

A Front-End For
Knowledge 2.0 Platform

Master of Science Thesis

Advanced Internet Applications

By

Amir Ghaffari

Supervised by

Dr. Hans Wolfgang Loidl

School of Mathematical and Computer Science

Heriot Watt University

August 2011

2

A Front-End For Knowledge Platform

DECLARATION

I confirm that this work submitted for assessment is my own and is expressed
in my own words. Any uses made within it of the works of other authors in any
form (e.g., ideas, equations, figures, text, tables, programs) are properly
acknowledged at any point of their use. A list of the references employed is
included.

Signed:

Date:

3

A Front-End For Knowledge Platform

Abstract
Academic research is considered as a foundation resource for more investigation
in any field. Due to this brilliant role many companies and government make
huge investment in community of scholar for academic research. Importance of
academic research can be a good reason for considering more on their publication
and dissemination methods. Earlier, publishing was strictly related to paper.

Today paperless publishing or electronic publishing is increasingly popular in
scientific articles. Because online publishing is faster than a print one and its cost
is lower in production and dissemination stages, a number of journals have moved
entirely to the electronic publication. E-publishing in which books, journals and
magazine are being produced and stored electronically rather than in print (1).

In particular Web 2.0 provides new features to further enhance web publishing.
Web 2.0 brings wide range of features such as searching, linking, cross
referencing, online referee, rating analysis. It causes considerable increase in
number of scholarly journals on the Web due to quality of presentation,
convenience and low cost.

This project develops a Front-End base on web 2.0 and RIA technologies to
provide an easy access to data and desktop functionality for knowledge platform.
Front-End have used web 2.0 features for increasing user collaboration. These
features are rating, commenting, tagging, searching and linking that makes user’s
collaboration much more effective in knowledge dissemination process. Moreover,
Front-End provide an easy to use and secure peer review procedure that is
another aspect of knowledge dissemination. Front-End have tried to introduce a
new concept that reduces strict aspect of scholarly publication by providing a
more user-friendly and collaborative environment.

Front-End aims to provide an interactive and collaborative online platform for
both knowledge producers (Author) and knowledge consumer (Reader).

4

A Front-End For Knowledge Platform

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Hans Wolfgang Loidl, for his
proactive approach and support in getting this thesis done as soon as possible.

I also wish to express my Appreciation to Professor Phil Trinder for the help and

guidance he has given me during master course.

Finally, I would like to express special thanks to my wife, Shiva who stood beside
me and encouraged me constantly.

5

A Front-End For Knowledge Platform

Table of Contents
Chapter 1 .. 8

Introduction .. 8

1.1 Context... 8

1.2 Objectives and Aims .. 10

1.2.1 Theoretical .. 11

1.2.2 Practical ... 11

1.3 Requirements ... 12

1.3.1 Role-Based Security Mechanism ... 12

1.3.2 Search for Papers ... 13

1.3.3 Upload Publication and Supplementary Data .. 13

1.3.4 Double/Single-Blind Refereeing ... 13

1.3.5 Cross-referencing .. 14

1.3.6 Ranking .. 14

1.3.7 Web 2.0 Features ... 14

1.4 Outline ... 15

Chapter 2 ... 16

Literature Survey .. 16

2.1 Introduction ... 16

2.2 A survey and evaluation of current web knowledge platform 17

2.2.1 CiteSeerx .. 17

2.2.2 Open access publication ... 18

2. 3 Modeling the operations of a scholarly publication .. 23

2.3.1 The main roles and their responsibilities .. 24

6

A Front-End For Knowledge Platform

2.3.2 Essential steps in peer review process .. 24

2.4 Web 2.0 ... 28

2.4.1 Overview .. 28

2.4.2 Web 2.0 Technologies .. 29

2.5 Literature Summery ... 34

2.5.1 Problem .. 34

2.5.2 Solution .. 35

Chapter 3 ... 36

Design & Implementation .. 36

3.1 JEE Platform ... 36

3.1.1 Why JEE ... 37

3.1.2 Enterprise technologies ... 37

3.2 Design Pattern .. 38

3.2.1 Workflow ... 38

3.2.2 MVC Benefits ... 40

3.3 Framework ... 40

3.3.1 Frameworks Features ... 41

3.3.2 Why Spring Framework .. 42

3.4 Implementing Front-End ... 47

3.4.1 Tiles Template ... 47

3.4.2 Internationalization and Localization .. 48

3.4.3 URL Mapping .. 50

3.4.4 Restful Web Service .. 50

3.4.5 Validation .. 51

3.4.6 FileUpload ... 54

7

A Front-End For Knowledge Platform

3.4.7 Overall View of Front-End ... 54

3.4.8 Web 2.0 Features ... 56

3.4.9 User Management ... 64

Chapter 4 ... 66

Evaluation ... 66

4.1 Evaluation Plan ... 66

4.2 Description of Evaluation Method ... 66

4.3 Evaluation Discussion ... 68

Chapter 5 ... 71

Conclusion .. 71

5.1 Summary ... 71

5.1.1 The Knowledge Platform 2.0 Effort ... 72

5.1.2 Front End .. 72

5.1.3 Bi-Directional Communication .. 73

5.1.4 Project Evaluation ... 73

5.2 Limitation ... 74

5.3 Future Work .. 75

Professional, Ethical and legal Issues .. 76

References ... 77

Appendices: ... 79

Appendix A ... 79

Data Model Classes ... 79

Source Code ... 86

Appendix B ... 98

Questionnaire Form .. 98

8

A Front-End For Knowledge Platform

Chapter 1

Introduction

Section 1.1 explains the research context in academic knowledge dissemination in
which the project is developed. Section 1.2 gives the objectives and tasks. Section
1.3 explains the organization, structure and requirements of the dissertation.

1.1 Context

The academic world places strong emphasis in research and subsequent
publications of their findings. The academic community is seeking to make the
exchange of research’s result faster and better, at reasonable cost. Traditional
publishing can be defined as a text, pictures or images on paper in form of books,
newspapers etc. It was strictly related to paper. On the other hand, in electronic
publication books and journals are produced and delivered to consumers in digital
formats rather than in print. These publications have all qualities of the normal
publishing like the use of color, graphics, and images and are much convenient
also. To respond to that demand and give users always more flexibility many
standards for electronic publication such as OEB and PDF for e-books have been
developed. Electronic Ink other technology that can have an important role on
the e-publishing and some companies such as E-Ink Corporation and Xerox have
invested heavily in it.

Information by means of e-publishing can be provided online through the
Internet, by email publishing (newsletter publishing), web publishing (HTML,
XML) or on disk or CD-ROMs etc. Popularity of web publishing as compared to
other technologies has certainly grown in recent years and during the last decade
web technology play a main role as a publisher. Online publishing that known as
web publishing can be defined as a distributed electronic format of information.
Web is an important resource for scientist and researcher and offers a wide
variety of possibilities for communication between scholars. Before 1999, Web 1.0

9

A Front-End For Knowledge Platform

technology was used for web publishing and user's role was limited only to
reading the information. There was no active communication and support only
static websites with read passively.

Open access means no charge and without license restrictions in scientific
literature, has become a demand by many people and emerged into an
international movement these days. The idea is supported through a growing
number of online journals that publish scientific publication in electronic form
and often freely (2).

Web 2.0 brings more user participation by supporting dynamic content,
interactive and up to date content and flexibility to web publishing. It is more
interactive in contrast to websites where users are limited to the passive viewing
of knowledge content that was created for them. For example usage of web 2.0
technologies in social networking offer fundamental shift in the way people
communicate. Marketers also have used Web 2.0 tools to collaborate with
consumers on product and service promotion.

In the same way web 2.0 allow author to communicate with publisher during the
process of publishing manuscripts. Prepublication review process of academic
papers can be done electronically. Referee’s comments will be shared
anonymously with the author and provide impression of the article and specific
suggestions for the article’s improvement.

Publication ranking and quality assessment of research is a growing trend in
many countries. The past decades have witnessed a growing competition among
individual scholars, universities, and journals to achieve high rankings. For
constructing journal ranking we can use a number of active experts to assess the
articles by their quality. In contrast there is a technique for developing ranking
lists based on effect of citation on other articles. Computers can do the formula
base method of ranking efficiently (3).

Nowadays, Authors prefer to publish their manuscript online because readers
focus on retrieving information from the Internet and library try to deliver
information to members by using electronic archiving. Also when journal are

10

A Front-End For Knowledge Platform

available to web all over the world can read the article. Web publishing is faster
than a print one and not need to wait for print. Moreover, online referee process
can be done as soon as possible. Linking is an online facility than can help readers
to refer to other cited article by clicking a button. Due to a first-mention
advantage a growing number of online publishers and publishing services have
emerged. Publishers try to handling of electronic manuscripts, copyediting
(words in manuscript is ready to publish), formatting (format that publication
must be published), typography (preparing written material for publish) by using
web technology and the production of a suitable version for delivery to the end
users (4).

1.2 Objectives and Aims

The project aim is using the web 2.0 technological tools to design and
implementation a Front-End for a scientific publication platform to ensure
effective and accurate communication on publication by supporting the
submitting publication file and appropriate meta data, editorial board, double
blind referee, ranking and role base user management. Front-End provides an
easy access to data available in the infra-structure. It has used Rich Internet
Application (RIA) technologies to offer a rich and desktop functionality to
improve user satisfaction. For support RIA capability Front-End has applied new
web 2.0 technologies that are listed below:

 Ajax: For doing delete, insert and update, Front-End has applied Ajax
technique to exchange data with a server and update parts of web pages
without reloading the whole page.

 JQuery to apply client side validation and confirmation: In Front-End
JavaScript and JQuery that are appropriate techniques for client side
validation and conformation are used.

Front-End aims to mix server side technologies (J2EE) with RIA technologies
(platform independent ones) to provide web 2.0 features (rating, commenting,
tagging, linking, etc) for Knowledge platform.

This master thesis constitute of two main tasks:

11

A Front-End For Knowledge Platform

1.2.1 Theoretical

Theoretical part is a study of the characteristics of the scientific knowledge
platform. Project aims is provide improvements in functionality, usability,
availability, efficiency and cost in the access of scientific and scholarly knowledge.
One main focus will be on the use of web 2.0 technologies for the electronic
dissemination of information. This part aim is to understand the complete
publishing process and finding roles of web 2.0 technology for use of rich internet
application in a modern electronic publisher. Common technologies are currently
available in RIA. We will study how to adapt RIA in the user interface (UI) layer
and enhance user interaction. Also sophisticated server interaction mechanism
will be discussed.

1.2.2 Practical

This part consists in implementation of a Front-End to web knowledge platform
by using web 2.0 technology tools. The goal of this part is design and
implementation of the web publisher for scientific knowledge with interactive
capabilities provided by web 2.0 technology. In order to achieve these aims, the
project tries to investigate suitable tools and methods to be used in the project.
By using RIA technologies in Front-End, we are going to restores the client's
abilities to be more interactive like desktop applications. The main functionality
that Front-End supports are listed follow:

 Submitting scientific papers, including meta-data

 Search for papers by fields in the meta-data

 Categorization of data by Tagging, Keywords and Tag Cloud

 Increasing user participation by Commenting and Rating

 Using rich internet application(RIA) technique such as Ajax, JQuery and
JavaScript to improve desktop functionality and decreasing server overhead

12

A Front-End For Knowledge Platform

1.3 Requirements

Front-End’s specification and technical requirement are listed follow:

1.3.1 Role-Based Security Mechanism

Only privileged users are permitted to perform certain operations on the
infrastructure. One of the most convenient security mechanisms is role-based
design because access granted at the role level and then it allows individual users
to be assigned into roles. System security service should check two different
stages:

Authentication: This service is allowed when the user needs to be authenticated
using a username and password.

Authorization: This service check whether user's role are allowed to access to a
particular page.

Two different roles have access to different resource

13

A Front-End For Knowledge Platform

1.3.2 Search for Papers

Providing a search interface which allows different kind of publication such as
articles, papers, electronic books to be found is an important feature of Front-
End. Knowledge platform has the potential to store huge amount of information
because digital information does not have physical space limitation to contain it.
Search page should make enable users to search publication by title or author
name. Publication’s keywords and user’s tags are other options that supporting an
advanced search base on them can increase user satisfaction.

