc, with 10 bytes argument size
and 10, 1000, and 1000000 microseconds computation time.

Figure 8 represents the scalability of distributed Erlang for dif-
ferent computation times. The diagram shows that as we increase
the computation time, performance and scalability degrade. The
best scalability achieved for 10 microseconds computation time,
and 1 second computation time shows the worst scalability. This
is expected because for larger computation time, worker processes
should wait longer for their response and consequently spend most
of the time idly.

Figure 8: Scalability vs. Computation Time

3.4 Data Size & Computation Time
Previously, we have seen the individual effects of data size and
computation time on the scalability of distributed Erlang (Sections
3.2 and 3.3). In this section we aim to discover how distributed Er-
lang scales when both data size and computation time are relatively
large.

The following commands are used in the benchmark:

• P2P commands, i.e. spawn and rpc, with 1000 bytes argument
size and 1000 microseconds computation time.

We chose 1000 bytes for the argument size because it is a rela-
tively large size for an inter-process communication. Also, running
a non-tail recursive function for 1000 microseconds can be con-
sidered as a relatively computation-intensive function. Accessing
more than 100 nodes on the Kalkyl cluster is difficult because it’s
a highly demanded and busy cluster. But we could run this bench-
mark up to 150 nodes and 1200 cores (8 cores per each node) to see
how distributed Erlang scales on that size.

Figure 9 represents the benchmark results. As we see from the
figure, distributed Erlang scales linearly up to 150 nodes under rela-
tively heavy data and computation loads when no global command
is made.

However, this doesn’t mean that all P2P commands have the
same scalability and performance. Figure 10 depicts the latency of
spawn and rpc commands and it shows that the latency of spawn
is much less in comparison with rpc. In the next section, we will
discuss why rpc doesn’t scale well.

3.5 Server Process
Our experience with Riak 1.1.1 shows how an overloaded server
process could limit the scalability of a distributed Erlang appli-
cation [6]. This section investigates the scalability of two com-
mon server processes in Erlang/OTP: generic server processes
(gen server) and finite state machine processes (gen fsm). As men-
tioned in Section 2.3, a server process call is a P2P command.

Figure 9: Scalability vs. Data Size & Computation Time

Figure 10: Latency of P2P commands

However, in this benchmark, we use all kinds of P2P commands,
i.e. server process calls and non-server process calls such as spawn
and rpc. Using all kinds of P2P commands makes us able to com-
pare the scalability of server process calls with that of non-server
process calls. The following commands are used in the benchmark:

• Non-server process P2P commands, i.e. spawn and rpc, with 10
bytes argument size and 1 microsecond computation time.

• Server process synchronous calls, i.e. gen server and gen fsm,
with 10 bytes argument size and 1 microsecond computation
time.

Figure 11 compares the scalability of distributed Erlang with
different percentages of server process calls, i.e. 1% (red line),
50% (green line), and 100% (blue line). For example, when server
process call is 1% (the red line), the other 99% of the calls are non-
server process, i.e. spawn and rpc.

We see from the figure that as more server calls are used, the
scalability improves. For instance, the best scalability is achieved
when all calls are server process (the blue line) and the worst
scalability occurs when 1% of calls are server process calls (the
red line).

We also depict the latency of each command individually to
understand which commands’ latency increase when the cluster
size grows. Figures 12 and 13 present the latency of commands
that we used in the benchmark for 1% and 50% of server process
calls. As the figures show, the latency of rpc calls rises when cluster
size grows. However, the latency of the other commands such as
spawn, gen server, and gen fsm do not increase as cluster size



grows. We see that server processes scale well if they are used
properly, i.e. not becoming overloaded as we experienced for Riak
1.1.1 [6].

To find out why rpc’s latency increases as the cluster size grows,
we need to know more about rpc. Figure 14 shows how an rpc
call is handled in Erlang/OTP. There is a generic server process
(gen server) on each Erlang node which is named rex. This process
is responsible for receiving and handling all rpc requests that come
to an Erlang node. After handling the request, generated results will
be returned to the source node. In addition to user applications,
rpc is also used by many built-in OTP modules, and so it can be
overloaded as a shared service. In contrast with rpc, spawn is an
asynchronous call and the request is handled by a newly-generated
process on the target node. This feature makes spawn more scalable
in comparison with rpc.

Alternatively, one also can implement one’s own gen server
process to handle incoming requests synchronously. This approach
reduces the possibility of overloading the process, since one’s ap-
plication is the only client for that server process.

Figure 11: Scalability vs. Percentages of Server Process Calls

Figure 12: Latency of Commands for 1% Server Process Call

4. Conclusions and Future Works
This paper has investigated the scalability limits of distributed Er-
lang by employing DE-Bench. We have presented the design, im-
plementation, and deployment of a scalable peer-to-peer bench-
marking tool to measure the throughput and latency of distributed
Erlang commands on a cluster of Erlang nodes.

Figure 13: Latency of Commands for 50% Server Process Call

Figure 14: rpc call in Erlang/OTP

We have demonstrated that global commands are bottlenecks
for the scalability of distributed Erlang (Figure 5). In ongoing work
we are developing techniques to improve this limitation [12].

We have also measured the scalability of distributed Erlang with
a relatively large data and computation size. We observed from
Figure 9 that distributed Erlang scales linearly up to 150 nodes
when no global command is made. Our results reveal that the
latency of rpc calls rises as cluster size grows (Figure 10). This
shows that spawn scales much better than rpc and using spawn
instead of rpc in the sake of scalability is advised. Moreover, we
have shown that server processes scale well and they have the
lowest latency among all P2P commands (Figures 11, 12, and 13).

As future work, we are currently developing other scalable
benchmarking applications to run on a larger architecture (i.e. Blue
Gene/Q system).

A. Code Availability
DE-Bench’s source code and the deployment scripts are publicly
available on GitHub at https://github.com/amirghaffari/DEbench.
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