1.3.3 Upload Publication and Supplementary Data

Since one of the main aims of Front-End is providing a safe and easy to use
mechanism for uploading information. In Knowledge Platform the producer of
information are authors. Due to this prominent role, Front-End should provide a
way for authors to upload their publications and its supplementary files. The
selected method should be secure and optimize.

1.3.4 Double/Single-Blind Refereeing

Well-functioning editorial and publishing process are essential part of publishing.
In single-blind reviewed reviewers know the author's identity, but not vice versa.
Blinding the identity of reviewers is useful because referee can comment freely.
Another method is double-blind review, whereby both referee and author remain
anonymous and the identities of the author and referees are both hidden. This
feature avoids all potential bias and makes it easier for reviewers to focus on the
paper itself. Front-End aims to provide peer review process for reader and
authors.

14

A Front-End For Knowledge Platform

1.3.5 Cross-referencing

Cross-reference means reference from one part of a book, text, index or file to
another part containing related information. It is an instance within a document
which refers to related or synonymous information elsewhere.

1.3.6 Ranking

Front-End should provide a method to get feedback from reader. Ranking
publication based on reader’s interest can provide a good factor for providing a
list of top rated publication. Rating is one of the important features of Web 2.0
technologies.

1.3.7 Web 2.0 Features

Since web 2.0 technologies bring a new possibility to user for searching
information base on their own categorization. Front-End should apply new
technologies to provide a method for user categorization of data. This can be done
with using new concepts such as tagging and tag cloud.

15

A Front-End For Knowledge Platform

1.4 Outline

The thesis report is divided into six chapters:

1) Chapter two contains literature review. It describe the evolution, presents
background information on web publishing and main process of web
publishing in order to gain more understanding about required feature in
modern and suitable platform among the various platforms. This section
also reviews the different tools and programming languages that can be
used during development process of Front-End base on web 2.0
technologies.

2) Chapter three focus on design and implementation. In this chapter, the
stages of analyze, design and implementing is explained. It discusses more
on using tools and technologies that is used for design and application
implementation. Architectural pattern is discussed. It presents the pattern
and technique that is used to isolate data model, business rules and user
interface. It will go in detail how interaction between layers is done.

3) Chapter four is evaluation. Evaluation plan of the project is described. In
addition, the evaluation process and the result are discussed in this chapter.

4) Chapter five is conclusion. It includes a discussion of the achievements,
limitations and future work.

16

A Front-End For Knowledge Platform

Chapter 2

Literature Survey
This chapter presents a survey of literature on scientific knowledge platform.
First, the literature review will go through the main objectives for developing
knowledge platform and why they are important. Then it will investigate
previous research and discuss the fundamental process that must be done in
Front-End part of scholarly publication. Main features and roles that are involved
in Front-End of the scientific knowledge dissemination process will be discussed.
Advantages and disadvantages of current technology that can be applied during
development of web publication system will be explained. Fundamental parts of
web 2.0 technologies such as Ajax, Rich Internet Application (RIA), jQuery and
how these advances can be used during development processed will be explored.
We will discuss about how web 2.0 techniques can improve the functionality of
publication process by applying them in the Front-End.

2.1 Introduction

Scientific publication is an important subfield of publication. In recent decades
considerable growth has occurred in academic publishing especially in developing
countries as they have advanced in science and technology. Academic publication
is published in form of article, book, presentation or thesis . Web knowledge
platform is using the new technology and tools to develop a platform for
dissemination scientific publication to ensure secure communication on
publication by supporting the main steps in online publishing. Electronic
publication has become increasingly interested to provide open access to scholarly
and scientific research. Scholarly society increasingly finding that providing easy
access in electronic format via the Web can be the most powerful and economical
way for knowledge dissemination.

There are common issue that almost online publisher support them. Significant
achievement in technologies and development tools has brought major changes in

17

A Front-End For Knowledge Platform

the way of design and implementation of web publishing. In scientific publication
process there are some essential steps that must be taken before final
dissemination. Consequently, there are main role in publication process such as
author, referee, editor, etc that must be discovered and modeled in an online
publishing. Clearly, in public knowledge sharing security has a vital role because
people are able to access the system in all over the world. Recent dramatic
changes to the web technology can be used efficiently to electronic publishing.
More interactive web pages with capability such as asynchronous communication
can be applied in web publication design and implementation. Access restriction
to knowledge content and subscription are significant features that will be
considered in online dissemination. Reading tools are also used to able user to
view articles in common format such as HTML and PDF. These formats also are
supported in most mobile devices such as iPhone.

2.2 A survey and evaluation of current web knowledge
platform

In this section we are going to investigate previous research and platform to find
features that they support. We will explore their advantage and disadvantage
then we can choice the best solution for each part to use them during
development process.

2.2.1 CiteSeerx

It is a scientific literature digital library and search engine that focuses on the
literature in computer and information technology. Rather than creating a new
digital library, it tries to provide algorithms, data, metadata, services, techniques,
and software that can be useful for other digital libraries. It does not try to model
the whole peer review and journal production process. CiteSeerx use new
methods and algorithms to index PostScript and PDF research articles on the
Web. Citeseerx use SeerSuite algorithm for creating academic search engines and
digital libraries. Autonomous citation indexing (ACI) method helps to make
automat the construction of citation indices (5). An ACI create a citation index
from literature in electronic format automatically. It autonomously locates

18

A Front-End For Knowledge Platform

articles, extract and identifies citations to the same article that occur in different
formats, and it also identifies the context of citations in the body of articles.
CiteSeer download papers from the Web and then convert them to text. In next
stage it parses the papers to extract the citations and the context in the body of
the paper and store this information in a database. CiteSeer use heuristics to
parses citation and extract fields such as title, author and year of publication. An
ACI system help publishers by directing users to the journal’s Web site.

CiteSeer use heuristics to extract fields such as title, author, year of publication
and parses each citation using citation identifier like “[6],” “[Giles97],” in the
document body. After extract the citations by using regular expressions try to
analyze them (5). A helpful issue that ACI provides is allowing scientists to find
work that cites their own work or is relevant to their research. Citation statistics
are widely used for ranking. However, ranking based on citation statistics is not
an accurate conclusion. Assumption that a large number of citations imply
scholarly impact is not always true. CiteSeer give an opportunity to researchers
to register to receive e-mail notification for new citations to papers of interest, or
notification of new documents that match a personal profile.

2.2.2 Open access publication

An Open Access Publication is one that meets the following conditions:

The author grant to all users a free online right of access to read, download,
copy, distribute and display the work publicly in any digital medium for any
responsible purpose. It means to place a single copy of an work on the Web for
anyone, anywhere to download. There is a cost to producing the article at the
first, but no extra costs dissemination. In open access dissemination, people need
to have access to computers and Internet, and minimum skills to take advantage
of this freely available knowledge.

There are two strategies for open access publication:

19

A Front-End For Knowledge Platform

1) Self-Archiving: scholars deposit their refereed journal articles in standards
created by the Open Archives Initiative. Then search engines separate
archives and users then need not know which archives exist or where they
are located in order to find them.

2) Open-access Journals: These journals will no longer invoke copyright to
restrict access to the material they publish. These new journals do not
charge subscription or access fees and they find other methods for covering
their expenses. Open access is possible because after the creation of the first
digital copy of a work the cost of creating additional copies and distributing
them on the Internet is marginal. In paper-based publishing open access is
not possible due to paper base production costs, physical storage and
distribution costs.

There are many platforms for disseminating Open Access content online and they
have different performance. The main factor for performance is how well it allows
a journal to perform in an online environment. Online dissemination makes it
available anywhere in the world because internet connection in nowadays
anywhere. Moreover, although Platform should be able to provide full-text,
openly-accessible content, they should also include mechanisms for actively
disseminating knowledge on the web in a secure ways.

Web is no longer a static HTML pages and hyperlinks. Web 2.0 technologies
bring tools to provide more functionality for electronic publication. It provides
tools to support further research and tools to promote access and discussion and
interactive communication.

Open access publishing does not necessitate the use of open source tools but all
tools we will discuss below are open source, although they have some difference
in licenses. They are free to download and modification.

20

A Front-End For Knowledge Platform

1) HyperJournal is an Open Source web application written in PHP. Features
include (6):

 HyperJournal automatically transforms cross-references contained in
journal articles into bidirectional links that make user able to jump
quickly to relevant article. For example by clicking on an author’s name,
system automatically searches search across database of linked
HyperJournals and produces a citation list that includes all the articles
written by the author or all the articles the author has cited or all the
articles that cite the author.

 HyperJournal Network connects all journals using the HyperJournal
software.

 It supports customizable interface, anonymous author, blind referee,
popular file format.

 Use of RDF metadata repository on the backend.

 Editorial workflow is completely customizable

2) E-Publishing Toolkit is open source software for publishing open access
journals. Developed in Python. The package is developed by the Living
Reviews organization that is a scientific publisher. Most of the functionality
provided by ePubTk can be described as offline abilities. Manage, create
and maintain the content of scientific journals locally.

3) GAPworks is an online publication system developed by the German
Academic Publishers (GAP) Project and it is funded by the German
Research Foundation, DFG). GAPworks provides basic infrastructure for
online publishing including a peer-reviewing process and a roles based user
management, and other elements of the publishing process. It supports
various types of publications that can be processed from submission to
publication. It is developed on PostgreSQL database and is programmed in
PHP.

21

A Front-End For Knowledge Platform

4) DPubS (Digital Publishing System) is open-source software. It is developed
to enable the organization, presentation, and delivery of scholarly
publication such as journals, monographs, conference proceedings. It was
developed within Cornell's Computer Science department in the early '90s
and used for several years as the engine behind NCSTRL, a distributed
network of Computer Science technical reports. The DPubS interface is
based on a flexible XML and XSLT design and support full-text searching,
Open Archives Initiative (OAI) compliance, flexible access controls, and e-
commerce. It made provision for subscription services. It is developed base
on Perl programming language.

5) Open Journal Systems (OJS) is developed by Public Knowledge Project
(PKP), it is well supported by two major Canadian universities (University
of British Columbia and Simon Fraser University). It is a journal
management and publishing system currently being used by more than
8300 online journals around the world. OJS is a multi-journal publishing
platform that supports refereed publishing process, from submissions
through to online publication and indexing. It supports varying levels of
article processing and full subscription options. It had the best
comprehensive and clear documentation of any of the other discussed
system.
Following features are supported by OJS:

 Online submission

 Optional subscription module

 Configurable reading Tools for content

 Email notification

 Commenting ability for readers

 Online Help support
6) Topaz is a nonprofit organization related to the Public Library of Science

(PLoS). It focused on developing of the Topaz open source software for
collaboration to creation, management and sharing of information. It has a
Service Oriented Architecture (SOA). They try to develop software
framework to make easy development process of data driven applications

22

A Front-End For Knowledge Platform

(Topaz platform). Ambra is other project that aimed at developing
publication system that overlies the Topaz framework. Ambra is efficient
system for the publication of quality-assured research in all areas of science.
It is a web application based on Java that can be run compliant servlet
containers.
Overview of Editorial Process in PLoS Genetics:
Submitted manuscripts are first reviewed by the Editorial board. Editorial
board may decide to reject the paper or send it on to Associate Editors
(AEs) for further review. The AE evaluates the paper and if it can pass this
stage successfully then the paper is sent out for external peer review. Once
the reviews have been received and considered by the editors, a decision
letter to the corresponding author is drafted and sent. Once the reviews
have been received and approved by the editors, an approved letter will be
sent to author. The final decision can be one of the following options:

 Reject

 Major revision

 Minor revision

 Accept
7) Academic Archive Online(DiVA) is a common project between a number of

universities in Scandinavia (7). The DiVA system developed and maintained
at the Electronic Publishing Centre at Uppsala University, Sweden. The
DiVA system started as a project in 2000 and has been in full operation
since January 2003. It is now used by 15 universities in Sweden, Denmark
and Norway and all of them are co-operating in development process.
Today the archive contains mainly doctoral, undergraduate theses and
research reports. It is based on Java and XML technologies and provides
services such as harvesting via OAI-PMH. Many parts of the publication
and archiving workflow are supported by XML. All metadata and
document content, is stored as a DiVA Document Format in a uniform
XML-based. Apache Lucene is used as the text search engine in DiVA,
which gives a high performance searching process. All documents

23

A Front-End For Knowledge Platform

published in DiVA system have a unique identifier that is assigned by using
the Royal Library a URN:NBN resolution service.

Evaluations conclude: Most evaluated systems support the Open Archives
Initiative Protocol Metadata Harvesting (OAI-PMH). Result shows the
prominent role of interoperability in web publication and digital repository. Also
modeling and implementation of scholarly publication is other main issue that all
discussed systems support it in different level. Whilst every application has its
own protocols but they all follow the same basic structure during peer review
process.

There are some issue that are not covered in all evaluated systems such as role
configurable (no hard coding for roles), code extensibility (such as plug-in, add-
ins), Automated email alerts (for reader, author, editor, referee, etc).

There are three main requirements for each knowledge platform that we will
discuss about them in requirement chapter:

 Interoperability

 Peer review process

 Configurable roles in publishing process

2. 3 Modeling the operations of a scholarly publication

After assessing and judging the value of the current systems and due to key role
of peer review in Front-End part of knowledge platform a common model for
peer review process will be explained. Proposed model does not go to detail of
publishing process and try only to explain the common roles and steps in
surveyed system.

24

A Front-End For Knowledge Platform

2.3.1 The main roles and their responsibilities

 Readers: Simple role with limited access. After registration receive a
notification email. Reader is permitted to read the article and comment on
article.

 Author: The first step is to be taken by the author. It is able to submit
manuscripts with supplementary file such as Meta data, etc according to
the instructions issued by the journal editor. Track the submission in
review and editorial process

 Editor: The main role in the system. It is permitted to supervise all process
such as referee and editing. It is able to assign reviewer, copy editor and
typography for manuscript. Editor works becomes difficult only when there
is significant disagreement in the reviewer’s suggestions. In such case the
editor may make a final decision based on the own opinion or after
consulting additional referees.

 Reviewer (referee): Each journal has an editorial board that includes a
number of referees who are responsible for reviewing and evaluation
submitted manuscript and supplementary files. Also it is permitted to
submit the result of review for editor and put comment for editor and
author. Each referee independently advises the editor whether to accept or
to reject the paper.

2.3.2 Essential steps in peer review process

1. Registration

To have access to published data unregistered user must register to get
role in the system. It is first step in publishing process. There are some
basic roles in each knowledge publishing system. User can register as a
reader, author, referee, etc. Some roles are not accessible for self
registration such as Editor. This kind of registration is accessible for
administrator only. Some fields in registration method are mandatory.

25

A Front-End For Knowledge Platform

Email address is momentous field that must be entered correctly because
future communication with user is handled by email.
2. Submission
Submitting manuscripts is fundamental part of system. Users with author
role are able to submit manuscript for publication. There are five steps for
submission:

 Check off submission check list and copyright notice.

 Upload submission by providing a choose file window for uploads the
file from the computer and renames it following the journal's
conventions.

 Enter Meta data such as title, abstract and indexing.

 Upload supplementary files. It is an optional step allows Supplementary
files such as source file, figure and table will be uploaded.

 Confirmation the submission's progress. Then manuscript will be
viewed through the editorial process.

3. Editorial board

Editorial board decides to reject the submission or begin the process of
peer review. Editor can see all articles and review their process status.
Article status can be reviewing and editing. Editor role is able to assign
an article to reviewing process and notify reviewer by email, sending the
article to editor section or prepare for publication. Editor should be able
to review unassigned manuscripts, under review article, and preparing
the articles for publication. Editor also is able to monitor the emails that
reviewer sent for author. Ultimately editor makes a decision and
notifies the author.

4. Review the manuscripts (referee)

At the first stage reviewer should response to the editor whether he/she
accept the review or not. This notification can be done by email. Then if
the response be acceptance review can be started. Referee can send email
for editor alone or share email for editor and author. It is able to attach
more documents and sent them to editor by final recommendation such
as accept, reject or revision.

26

A Front-End For Knowledge Platform

5. Copy editing

Copy editor job is review the submission and improve the clarity,
grammar, references and formatting. First copyeditor can edit the
author document (for example by using Microsoft word) and send it for
author and notify it by email. Then author has opportunity to apply
changes on the article and author should response to all suggestion and
queries that copyeditor asked. Once the author complete the review
editor will be notified by an email. If copyeditor accept the changes
submission should be uploaded for editor and notify it by email.

6. Layout editor

It is responsible for converting the word document to PDF or HTML
file that is ready to publish. After edit layout it should notify editor by
sending an email.

Front-End aims to improve the publicaion steps in following aspect:

 Enhancing speed of process steps such as submission, viewing and feedback of
documents among authors, editors and reviewers.

 Reducing costs of review process such as printing cost.
 Allowing for efficient assignment and tracking of reviews, including automatic

reminders and enforcement of deadlines.

 Tracking records of actions performed during publish process.
 Archiving data

 Configurable roles

27

A Front-End For Knowledge Platform

The process of publishing a paper in a journal (8)

28

A Front-End For Knowledge Platform

2.4 Web 2.0

2.4.1 Overview

Since the inception of the Web in 1993, a considerable amount of the trading and
business has moved to Web platforms. For example, Search is a primary activity
on the Web today, new models for doing business such as e-commerce and
electronic banking (2). The World Wide Web (Web) is a system of interlinked,
hypertext documents that run over the Internet. It contains text and multimedia
such as images, movies, music, etc. Web pages are written in HTML language.
Each page has its own URL (Uniform Resource Locator). Hyperlinks connect
pages with each other.

There has been significant progress in hardware and networking technology, and
there have also been a number of numerous advances in the software area, which
together have helped to make the Web an extremely popular and widely used
medium.

The term Web 2.0 was invented in 2003 to represent the new trend which was
noticeable in the Web technology. Web 2.0 facilitate community and its effects
was more in the way people and businesses using the Web as a collaborative
community sites such as blogs, social networking sites, wikis etc. Use of the Web
2.0 term was to distinguish between the many-to-one idea of the Internet as it
had been, and the new many-to-many way of thinking that “Web 2.0” came to
represent. By using web 2.0 users contribute content and therefore whose content
gets richer and more accurate.
Publishing industry power has significant improvements. Web 2.0 causes
publishing no longer communicates one-way. Web 2.0 can facilitate the process of
searching. Web 2.0 brings easy and secure access to data and desktop
functionality for knowledge platform.

29

A Front-End For Knowledge Platform

2.4.2 Web 2.0 Technologies

2.4.2.1 Ajax

Asynchronous JavaScript and XML (Ajax) is the most technology often used in
Web 2.0 applications. It uses JavaScript to upload and download data from the
web server and update parts of a web page without reload the pages. This method
allows pages to function more like desktop-based applications rather than as old
fashioned static content pages. It is a technique for creating fast and dynamic web
pages. A good example of Ajax use is Google website. In Google search engine
when user type the first word of a sentence search engine will display suggestion
information that aids the user to find the required information without reloading
the page. Examples of applications using AJAX are Google Maps, Gmail,
Youtube, and Facebook tabs. The data format in Ajax request is XML or JSON,
two widely used data formats.

How AJAX Works (9)

30

A Front-End For Knowledge Platform

AJAX is based on existing standards. These standards have been used by
developers for several years (9). AJAX applications are independent from browser
and platform. The XMLHttpRequest object is used to exchange data with a
server and made it possible to update parts of a web page without reloading the
whole page. All modern browsers support the XMLHttpRequest object.
Asynchronously requests are a huge improvement for web developers. Many of
the tasks performed on the server are very time consuming and it could cause the
application to hang or stop.

It is possible to perform browser-independent Ajax queries using jQuery
(Javascript library). jQuery is free, open source software under the MIT and the
GNU General Public License. jQuery is designed to make it easier to navigate
DOM elements, handle events, and develop Ajax applications. Using these
facilities, developers are able to contribute to the creation of powerful and
dynamic web pages.

jQuery advantages:

 Lightweight open source java script library

 Very fast

 Support all browser

 Extensible (provides capabilities for developers to create plugins)

 Nicely handles DOM manipulations

2.4.2.2 Rich Internet Application (RIA)
RIA allows the client system to handle local activities and deliver the same
features and functions normally associated with desktop applications. For security
purposes client portions run within a special isolated area of the client called a
sandbox. The sandbox limits access to the file and operating system resource on
the client side. RIA provides the end user with an interface that is faster and more
responsive than traditional applications. RIA Technologies like Flex, Silverlight,
Adobe AIR, and JavaFX are growing in popularity. They provide a richer user
experience, mainly through asynchronous communication that lets the user
continue interacting with the application while the server is processing requests.
JavaFX is a client platform developed to enable easy implementation and

31

A Front-End For Knowledge Platform

deployment of rich Internet applications for desktops, browsers and mobile
devices. It is a cross-platform, cross-browser and cross-device technology. It
enables to easily integrate audio, video, graphics to program. JavaFX applications
can run on any desktop and browser that run the JRE and on top of mobile
phones running Java Platform, Micro Edition (Java ME). RIAs support rich
graphics and streaming media scenarios on benefits of a Web application. They
run inside a browser plug-in, such as Microsoft Silverlight and JavaFX, as
opposed to extensions that utilize browser code, such as Asynchronous JavaScript
and XML (AJAX). It is a client-side application that handles the presentation in a
Web application.

Architecture of a typical RIA implementation. Broken lines indicate optional components. (10)

32

A Front-End For Knowledge Platform

2.4.2.3 Web Standards

 DOM
The Document Object Model (DOM) is a cross-platform and language-
independent standard for representing objects in HTML, XHTML and
XML documents and a way for accessing and manipulating HTML
documents. DOM is a W3C (World Wide Web Consortium) standard. It is
used to get, change, add, or delete HTML elements.

HTML DOM Tree Example (11)

 XHTML
It is a combination of HTML and XML (EXtensible Markup Language)
that is stricter and cleaner version of HTML. XHTML 1.0 became a W3C
Recommendation January 26, 2000.XHTML is properly nested, lowercase
and elements must have a closing tag. The DOCTYPE declaration is
mandatory in XHTML. DOCTYPE declaration defines the document type.
XHTML pages can be validates by WEC validation module.

33

A Front-End For Knowledge Platform

 CSS
It stands for Cascading Style Sheets. Styles define how to display HTML
elements. Whereas the HTML is the content, the style sheet is the
presentation of that document. CSS makes it very easy to change the style
of a document. By using CSS all of the style and layout is removed from the
html document, so the html file size is smaller. Because CSS file is
downloaded just once by browsers and it is re-used for different pages on a
web site it causes reduces the bandwidth requirements of server and causes
a faster visit for other visitors.

 RDF
Resource Description Framework (RDF) is a standard for data interchange
on the Web. It is an initiative of the World Wide Web Consortium (W3C).
RDF has features that facilitate data merging even if the underlying
schemas differ. It specifically supports the evolution of schemas over time
without requiring all the data consumers to be changed. (12) . RDF is about
metadata for Web resources. By resources any object can be found on the
Web. Essentially, RDF is a standard for developing tools and applications to
use a common syntax for describing Web resources. RDF is a means to
express properties of a resource and to associate values with these properties.
RDF is syntax independent but can be expressed in XML. Someone believe
that using XML as a tool for semantic interoperability will be ineffective in
the long run (13).
RDF is a means to express properties of a resource and to associate values
with these properties. However, RDF information can be understood by
machine because it keeps data in a formal way. By using RDF resources can be
described in a way that software can understand it. Friend-of-a-friend
(FOAF) was one of the first applications of RDF that was designed as a
Semantic Web version of a personal homepage. It captures metadata about
people. The FOAF provides a rich vocabulary to describe personal
information such as name, mailbox addresses, homepage URLs, blogs, etc.

34

A Front-End For Knowledge Platform

The Semantic Web try to build a new World Wide Web architecture that
enhances content with formal annotations. Consequently, browsing and
searching in the web space is easier. The Resource Description Framework
(RDF) is a model for metadata description. Semantic Web brings a
significant improvement in data sharing, linking, merging and
interoperability which can enrich the structured data already managed by
digital libraries and web publication. Interoperability is defined as the ability
of digital library components or services to be functionally and logically
interchangeable (14). There is a number of popular approaches towards
interoperability that are used for interoperability such standardization
efforts for Web services like SOAP and WSDL.

2.5 Literature Summery

2.5.1 Problem

Electronic publishing is a new area for dissemination scholarly work which is in
an electronic (paperless) form and delivered electronically. Web publishing
provide unique benefits such as making scientific research available more quickly,
with lower cost and more accessible for people, especially scientists from non-
developed countries without limitation by the constraints of the number of print
pages .

Peer review process in online publication brings significant benefits such as fewer
errors, less duplication and control the quality in disseminating scientific
information. For quality control and accuracy, research works must exercise peer
review or editorial quality control to be included before publication.

In addition, peer review is often a slow process. After a manuscript is submitted
to a journal for consideration, there can be a delay from several weeks to several
months before it is published in a journal makes journals a less than ideal tools for
disseminating research.

35

A Front-End For Knowledge Platform

2.5.2 Solution

Web 2.0 brings interactive pages and user participation such as social
networking. It offers fundamental changes in communication technologies. In the
same way Web 2.0 allows prepublication review process of academic papers can
be done online by using more interactive technologies.

We are going to use new technologies to improve the online publication process
in following area:

 Online submission
 Support parts of an electronic referring process
 Web base reading tools for content
 Time reminders for deadlines of reviews and email notification
 Interoperability to access to material through interoperable repositories
 Online tracking manuscripts status
 Control permission access to article for individuals or groups of users
 User-Friendly interface and desktop functionality in different stages
 Cross referencing
 Semantic ranking

Web 2.0 and RIA technologies can be used in Front-End to enhance the
mentioned features in the platform. These technologies can facilitate the process
of knowledge publishing by provide a secure access to core knowledge database
and desktop functionality for above mentioned features.

36

A Front-End For Knowledge Platform

Chapter 3

Design & Implementation
During this chapter design and implementation technique are discussed. Patterns,
framework and the tools which were used for modeling the application layers in
the project are listed and discussed.

In Section 3.1 it is presented why Java EE was selected as a platform for server
programming.

In section 3.2 the application pattern is explained. It discussed how MVC design
pattern brings about better organization and code reuse in Knowledge Platform.

In section 3.3 the framework that is used for developing the Front-End is
discussed. It shows how framework facilitates the development process and
reduces the overall development time and how it helps to reduce application
complexity.

Section 3.4 shows how selected tools and framework address requirements that
were mentioned in chapter 3 such as extensibility, Interoperability, Security,
Semantic ranking and Peer review.

3.1 JEE Platform

Java Platform, Enterprise Edition (Java EE) is the industry standard for
enterprise Java programming (15). Over the years, the Java EE platform has
grown and matured and it is able to cover a wide range of requirements in during
development process of enterprise web application. It has active community and
marketplace for additional activity such as frameworks, Libraries, and enterprise
web applications that work with the platform. It provides developers a powerful
set of APIs such as JDBC, RMI, e-mail, JMS, web services, XML while reducing
development time, reducing application complexity, and improving application
performance.

37

A Front-End For Knowledge Platform

3.1.1 Why JEE

With using JEE developers are able to design and implement the business logic
into components according to business requirement. It provides functionality to
deploy distributed and multi-tier application, what are based on modular
components on the application server. There are a wide range of Java
development tools and open source IDE.

JEE support multi-tiered application by installing application on different
machines depending on the tiers. Tiers can be categorized in client tier, web tier,
business tier, data model tier. Two main JEE features are compatibility and
distribution. Compatibility means that JEE applications are compatible with
different platforms and can easily be deployed different platforms. We also are
able to compress all components of an application such as servlet, pages, POJO
classes into a single archive file that easily can be deployed and distributed across
platforms and web servers (16).

Java EE has separated the different roles of developing an application. Application
assembler is a person who assembles a set of J2EE modules into a packaged as an
Enterprise Archive such as Web Archive (WAR file). Deployer takes the
packaged application and put the Enterprise Archive on the server. It configures
the environment for example user management for the application, mapping the
security roles, correct properties, XML configuration files and manifest for the
web application. Web component developer specializing in the application of
JavaServer Pages and servlet technologies used to provide Web services and
dynamic Web content.

3.1.2 Enterprise technologies

The J2EE platform includes a number of standard APIs for accessing existing
information systems. For instance The JDBC API is used for accessing relational
data from the Java programming language (15). The Java Transaction API (JTA)
is for managing transactions over heterogeneous enterprise information systems.

38

A Front-End For Knowledge Platform

The JavaMail API is used for sending and receiving e-mail. Java APIs for XML
provide support for implementing Web services in the J2EE platform.

J2EE provide a mechanism for supporting distributed applications, with no
application development effort. Because JEE application can be run on multiple
systems, Web containers can automatically balance load in response to various
demand. The J2EE provides flexible and secure control model for accessing to
application services. Developers can specify the security requirements at the
method level to ensure that only authorized users can access specific service and
data. Both Enterprise JavaBeans technology and Java Servlet APIs provide
programmatic role-based security mechanism that can be used during deployment
time.

3.2 Design Pattern

A pattern aims to propose a solution for particular problems so it proposes a set
of values to guide the designer toward a decision that is best for their particular
application.

Model-View-Controller (MVC) is architectural design pattern for enterprise
applications. MVC was first described in 1979 by Trygve Reenskaug on
Smalltalk. MVC provide a powerful pattern to develop dynamic web applications
that support a clean separation of concerns. MVC aims to decouple models and
views to reduce the complexity in designing application’s layers to increase
flexibility and maintainability of source code. Most web application frameworks
use MVC design pattern. MVC organizes a layered application into three separate
modules. Model is used for data representation and business logic. View provides
data presentation and user input. Controller is responsible to dispatch requests
and control flow.

3.2.1 Workflow

Front Controller centralizes an application's request processing and view
selection in a single component. The Front Controller receives requests from the

39

A Front-End For Knowledge Platform

client and dispatches them to the application models. In the J2EE platform, a
Front Controller is typically implemented as a servlet. The sample application's
Front Controller servlet handles all HTTP requests and it plays a separator role
between logical part (models) and view engine (GUI generator).

Front Controller handles HTTP requests

Controller maps incoming requests to appropriate model. After getting feedback
from the model it is sent to view engine to generate the final response. Usually,
the response has html format.

MVC Workflow (15)

40

A Front-End For Knowledge Platform

3.2.2 MVC Benefits

Placing business logic and presentation code in separate layers has valuable
benefits. The business layer provides only application functionality, with no
relation with presentation. The presentation layer presents the data and input
prompts to the user as web pages (View) and business layer is responsible for
application functionality. This separation brings several important benefits (15):

 Minimize the impact of changing the code inside a layer on the other layers.
 Increases maintainability by keeping business logic in a separate component

and accessed referentially. Business logic can be modified in one place and
causes behavior changes everywhere the component is used.

 Business logic can be used by multiple client types because logic is provided
for client independently and other view technologies such as desktop
application can use the business objects easily.

 Separating developer roles is possible by layering. Developer may specialize in
only one layer (front-end developers usually are involved in presentation layer
but web component developers are involved in business layer). Separating
business logic and presentation allows developers to concentrate on their area
of expertise.

3.3 Framework

A Framework is a package of software libraries. They improve the efficiency,
productivity, quality, reliability by providing a set of libraries and defining the
flow of control for an application. In frameworks unlike libraries flow of control is
dictated by the framework not by caller (inversion of control). Framework has a
default behavior. Framework can be extended by the user but is not allowed to be
modified.

A web application framework is a type of framework that helps developers
specifically to design and develop web applications. Frameworks provide basic
common functionality to the web applications such as session management, data
persistence and data mapping, template systems, caching, security, URL mapping

41

A Front-End For Knowledge Platform

and web service. By using an appropriate framework, a developer can often save a
significant amount of time building a web application.

3.3.1 Frameworks Features

 Web template system: Templating frameworks are built to simplify the
development of web application’s user interfaces. Template allows defining
page fragments which can be assembled into a complete page at runtime. In
order to reduce the duplication of common page elements or embedded
within other tiles to develop a series of reusable templates.

 Caching: Web caching is the caching of web documents in order to reduce
bandwidth usage and server load. It results in users receiving content
faster and can drastically improve the user experience. Caching can be
handled in different level such as HTTP response header and database.
Http response caching can be handled in web browsers and some Internet
networking components, such as proxies. Database cache can use Object-
relational mapping (ORM). It can load related business objects on demand.
To keep it simple, this usually involves many small queries to load data as
needed.

 Security: Some parts of web applications often require that be secured.
Standard security mechanisms can satisfy some security requirements but
in some cases we need to use a customized approach. Some web application
frameworks support authentication and authorization. In these cases
framework enables the web server to identify the users of the application,
and restrict access to functions based on some defined criteria. Some Web
application framework provides advanced authentication, authorization and
other security features for enterprise applications such as such as SAP,
Oracle EBS, PeopleSoft, and Siebel.

 Database access and mapping: Many web application frameworks provide
API for connecting to database. They support working with a variety of
databases with no code changes and work with higher-level concepts.
Provide Object Relational Mapping (ORM) which will map objects to

42

A Front-End For Knowledge Platform

tables in database is a programming technique for converting data between
incompatible type systems in object-oriented programming languages.
Some frameworks support ORM technique to reduce the amount of code
that needs to be written.

 URL mapping: The URL mapping technique helps you to map a specified
URL with another URL. As administrators create the URLs, a URL
mapping system that uses pattern matching or URL rewriting allows more
friendly URLs to be used. It brings other benefits such as increasing the
simplicity of the URLs and it also allows search engines to have a better
indexing. Another reason for translating URLs is usability. URLs with
query strings cannot be memorized and they are not user friendly. Users
prefer shorter URLs with meaningful keywords. One more reason for URL
rewriting could be if application's directory structure changes it is possible
that we don't lose incoming links from other sites because everything will
stay same for outside world, but our application will work differently. Also,
there is some security risk if we expose a query string variable to visitors.

3.3.2 Why Spring Framework

The Spring Framework is a lightweight solution for building enterprise
applications. Spring Framework is a Java platform that provides comprehensive
infrastructure support for developing Java applications. Spring is modular and we
can select those parts that are needed without having to bring in the rest. It offers
a full featured MVC framework and enables us to integrate Aspect Oriented
Programming (AOP) transparently into our software.

3.3.2.1 Spring modules

The Spring Framework consists of features that are organized into about 20
modules (17). These modules are grouped into Core Container, Data Access,
Web, Aspect Oriented Programming (AOP), Instrumentation, and Test, as
shown in the following diagram.

43

A Front-End For Knowledge Platform

Modules diagram (17)

1) Core Container: The Core Container consists of the Core, Beans, Context,
and Expression Language modules. The Core and Beans modules provide
the IoC and Dependency Injection features. The Context module support
internationalization and basic remoting. The Expression Language module
provides a powerful expression language for setting and getting property
values, property assignment, method invocation, accessing the context of
arrays, collections and indexers, logical and arithmetic operators, named
variables, and retrieval of objects by name from Spring's IoC container.

2) Data Access/Integration: This layer consists of the JDBC, ORM, OXM,
JMS and Transaction modules. The JDBC module provides a layer that
removes the need to do tedious JDBC coding. The ORM module provides
object-relational mapping APIs such as including Hibernate provides
simple declarative transaction management. The OXM module supports
Object/XML mapping implementations. The Java Messaging Service

44

A Front-End For Knowledge Platform

(JMS) module contains features for producing and consuming messages.
The Transaction module supports programmatic and declarative
transaction management.

3) Web layer: Consists of the Web, Web-Servlet, Web-Struts, and Web-
Portlet modules. It provides basic web oriented integration features such as
multipart file-upload functionality and the initialization using servlet and
application context. The Web-Servlet module contains Spring's model-
view-controller (MVC) implementation for web applications.

4) AOP: Aspect oriented programming provides method-interceptors and
pointcuts to cleanly decouple code that implements functionality that
should be separated.

5) Test: This module supports JUnit. It also provides mock objects that you
can use to test your code in isolation.

Spring’s Role in the Front-End

After discussing about MVC pattern and surveying Web application frameworks
and discovering the Spring modules, now it is turn to define role of the Spring
framework in Front-End development process. During developing process of
Front-End we are going to use Spring Web model-view-controller (MVC)
framework. Features and components of Spring that we will use to develop
Front-End and benefits that it can bring for us is discussed in following
categories:

 Front Controller: Spring Web MVC is request-driven, designed around a
central servlet that dispatches requests to controllers and offers other
functionality that facilitates the development of web applications. The
request processing workflow of the DispatcherServlet is illustrated in the
following diagram.

45

A Front-End For Knowledge Platform

Front-End Use DispatcherServlet as a Front Controller (17)

 Mapping URL: Spring brings URL mapping advantages to Front-End.
URL mapping technique in Front-End increasing the simplicity of the site
and allowing for better indexing by search engines. Users prefer shorter
URLs with meaningful keywords. Also with URL mapping changing
application's directory structure can be done without losing incoming links
from other sites. Spring supports URI Templates to access parts of a
request URL in handling methods. Controller defines URL Mappings,
which associate URLs to Operations and Views. URL Mappings is used to
specify which Operations are going to be accessible to web clients. The
URL mapping also specifies the template view that will render the response
to the request. Every request will have a response, and the URL mapping
specifies both the operation that handles the request and the template page
that will render the response.

46

A Front-End For Knowledge Platform

 Spring supports different view technology such as JSP, PDF, Excel File.
Supporting multi view technologies is an important requirement for Front-
End. Spring supports multiple view resolvers. We can chain resolvers to
override specific views in certain circumstances. For example we can have
two views resolver. The general one supports dynamic JSP file and the
specific view resolver for Excel views.

 Internationalization: Spring's architecture support internationalization and
localization. Supporting multiple locales means when a request comes in,
the DispatcherServlet looks for a locale resolver, and if it finds one it tries
to use it to set the locale. For example ResourceBundleViewResolver
supports view resolvers with regard to internationalization. It can return a
different View implementation for the same logical view name, based on the
user’s Locale. Also Spring provides powerful tag library to renders a web
page’s message and raise error from an external message properties file to
the output. Since web applications such as knowledge platform are
accessible anywhere that Internet service is provided, then supporting
multi languages feature in Front-End can be very useful facility.

 Spring's multipart (fileupload) support: This feature is important for Front-
End because uploading file is one of the main part of peer review process.
When the Spring DispatcherServlet detects a multi-part request first create
a form with a file input that will allow the user to upload a form. The
encoding attribute (enctype="multipart/form-data") lets the browser know
how to encode the form as multipart request. The next step is to create a
controller that handles the file upload.

 Handling exceptions: Spring ease the pain of unexpected exceptions that
occur while your request is handled by a controller that matched the
request and provides a more flexible way to handle exceptions.

 Form tag library: Spring provides a comprehensive set of data binding-
aware tags for handling form elements when using JSP and Spring Web
MVC.

 Integrate Struts Tiles: Almost web application should use page template.
Front-End also is not an exception to this requirement. Spring supports

47

A Front-End For Knowledge Platform

integration with Struts tiles. Tile is a templating system. It can be used to
create a common look and feel for a web application. Tiles help to simplify
the development of web application user interfaces. It allows defining page
fragments which can be assembled into a complete page at runtime. In
order to reduce the duplication of common page elements.

3.4 Implementing Front-End

In this section the implementation of Front-End in the Java Enterprise Edition
(J2EE) platform is explained in detail. It is based on the concepts introduced in
the last sections. In this section we are going to show how we use selected
platform and framework to address Front-End’s requirements.

3.4.1 Tiles Template

Apache Struts Tiles framework is a layout framework, which allows us to
maintain a standard look of header, footer and general theme all of the web pages
efficiently. At run time the pagelets are stitched together to generate the final
HTML. In Front-End we use a template that contains three elements: a title, a
header, and a body displayed vertically. Tiles are defined in an XML
configuration file (tiles-definition.xml). The file is loaded at servlet startup that
ensures all definitions are loaded at application startup. The layout.jsp file
contains the template code. This file does not change.

<tiles-definitions>
 <definition name="layout" template="/WEB-INF/pages/jsp/layout.jsp">
 <put-attribute name="title" value=""/>
 <put-attribute name="content" value=""/>
 </definition>
 <definition name="home" extends="layout">
 <put-attribute name="title" value="Knowledge Platform's Home Page"/>
 <put-attribute name="content" value="/WEB-INF/pages/jsp/home.jsp"/>
 </definition>
</tiles-definitions>

An overview of the Tiles XML configuration mechanism

48

A Front-End For Knowledge Platform

To apply changes into the body, it is just needed to update the “tiles-definition.xml” file.

3.4.2 Internationalization and Localization

The Internet has no boundaries and neither should Front-End. Knowledge
platform's user all over the world has different languages. It is an important
factor to make Front-End user friendly in different countries using different
languages. Internationalization (I18n) is the process of enabling our application to
cater to users from different countries and supporting different languages without
engineering changes. Localization (L10n) on the other hand, is the process of
customizing our application to support a specific location without engineering
changes (18).

Advantages of Internationalization and Localization:

 It causes an increase in the number of users because more people are able to
use the application.

49

A Front-End For Knowledge Platform

 Though the cost of localization is high (Each individual page will have to
be translated into several languages) but the benefits from sales almost
always outweigh the costs.

 It increases the user level of comfort with the application.

Front-End support two languages: English and Persian. Depending on the locale
setting of user’s browser, the appropriate language will be selected. Also user will
be able to select the language from top-right corner of the application. In Spring
MVC application “LocaleResolver” interface supports the internationalization or
multiple languages features. It displays the message from properties file, and
change the locale based on the selected language link. Two properties files to
store English and Persian messages. To make Spring MVC application supports
the internationalization we register two beans. Firstly, CookieLocaleResolver is
used to inspect a Cookie that might exist on the client to see if a locale is
specified. If so, it uses the specified locale. By using its properties we specify the
name of the cookie as well as the maximum age.

 <bean id="localeResolver" class="org.springframework.web.servlet.i18n.CookieLocaleResolver">

 <property name="defaultLocale" value="en" />

 <property name="cookieName" value="clientlanguage"/>

 <!-- in seconds. If set to -1, the cookie is not persisted (deleted when browser shuts down) -->

 <property name="cookieMaxAge" value="-1"/>

 </bean>

Secondly, LocaleChangeInterceptor is used to enable changing of locales by user.
It will detect a parameter in the request and change the locale. Because some
languages such as Persian or Arabic have different theme (For example they are
right-to-left) I need to add ThemeChangeInterceptor to enable Front-End’s users
to change language and theme simultaneously.

50

A Front-End For Knowledge Platform

 <!-- Declare the Interceptor -->
 <mvc:interceptors>
 <!-- Locale Change Interceptor and Resolver definition -->
 <bean id="localeChangeInterceptor"class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">

 <property name="paramName" value="lang" />
 </bean>
 <!-- Theme Change Interceptor and Resolver definition -->
 <bean id="themeChangeInterceptor"
 class="org.springframework.web.servlet.theme.ThemeChangeInterceptor">
 <property name="paramName" value="theme" />
 </bean>
 </mvc:interceptors>

Theme interceptor’s configuration file

3.4.3 URL Mapping

In Front-End request are divided in two models: First request for resource such
as image and CSS files. These kinds of requests are not delivered to
DispatcherServlet and directly are handled by web server. The second group of
requests will be handled by the DispatcherServlet. The DispatcherServlet is an
actual Servlet and it is declared in the web.xml of Front-End. After receiving a
request, The DispatcherServlet finds the appropriate Controller with the help of
HandlerMapping and then invokes associated Controller.

 <!-- resources exclusions from servlet mapping -->
 <mvc:resources mapping="/style/**" location="/style/" />
 <mvc:resources mapping="/js/**" location="/js/" />
 <mvc:resources mapping="/pdf/**" location="/pdf/" />

3.4.4 Restful Web Service

As project's requirements specified, Front-End should get information from Core
(An application that is responsible to handle data layer tasks). Front-End that
needs data from the Core use the restful web service to connect to the Core.
REpresentational State Transfer (REST) is an architectural style for distributed

51

A Front-End For Knowledge Platform

systems over the WEB. In REST architecture resources are identified by
universal resource identifiers (URIs).

Spring framework provides a good way to use rest web service. The
RestTemplate is the central Spring class for client-side HTTP access.
HttpMessageConverters is responsible for converting the Java objects to HTTP
requests and from HTTP responses. REST configuration file is located as
following:

 <!-- Restful Web Service definition -->
 <bean id="restTemplate" class="org.springframework.web.client.RestTemplate">
 <property name="messageConverters">
 <list>
 <bean id="stringHttpMessageConverter" class="org.springframework.http.converter.StringHttpMessageConverter">

 <property name="supportedMediaTypes" value="text/html"/>
 </bean>
 <bean id="messageConverter" class="org.springframework.http.converter.xml.MarshallingHttpMessageConverter">

 <constructor-arg ref="webServiceXMLConvertor" />
 <property name="supportedMediaTypes" value="application/xml"/>
 </bean>
 </list>
 </property>
 </bean>

3.4.5 Validation

An important aspect of creating Web pages for Front-End is validation. Page
validation is the process of testing to ensure that end users enter necessary and
properly formatted information into web forms. Web pages should be to be able
to check that the information users enter is valid. Front-End provides a set of
validation controls that provide a powerful way to check for errors and, if
necessary, display messages to the user. There are several methods of performing
form validation and error recovery that Front-End use them.

3.4.5.1 client-side

Validation and error recovery mechanisms are performed within browser by
using a client scripting language such as Javascript. One of the advantages of

52

A Front-End For Knowledge Platform

client-side validation and error recovery is that the user gets quick feedback, and
doesn't have to wait for a server round-trip. Client-side validation is widely used,
but is not security relevant. An attacker can simply disable JavaScript to bypass
the client side validation. Front-End have used JavaScript functions to validate
web pages in client side. The sample source code is listed as follow:

// Numeric only control handler
jQuery.fn.ForceNumericOnly =function()
{
 return this.each(function()
 {
 $(this).keydown(function(e)
 {
 var key = e.charCode || e.keyCode || 0;
 // allow backspace, tab, delete, arrows, numbers and keypad numbers ONLY
 return (
 key == 8 || key == 9 || key == 46 || (key >= 37 && key <= 40) || (key >= 48 && key <= 57) ||
 (key >= 96 && key <= 105));
 });
 });
};

Using JQuery for client side validating

3.4.5.2 server-side

Server-side validation mechanisms cannot be easily bypassed or modified. Front-
End use following mechanism for server-side validation:

1) Validation using Spring's Validator interface

Spring features a Validator interface that can be use to validate objects.
validators report validation failures to the Errors object. The sample source
code is listed as follow:

53

A Front-End For Knowledge Platform

@Component
public class NameValidator implements Validator {
 @Override
 public boolean supports(Class clazz) {
 return Name.class.isAssignableFrom(clazz);
 }
 @Override
 public void validate(Object obj, Errors e) {
 Name name = (Name) obj;
 if (name.getFirstName().trim().length()<3)
 e.rejectValue("firstName", "name.firstName");
 if (name.getLastName().trim().length()<3)
 e.rejectValue("lastName", "name.lastName");
 }
}

Validation using Spring's Validator interface

Outputting messages corresponding to validation errors is important. As it is
clear we used error code and what error codes it registers is determined by the
MessageCodesResolver that is used. Front-End have used
ReloadableResourceBundleMessageSource class find corresponding message
text.

2) Hibernate Validator
Hibernate Validator is useful because it supports declarative validation via
Java 5 annotations. By using Hibernate Validator in Front-End we only attach
validation annotations to the bean properties and that will define the
validation constraints for the bean. Moreover Hibernate Validator isn't tied to
the web tier and it is possible to validate beans from within service layers. The
sample source code is listed as follow:

public class Name {
 @NotBlank
 @Length(max = 40,min=3)
 private String firstName;
 private String middleName;
 @NotBlank
 @Length(max = 40,min=3)
 private String lastName;

54

A Front-End For Knowledge Platform

3.4.6 FileUpload

FileUpload can be used in a number of different ways, depending upon the
requirements of your application. Front-End choose Apache's commons-upload
mechanism. Spring handle file upload in web application with MultipartResolver
which use the Apache commons upload library to handle the file upload. Upload
file’s configuration file is listed below:

<bean id="multipartResolver"
class="org.springframework.web.multipart.commons.CommonsMultipartResolver">
 <!-- The maximum file size in bytes -->
 <property name="maxUploadSize" value="10000000"/>
</bean>

As it is clear in sample configuration, maximum file size is configurable.
FileUpload parses POST HTTP requests with a content type of "multipart/form-
data". Front-End keeps all uploaded files in uploadedfiles folder at web application
folder on the server.

3.4.7 Overall View of Front-End

After describing the technologies and methodologies that are used in the
constructing and developing of Front-End, it is turn to describe an overall picture
of the Front-End. The request processing workflow of the Front-End is
illustrated in the following diagram.

55

A Front-End For Knowledge Platform

The requesting processing workflow in Front-End (high

Spring Dispatcher Servlet

Front-End’s Controller

Can find appropriate

controller to serve
request?

Yes

NO Raise exception
(404) Page not

found

Service Layer Core
Knowledge
Platform

Rest web

Atom Link XML format response

Fill data model class with
received XML

View engine generates the result
view based on data model

56

A Front-End For Knowledge Platform

Front-End keeps the fetched data in java beans classes. Front-End’s data layer
classes are illustrated in the following diagram:

As it is clear from the diagram there is a JavaBeans class for each entity that is
defined in the data model. JavaBean allows access to properties using getter and
setter methods.

More details and the source code can be found in the appendix A.

3.4.8 Web 2.0 Features

3.4.8.1 Tag

A tag is used to describe a publication in knowledge platform. Tags are a non-
hierarchical text data that often are used to help users search for relevant content
and usually help to categorization and classification the data content. Front-End

57

A Front-End For Knowledge Platform

make user able to apply a new tag to a publication to allows users to classify their
collections of publication in the ways that they find useful.

3.4.8.2 Tag Cloud

Tag cloud is a box containing a list of tags in visual representation. Front-End
has used a weighing module to calculate the weight of a particular tag. In
weighing module the font size of a tag is determined by its incidence. The
frequency of tag is displayed beside the tag.

Add new tag in Front-End

Tag cloud in Front-End

For add a new tag
login is needed

58

A Front-End For Knowledge Platform

3.4.8.3 User Rating

User rating is a function of Front-End that allows users to rate a specific
publication. Front-End's rating systems is “five star” systems. A user rating is
used as a means to identify quality of publications based on the views of individual
user. Front-End rating is anonymous then ratings can avoid problems such as
popularity contests, rating spam, and so on.

After
rating

Before
rating

59

A Front-End For Knowledge Platform

3.4.8.4 Comment

Front-End provide for a reader of an article tools to leave comments. For leaving
a comment login is needed. Comment makes reader able to share their
perspectives, opinions, thoughts and experiences.

Front-End's commenting facility

3.4.8.5 Desktop Functionality

Providing desktop functionality was one of the basic requirements of Front-End.
Front-End have used Ajax and JQuery to address this requirement.

 Confirmation, Modal information message, Tooltip

Front-End has applied JQuery to support these features.

60

A Front-End For Knowledge Platform

 Using JQuery for modal confirmation

Using JQuery for modal information windows

61

A Front-End For Knowledge Platform

Graphical Tooltip by JQuery

 Using Ajax for exchanging data with a server without reloading pages

Front-End has applied Ajax to communicate with server asynchronously
without interfering with the displayed page. After receiving data Front-End
use JavaScript to modify the Document Object Model (DOM) of the HTML
page.

Using Ajax to delete comment

62

A Front-End For Knowledge Platform

3.4.8.6 Search Publication

One of the most important Front-End’s requirements is searching. Searching has
a main role in online publication. Front-End provides two different search panels.
First one is a quick search that makes users able to search at home page. The
quick search panel provides a search on tile of authors and publication.

Since searching publication based on various kinds of data is essential for reader
Front-End support an advanced panel to give a more power full option for
searching. In advanced search panel user are able to search publication based on
author title, publication title, abstract, keywords, and publication’s date. There is
an option for user to select an operation between search items. Search operation
can be AND/OR. By default the operator is OR .

63

A Front-End For Knowledge Platform

Front-End’s advanced search panel

3.4.8.7 Cross Referencing

Front-End uses keywords and tags to implement cross referencing. Front-End’s
user is able to find all other publications that have specific keyword or tag.
Keywords are defined by authors and tags are defined by users. Keywords are
more accurate and trustable but tags are also good mechanism for user to
customize categorization of information. Core also provides a mechanism to
communicate with other digital library such as CiteSeer but due to low-speed
transportation of information, Front-End does not integrate it.

64

A Front-End For Knowledge Platform

3.4.9 User Management

Knowledge Platform supports a role-base user management mechanism. Role-
base user management restricts user access to the resources based on their role in
the system. In Role base system the permission for certain operation is assign to
the roles and users are not assigned permission individually. Role and user
definition are done in Core application and Front-End only do login stuff.
Detecting user’s authorization is done in Core. For accessing to peer review parts
and leaving comment, adding new tag login and authentication is necessary.

Front-End’s Login form

When user do the login things on login page and sends user/password to Core
for verification a unique session ID is generated by Core. Front-End keeps this
unique session ID for each authenticated user. This ID is a user identification that
is sent to Core with each request separately.

65

A Front-End For Knowledge Platform

 /* Read the session ID from Core and Put it in Http cookie header field for next request */

 @Override
 public boolean login(Login login, HttpSession session) {
 if(!Util.isLocalData(session)){
 HttpEntity<Login> entity = new HttpEntity<Login>(login);
 ResponseEntity<Login> response=null;
 try{
 response = restTemplate.postForEntity(Login.URL, entity, Login.class);
 Login result = response.getBody();
 HttpHeaders headers = response.getHeaders();
 String sessionId=Util.getHeaderValue("set-cookie",headers);
 if(sessionId==null||sessionId.trim().isEmpty()) {
 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_FAILD);
 return false;
 }
 sessionId=sessionId.substring(0,sessionId.indexOf(";"));
 session.setAttribute(Util.USER_SESSION_ID, sessionId);
 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_SUCCESSFUL);
 login.setUserAtom(result.getUserAtom());
 User user = userWebService.get(User.class, login.getUserAtom().getHref(), session, null);
 login.setUser(user);
 session.setAttribute(Util.USER_SESSION,user);
 return true;
 }
 catch(RestClientException ex){
 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_FAILD);
 System.out.println("RestClientException in Login:"+ex.getMessage());
 if(ex instanceof HttpServerErrorException){
 HttpServerErrorException httpServerErrorException=(HttpServerErrorException)ex;
 throw new IllegalStateException(httpServerErrorException.getResponseBodyAsString());
 }
 return false;
 }
 catch(Exception ex){
 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_FAILD);
 System.out.println("Rest Call Exception in Login:"+ex.getMessage());
 return false;
 }
 }
 else{
 return SampleData.getLocalData(session).login(login, session);
 }
 }

A sample code of Front-End that get session ID from Core

66

A Front-End For Knowledge Platform

Chapter 4

 Evaluation
In this chapter the Front-End's evaluation process is described. The evaluation’s
purpose and the methods used to collect and analyse data are reviewed. In order
to evaluate the Front-End an online survey was conducted. Evaluation questions
enable us to better assess the usability of the Front-End and the results are used
to improve the Front-End functionality. Moreover, some parts of evaluation's
results specify future research. The questionnaire was used can be found in the
appendix B.

4.1 Evaluation Plan

The Front-End has been evaluated with regard to two aspects. First, web 2.0
technologies were evaluated in Front-End. Since one of the most important
requirements of this project was using the web 2.0 technologies to bring new
possibilities to interaction and provide the best possible user experience.
Secondly, the peer review process which is another project requirement was
evaluated. The questionnaire was designed to meet the above objectives.

4.2 Description of Evaluation Method

During the evaluation phase eleven people filled out the online survey. Evaluation
was done online. Participants in evaluation have at least Bachelor degree because
an academic study is necessary to have a minimum knowledge about scientific
publication but most of participant have a master's degree or above. In response
to question “How much are you familiar with peer review process?” the result
shows that only 18 percent of participants selected “below average” option. The
result shows that we can rely on the participant’s feedback.

Also about 63 percent of participants have a master's degree or above that shows
they have acceptable knowledge about scientific publication.

67

A Front-End For Knowledge Platform

How much are you familiar with peer review process?

What is your last qualification?

68

A Front-End For Knowledge Platform

4.3 Evaluation Discussion

Firstly we discuss the result of evaluation of Web 2.0 technologies (such as
tagging, linking, search mechanism, cross referencing) in Front-End. These
aspect results are listed as follows:

(1) (2)

 (3) (4)

1) Front-End provides a good mechanism for categorization of content by users (Such as tagging and
tag cloud features)
2) Front-End provides a user friendly environment for exchanging views and collaborating. (Comment,
rating, vote)
3) Front-End provides a good mechanism for finding information through keyword and tag searching.
4) Front-End support easy-to-use features for linking and referencing of information. (Such as using
hyperlink for finding more info about authors, references, keywords, citation)

69

A Front-End For Knowledge Platform

As it is clear from the result, search facilities have the best satisfaction
percentage. Second satisfaction level is for Content Categorization (such as
tagging, and tag cloud). The third one is linking and referencing of information.
The last one is exchanging views and collaborating such as rating, commenting
and voting.

But in an overall view most of the users are satisfied with Web 2.0 technologies.
Search facilities such as advanced search panel, tagging and keyword bring user
satisfaction.

However, evaluation result for peer review is different than web 2.0 result.

(1) (2)

 (3) (4)

1) Front-End provides a good mechanism for authors to submit manuscripts online. (Upload
manuscripts/supplementary files, Meta data such as title, abstract, authors)
2) Front-End supports a good tracking system for authors during publishing process.
3) Front-End provides a good Editorial board mechanism. (Assigning an article to reviewer, monitor
manuscript status)
4) Front-End supports a good Reviewer tracking system.(Such as notification, response template)

70

A Front-End For Knowledge Platform

From the result, can be concluded that Editorial board mechanism have the best
satisfaction percentage. Second satisfaction level is for authors tracking. The
third one is author’s submission manuscripts. The last one is Reviewer tracking
system.

The low satisfaction in peer review can have some reasons. First of all, peer
review procedure is complicated and there are many business logics that need
more time to test and improvement. Moreover, Peer review does not have a
determined procedure and there are many different definition of peer review
process. Finding a general and common solution for peer review process would
bring user satisfaction.

71

A Front-End For Knowledge Platform

Chapter 5

Conclusion
This chapter presents the achievements and limitations for this project. In Section
(5.1) the limitations of the project is discussed. Section (5.2) outlines the further
research and work. Section (5.3) presents the conclusions and achievements.

5.1 Summary

Is knowledge platform an invention?

This is an important question that each research should be able to response it. In
this part, we are going to answer this question and also find appropriate name for
our invention.

The main characteristic of knowledge platform that makes it different from every
other platform is use of web-based technologies to turn communication into an
interactive dialogue. Knowledge platform tries to mix existing phenomenon such
as Searching, linking, Authoring, Tagging, Blogging into a scientific platform to
provide a secure and user-friendly environment for scholarly community.

This project's aims was to show how we can mix a social networking's features
such as communicate with text-based comments, good search functionality, free
membership, navigation links, rating and tagging with current scholarly
community/publication such as digital library(CiteSeer) or peer review journals
(ACM, IEEE).

Mixing these two features makes Knowledge platform a different from every
other platform. This project brings a new concept for scientific publication and
scholarly community that we can name it “a social network for scholarly community”.

72

A Front-End For Knowledge Platform

5.1.1 The Knowledge Platform 2.0 Effort

Knowledge platform consist of two parts. First part is Core and the second one is
Front-End. Core plays role in providing required data for Front-End. Front-End
communicate with Core via REST web service. Front-End is more involved in
providing a user friendly interface for users. Separating the duties of publishing
data bring some benefits to final solution. By separating duties each part has more
opportunities to concentrate more on finding and using the last technologies in
its domain. During duties separation, Front-End was responsible to find and use
latest features of web 2.0 technologies that can improve user’s contribution
during the knowledge dissemination process. In next section we will discuss how
Front-End applied current features in disseminating and publishing scholarly
knowledge.

5.1.2 Front End

Front-End have tried to discover the latest web 2.0 technique in other domains
such as social networks and blogs to find the latest technologies that are applied
in that domains. After discovering these features like tagging, rating,
commenting Front-End try also to apply the last technologies in this field. One of
the most powerful, understandable, and universal concept for improving role of
these features is rich internet application (RIA) concept. Front-End use that
aspect of RIA that does not need to install a plug-in on client side. Concepts like
Ajax, JQuery, JavaScript, DOM are standards that are supported in all platforms
and browsers. Front-End use these aspects of RIA because these technologies are
not dependent on specific plug-in or platform. Dependency to a specific platform
is a weak point for a wide access application like Knowledge Platform. Using
other kinds of RIA such as Adobe Flash, JavaFX, and Microsoft Silverlight makes
Front-End dependant to specific plug-in.

73

A Front-End For Knowledge Platform

5.1.3 Bi-Directional Communication

One of a good experience that was gained during the development process of
Front-End is bi-directional communication. Front-End plays two roles
simultaneously. As a user’s view, it is a server application that provides desktop
functionality for Knowledge platform’s users. In this view, Front-End is an
enterprise Java web application that provides dynamic pages for users. On the
other hand, Front-End is a client application for Core. For playing this role
Front-End use Spring client side Restful library that provides good facilities for a
client application. During this process Front-End’s user can not recognize that
Front-End is a client application.

5.1.4 Project Evaluation

As it was discussed before in evaluation chapter Front-End’s web 2.0 feature was
evaluated by participants. In an overall view most of the users were satisfied with
Web 2.0 technologies especially search facilities such as advanced search panel,
tagging and keyword. We can conclude from the result of evaluation that web 2.0
techniques bring users satisfactions especially tag and tag cloud that makes user
categorization easier for uses and it also provides cross referencing.

Front-End

Bi-Directional

Communication

Core

Application

html XML

74

A Front-End For Knowledge Platform

5.2 Limitation

Knowledge Platform is an enterprise project and Front-End also is enterprise
project. For connectivity between Core and Front-End REST the web service
that has been used is not a good choice. SOAP includes a series of service
characteristics like priority, expiration, security credentials, routing information
and transactional behaviors that make it suitable for enterprise project. Moreover
it is a clear rule that we should try to reduce the communication cost on the
distributed system but using atom link by Core increase incredibly
communication time. For Example to do a simple fetch (fetching a publication’s
info) we need to send lots of separated requests for only one publication and all its
dependency (dependency such as Tags, Comments, Keywords, Authors, etc). In
this method if a publication has 5 tags, 10 keywords, 3 authors and 2 comments
Front-End should send 20 separated request to fetch only one publication’s
information. Using this method between two systems causes a bad affect on
system performance.

Moreover, Peer review procedure has many complicated rules and business logics.
However, due to the time limitations for this project (about 3 months) these
logics and rules are not completed and during evaluation there are many
suggestions that can improve peer review procedure. During Front-End’s
development process I have used the best available technologies such as Spring
framework, Hibernate validation, Apache upload file. I have spent too much time
to learn these technologies. Moreover, consistency with Core project takes many
time then we could not spend enough time for finding a general solution for peer
review procedure. Therefore, in evaluation, peer review has not got a high
satisfaction.

75

A Front-End For Knowledge Platform

5.3 Future Work

During the evaluation a number of aspects were found that need to be improved.
Some of these aspects are related to peer review process. Other aspects are related
to performance. A good tracking system for submitted manuscript is one of the
most important parts of peer review. After submitting a manuscript there are
many mechanisms that can improve tracking system such as automatic email, an
alarm system for referee’s deadline date. Developing a monitoring system for
editorial board to trace the manuscript during peer review procedure can be a
good idea for future extension.

By using SOAP web service instead of REST web service and designing a lower
cost method for exchanging information(we have use atom link that bring a high
communication cost) we can improve the system’s functionality and consequently
it will bring a higher user’s satisfaction.

76

A Front-End For Knowledge Platform

Professional, Ethical and legal Issues
 Professional issues

During survey the current system fairness is essential. Results of survey
may not be a true and fair conclusion of current knowledge platform if
there will be personal biases or discrimination against or in favor of a
system.
Also users provide through registration some personal information for us.
The information is not used for any other purpose. We keep secure what
information user enter in our web application by a one-way encryption
method.
Knowledge platform use a role-base mechanism for accessing to the
submitted information. Access to the publications that are submitted for
peer review process is controlled by user’s role. In each stage based on peer
review procedure only permitted user such as editor, reviewer, author have
access to the publication and author’s information.

 Legal issues
There is not legal issue to be considered in this project. All sources that are
discussed in project are open source. We try to find positive points of
different system to put the best method in this project. All considered
systems and technique are open source and free to change and distribution.
Developing tools in the project such as database engine (MySql) and
programming IDE are also open source and free to download and use.

 Ethical issues
There is not any data or materials that need permission in this research.
Also the research does not involve human subjects then evaluation form is
anonymous. Then all research methods and information are open to public
scrutiny and can be seen to be subject to the highest ethical standards.

 Front-End is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.

77

A Front-End For Knowledge Platform

References
1. Web and Electronic Publishing Trends. Mohan, H.R. University of Mysore : Joint
Workshop on Digital Libraries, 2001.

2. Gottfried Vossen, Stephan Hagemann. Unleashing Web 2.0. s.l. : Denise E. M.
Penrose, 2007. 978-0-12-374034-2.

3. Citation-based journalranks:The use of fuzzy measures. SimonJames, Gleb
Beliakov-. Burwood : Elsevier North-Holland, Inc, 2010. 0165-0114.

4. Electronic Publishing. Peter B. Boyce, Evan Owens, and Chris Biemesderfer.
s.l. : American Astronomical Society (AAS), 1997.

5. Digital Libraries and Autonomous Citation Indexing. Steve Lawrence, C. Lee
Giles, Kurt Bollacker. s.l. : IEEE, June 1999. 0018-9162.

6. HyperJournal, PHP scripting and Semantic Web technologies for the Open Access.
Michele Barbera, Francesca Di Donato, Giovanni Tummarello, Christian
Morbidoni. Pisa, Italy : Università Politecnica delle Marche.

7. DiVA. Centre, Electronic Publishing. s.l. : Uppsala University Library, 2006.

8. Basics of Research Paper Writing and Publishin. Derntl, Michael. s.l. : University
of Vienna-Faculty of Computer Science, May 27, 2003.

9. AJAX Introduction. Schools, W3. s.l. : W3Schools.

10. Designing Rich Internet Applications. MSDN. s.l. : microsoft.

11. HTML DOM Introduction. W3C. s.l. :
http://www.w3schools.com/htmldom/dom_intro.asp.

12. Resource Description Framework. Group, RDF Working. s.l. :
http://www.w3.org/RDF/.

13. The Semantic Web: The Roles of XML and RDF. STEFAN DECKER,
SERGEY MELNIK, FRANK VAN HARMELEN, DIETER FENSEL, D

78

A Front-End For Knowledge Platform

MICHEL KLEIN, JEEN BROEKSTRA, MICHAEL ERDMANN, IAN
HORROCKS. s.l. : IEEE Internet Computing, 2000. 1089-7801.

14. Interoperability for Digital Objects and Repositories. Sandra Payette, Christophe
Blanchi, Carl Lagoze, Edward A. Overly. s.l. : D-Lib Magazine, May 1999.
1082-9873.

15. Inderjeet Singh, Beth Stearns,Mark Johnson, and the Enterprise Team.
Designing Enterprise Applications with the J2EE Platform, Second Edition. 2002. 0-
201-78790-3.

16. Bryan Basham, Kathy Sierra, and Bert Bates. Head First Servlets and JSP.
s.l. : O’Reilly Media, Inc., 2008. 978-0-596-51668-0.

17. Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob
Harrop, Alef Arendsen, Thomas Risberg, Darren Davison, Dmitriy
Kopylenko, Mark Pollack, Thierry Templier, Erwin Vervaet, Portia Tung,
Ben Hale, Adrian Colyer, John Lewis, Costin Leau, Mark. Reference
Documentation. Spring Framework. [Online] 2004-2010 .
http://static.springsource.org/spring/docs/3.0.x/spring-framework-
reference/html/index.html.

18. objectsource. [Online] http://www.objectsource.com/j2eechapters/Ch19-
I18N_and_L10N.htm.

19. online tutorial-Implementing OAI-PMH. Forum, Open Archives. s.l. :
http://www.oaforum.org/tutorial/english/page4.htm.

20. Model-View-Controller Pattern. enode. s.l. :
http://www.enode.com/x/markup/tutorial/mvc.html.

21. Interoperability and Open Archives Initiative Protocol for Metadata . Martha
Latika Alexander, J N Gautam. New Delhi : INFLIBNET Centre, 2004.

22. Hackett, Scott. plug-in-extensibility-through-reflection-in-net-and-java/.
http://blog.slickedit.com. [Online] Feb 2008.

79

A Front-End For Knowledge Platform

Appendices:

Appendix A

Data Model Classes

80

A Front-End For Knowledge Platform

81

A Front-End For Knowledge Platform

82

A Front-End For Knowledge Platform

83

A Front-End For Knowledge Platform

84

A Front-End For Knowledge Platform

85

A Front-End For Knowledge Platform

86

A Front-End For Knowledge Platform

Source Code

In this section sample code of controller, Validator, Comparator and service are
documented.

1) FileUploadValidator.java(Validation Sample)

package frontend.model.validators;

import org.springframework.validation.Errors;

import org.springframework.validation.Validator;

import frontend.model.UploadFile;

 /**

 * This class validate the uploaded file by author

 * @author amir

 */

public class FileUploadValidator implements Validator{

 @Override

 public boolean supports(Class clazz) {

 //just validate the FileUpload instances

 return UploadFile.class.isAssignableFrom(clazz);

 }

 @Override

 public void validate(Object target, Errors errors) {

 UploadFile file = (UploadFile)target;

 //if file size is zero return an error code

 if(file.getFileData().getSize()==0){

 errors.rejectValue("fileData", "required.fileUpload");

 }

 }}

87

A Front-End For Knowledge Platform

2) Source code of publication controller(Controller Sample)

/**

 * This class is a controller for publication

 * all task about publication is done here

 * @author amir

 */

@Controller

@RequestMapping("/publication")

public class PublicationController {

 @Autowired

 PublicationServiceInterface publicationService;

 @Autowired

 UserServiceInterface userService;

 //An exception method for exception

 @ExceptionHandler(Exception.class)

 public ModelAndView handleException(Exception ex) {

 ModelAndView mav = new ModelAndView();

 mav.setViewName("error");

 mav.addObject("content", ex.getClass());

 return mav;

 }

 /**

 * return abstract of publication

 * @param publicationId

 * @param session

 * @param request

 * @return

 */

88

A Front-End For Knowledge Platform

 @RequestMapping(value="/abstract/{publicationId}", method = RequestMethod.GET)

 public ModelAndView getAbstract(@PathVariable("publicationId") String publicationId, HttpSession
session, HttpServletRequest request)

 {

 List<Tag> tagList=null;

 List<Tag> thisPublicationTagsList=new ArrayList<Tag>();

 String loginStatus=userService.getLastLogInStatus(session);

 //calculate the tag's weight

 if(Util.isLocalData(session))

 tagList=PublicationService.getTagCloud(SampleData.getLocalData(session).getPublicationList());

 else

 tagList=PublicationService.getTagCloud(publicationService.fetchPublicationWithDetails(null, session));

 User user=(User)session.getAttribute(Util.USER_SESSION);

 Login login=new Login("username", "password","/publication/abstract/".concat(publicationId),loginStatus);

 ModelAndView mav = new ModelAndView();

 mav.setViewName("publication_abstract");

 Publication publication= publicationService.getPublicationById(Integer.parseInt(publicationId),session);

 for(Tag pubtag: publication.getTags()){

 for(Tag tagcloud: tagList){

 if(pubtag.getId()==tagcloud.getId()){

 thisPublicationTagsList.add(tagcloud);

 pubtag.setFrequency(tagcloud.getFrequency());

 }

 }

 }

 mav.addObject("publication",publication);

 mav.addObject("login",login);

89

A Front-End For Knowledge Platform

 mav.addObject("user", user);

 mav.addObject("tagCloud",thisPublicationTagsList);

 if(session.getAttribute("rating")!=null)

 mav.addObject("rating", ((String)session.getAttribute("rating")));

 else

 mav.addObject("rating","");

 return mav;

 }

 /**

 * add new tag to publication

 * @param session

 * @param tagName

 * @param tagDescription

 * @param backAddress

 * @param publicationId

 * @return

 */

 @RequestMapping(value="/tag/add", method = RequestMethod.POST)

 public ModelAndView addTag(HttpSession session, @RequestParam("tagName") final String tagName,

 @RequestParam("tagDescription") final String tagDescription,

 @RequestParam("backAddress") final String backAddress,

 @RequestParam("publicationId") final int publicationId) {

 if(userService.isLogIn(session)){

 if(!Util.isLocalData(session))

 publicationService.addTag(session, tagName, tagDescription, publicationId);

 else

 SampleData.getLocalData(session).addTag(tagName, tagDescription, publicationId);

 }

 return new ModelAndView("redirect:"+backAddress);

90

A Front-End For Knowledge Platform

 }

 /**

 * it is called when user login

 * @param session

 * @param backAddress

 * @param login

 * @return

 */

 @RequestMapping(value="/login", method = RequestMethod.POST)

 public ModelAndView getPage(HttpSession session, @RequestParam("backAddress") final String backAddress,

 @ModelAttribute("login") Login login) {

 userService.login(login,session);

 return new ModelAndView("redirect:"+backAddress);

 }

 /**

 * called when logout

 * @param session

 * @param backAddress

 * @return

 */

 @RequestMapping(value="/logout", method = RequestMethod.GET)

 public ModelAndView logout(HttpSession session, @RequestParam("backAddress") final String backAddress) {

 userService.logout(session);

 return new ModelAndView("redirect:"+backAddress);

 }

 /**

 * add comment to the publication

 * @param session

 * @param comment

 * @param backAddress

91

A Front-End For Knowledge Platform

 * @param publicationId

 * @return

 */

 @RequestMapping(value="/comment/add", method = RequestMethod.POST)

 public ModelAndView addComment(HttpSession session, @RequestParam("comment") String comment,

 @RequestParam("backAddress") final String backAddress,

 @RequestParam("publicationId") final int publicationId) {

 User user=(User)session.getAttribute(Util.USER_SESSION);

 if(userService.isLogIn(session)){

 if(!Util.isLocalData(session)){

 publicationService.addComment(session, comment, publicationId, user);

 }

 else

 SampleData.getLocalData(session).addComment(comment, publicationId, user);

 }

 return new ModelAndView("redirect:"+backAddress);

 }

 /**

 * delete comment from publication

 * user must be owner of comment

 * @param session

 * @param id

 * @param backAddress

 * @param publicationId

 * @return

 */

 @RequestMapping(value="/comment/delete", method = RequestMethod.GET)

 public ModelAndView deleteComment(HttpSession session, @RequestParam("id") final int id,

 @RequestParam("backAddress") final String backAddress, @RequestParam("publicationId") final int publicationId) {

 User user=(User)session.getAttribute(Util.USER_SESSION);

92

A Front-End For Knowledge Platform

 if(userService.isLogIn(session)){

 if(!Util.isLocalData(session)){

 publicationService.deleteComment(session, id, publicationId, user);

 }

 else

 SampleData.getLocalData(session).deleteComment(id, user, publicationId);

 }

 return new ModelAndView("redirect:"+backAddress);

 }

 /**

 * add rating to the publication

 * @param session

 * @param rate

 * @param backAddress

 * @param publicationId

 * @return

 */

 @RequestMapping(value="/rating/add", method = RequestMethod.POST)

 public ModelAndView addRating(HttpSession session, @RequestParam("group") final int rate,

 @RequestParam("backAddress") final String backAddress, @RequestParam("publicationId") final int publicationId) {

 if(!Util.isLocalData(session))

 publicationService.addRate(session, rate, publicationId);

 else

 SampleData.getLocalData(session).addRating(rate, publicationId);

 session.setAttribute("rating",Integer.toString(rate));

 return new ModelAndView("redirect:"+backAddress);

 }

}

93

A Front-End For Knowledge Platform

3) UserService .java (Service sample)

/**

 * Do login, logout, session tasks

 * @author amir

 */

@Service

public class UserService implements UserServiceInterface{

 @Autowired

 private RestTemplate restTemplate;

 @Autowired

 WebService<User> userWebService;

 @Override

 public User getUser(String url, HttpSession session) {

 return userWebService.get(User.class, url, session, null);

 }

/**

 * return true if user is loggin

 * @param session

 * @return

 */

 @Override

 public boolean isLogIn(HttpSession session) {

 if(session.getAttribute(Util.USER_SESSION_ID)==null ||
((String)session.getAttribute(Util.USER_SESSION_ID)).isEmpty()
||((User)session.getAttribute(Util.USER_SESSION))==null){

 logout(session);

 return false;

 }

 else

94

A Front-End For Knowledge Platform

 return true;

 }

/**

 * return appropriate string message for user status

 * @param session

 * @return

 */

 @Override

 public String getLastLogInStatus(HttpSession session) {

if(session.getAttribute(Util.LAST_LOGIN_STATUS)==null||((String)session.getAttribute(Util.LAST_LOGIN_STATUS)).i
sEmpty())

 return Util.LOGIN_STATUS_NO_TRY;

 else{

 String result= ((String)session.getAttribute(Util.LAST_LOGIN_STATUS));

 if(result.equals(Util.LOGIN_STATUS_FAILD)){

 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_NO_TRY);

 return Util.LOGIN_STATUS_FAILD;

 }

 return Util.LOGIN_STATUS_SUCCESSFUL;

 }

 }

 /**

 * if login be successful return true

 * @param login

 * @param session

 * @return

 */

 @Override

 public boolean login(Login login, HttpSession session) {

95

A Front-End For Knowledge Platform

 if(!Util.isLocalData(session)){

 HttpEntity<Login> entity = new HttpEntity<Login>(login);

 ResponseEntity<Login> response=null;

 try{

 response = restTemplate.postForEntity(Login.URL, entity, Login.class);

 Login result = response.getBody();

 HttpHeaders headers = response.getHeaders();

 String sessionId=Util.getHeaderValue("set-cookie",headers);

 if(sessionId==null||sessionId.trim().isEmpty()) {

 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_FAILD);

 return false;

 }

 sessionId=sessionId.substring(0,sessionId.indexOf(";"));

 session.setAttribute(Util.USER_SESSION_ID, sessionId);

 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_SUCCESSFUL);

 login.setUserAtom(result.getUserAtom());

 User user = userWebService.get(User.class, login.getUserAtom().getHref(), session, null);

 login.setUser(user);

 session.setAttribute(Util.USER_SESSION,user);

 return true;

 }

 catch(RestClientException ex){

 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_FAILD);

 System.out.println("RestClientException in Login:"+ex.getMessage());

 if(ex instanceof HttpServerErrorException){

 HttpServerErrorException httpServerErrorException=(HttpServerErrorException)ex;

 throw new IllegalStateException(httpServerErrorException.getResponseBodyAsString());

 }

 return false;

 }

96

A Front-End For Knowledge Platform

 catch(Exception ex){

 session.setAttribute(Util.LAST_LOGIN_STATUS, Util.LOGIN_STATUS_FAILD);

 System.out.println("Rest Call Exception in Login:"+ex.getMessage());

 return false;

 }

 }

 else{

 return SampleData.getLocalData(session).login(login, session);

 }

 }

/**

 * logout from system

 * @param session

 */

 @Override

 public void logout(HttpSession session) {

 if(true || isLogIn(session)){

 session.setAttribute(Util.USER_SESSION,null);

 session.setAttribute(Util.USER_SESSION_ID,"");

 session.setAttribute(Util.LAST_LOGIN_STATUS,Util.LOGIN_STATUS_NO_TRY);

 }

 }

}

97

A Front-End For Knowledge Platform

4) PublicationRateComparator .java (Comparator sample)

/**

 *compare publication based on their rating value

 * @author amir

 */

public class PublicationRateComparator implements Comparator<Publication>{

 //descending sort

 @Override

 public int compare(Publication pub1, Publication pub2) {

 int result=(pub1.getAverageOfRates()>pub2.getAverageOfRates()? -1 :
(pub1.getAverageOfRates()<pub2.getAverageOfRates()? 1 : 0));

 if(result!=0) return result;

 result=(pub1.getCountOfRates()>pub2.getCountOfRates()? -1 : (pub1.getCountOfRates()<pub2.getCountOfRates()? 1 : 0));

 return result;

 }

}

98

A Front-End For Knowledge Platform

Appendix B

Questionnaire Form

Knowledge Platform’s Front-End

Evaluation

1) What is your last qualification?

 PhD

 M.Sc.

 B.Sc.

2) Is your job related to computer?

 Yes

 No
3) How much are you familiar with peer review process?

 Excellent

 Above Average

 Average

 Below Average

 Very Poor

4) Do you usually use scientific literature and digital library (Such as CiteSeer)?

 Very Frequently

 Frequently

 Occasionally

 Rarely

 Very Rarely

 Never

99

A Front-End For Knowledge Platform

5) Front-End provides a good mechanism for categorization of content by users
 (Such as tagging and tag cloud features)

 Strongly Agree

 Agree

 Disagree

 Strongly Disagree

6) Front-End provides a good mechanism for finding information through keyword and tag
searching.

 Strongly Agree

 Agree

 Disagree

 Strongly Disagree

7) Front-End provides a user friendly environment for exchanging views and collaborating.
(comment, rating, vote)

 Strongly Agree

 Agree

 Disagree

 Strongly Disagree
8) Front-End support easy-to-use features for linking and referencing of information. (Such

as using hyperlink for finding more info about authors, references, keywords, citation)

 Strongly Agree

 Agree

 Disagree

 Strongly Disagree
9) Front-End provides a good mechanism for authors to submit manuscripts online.

(Upload manuscripts/supplementary files, Meta data such as title, abstract, authors)

 Strongly Agree

 Agree

 Disagree

 Strongly Disagree

100

A Front-End For Knowledge Platform

10) Front-End supports a good tracking system for authors during publishing process.

 Strongly Agree

 Agree

 Disagree

 Strongly Disagree

11) Front-End provides a good Editorial board mechanism. (assigning an article to reviewer,
monitor manuscript status)

 Strongly Agree

 Agree

 Disagree

 Strongly Disagree

12) Front-End supports a good Reviewer tracking system.(Such as notification, response
template)

 Strongly Agree

 Agree

 Disagree

 Strongly Disagree

