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Abstract
The many core revolution makes scalability a key property. The
RELEASE project aims to improve the scalability of Erlang on
emergent commodity architectures with 105 cores. Such architec-
tures require scalable and available persistent storage on up to 100
hosts. We enumerate the requirements for scalable and available
persistent storage, and evaluate four popular Erlang DBMSs against
these requirements. This analysis shows that Mnesia and CouchDB
are not suitable persistent storage at our target scale, but Dynamo-
like NoSQL DataBase Management Systems (DBMSs) such as
Cassandra and Riak potentially are.

We investigate the current scalability limits of the Riak 1.1.1
NoSQL DBMS in practice on a 100-node cluster. We establish for
the first time scientifically the scalability limit of Riak as 60 nodes
on the Kalkyl cluster, thereby confirming developer folklore. We
show that resources like memory, disk, and network do not limit
the scalability of Riak. By instrumenting Erlang/OTP and Riak li-
braries we identify a specific Riak functionality that limits scala-
bility. We outline how later releases of Riak are refactored to elim-
inate the scalability bottlenecks. We conclude that Dynamo-style
NoSQL DBMSs provide scalable and available persistent storage
for Erlang in general, and for our RELEASE target architecture in
particular.

Categories and Subject Descriptors [Distributed Systems]: Dis-
tributed databases; [Performance of Systems]: Fault tolerance

General Terms Experimentation, Measurement, Performance,
Reliability

Keywords Scalability, Erlang, NoSQL Distributed Databases,
Fault Tolerance, Eventual Consistency, Riak, Cassandra, Mnesia,
CouchDB.

1. Introduction
As the number of cores in commodity hardware grows exponen-
tially scalability becomes increasingly desirable as it gives systems
the ability to available resources [5]. It is cost effective to construct
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large systems from commodity, i.e. low-cost but unreliable com-
ponents [24]. In such an environment actor-based frameworks, and
Erlang in particular, are increasingly popular for developing reli-
able scalable systems [2, 15].

The RELEASE project [6] aims to improve the scalability of
Erlang on emergent commodity architectures with 105 cores. We
anticipate that a typical architecture might comprise 5 clusters
(virtual or physical), with approximately 100 hosts per cluster, and
32-64 cores per host. The project aims to improve the scalability of
Erlang at the virtual machine, language, and infrastructure levels,
and to supply profiling and refactoring tools. At the language level
we seek to scale three aspects of Erlang:

1. A scalable Computation model, by providing alternatives to
global data structures like the global name space and all-to-all
connections between nodes.

2. Scalable In-memory data structures, and specifically more scal-
able Erlang Term Storage (ETS) tables.

3. Scalable Persistent data structures, i.e. scalable, and hence
distributed DataBase Management Systems (DBMSs).

This paper investigates the provision of persistent data struc-
tures by studying the ability of Erlang distributed DBMS to scale
on our target 105 core architecture. That is we investigate the scal-
ability of Mnesia [14], CouchDB [23], and Dynamo-like NoSQL
DBMSs like Riak [4], and Cassandra [17].

We start by enumerating the principles for scalable and available
persistent data storage (Section 2). Crucially, availability is pro-
vided by replicating data on n independent hosts. Hence the hosts
are the key architectural level, and the key issue for RELEASE is
whether there are Erlang DBMSs that scale only approximately 100
nodes. We assess four DBMSs against the scalable persistent stor-
age principles, and evaluate their suitability for large-scale archi-
tectures (Section 3). To evidence the scalability we benchmark the
Riak NoSQL DBMS in practice (Section 4). Finally, we discuss
findings and the future work (Section 5).

The paper makes the following research contributions.

• We present a theoretical analysis of common Erlang persis-
tent storage technologies against the requirements for scalable
and available persistent storage considering Mnesia, CouchDB,
Riak, and Cassandra. Unsurprisingly, we find that Mnesia and
CouchDB are not suitable persistent storage at our target scale,
but Dynamo-like NoSQL DBMS such as Cassandra and Riak
are (Section 3).

• We investigate the current scalability limits of the Riak 1.1.1
NoSQL DBMS using Basho Bench on 100-node cluster with



800 cores. We establish for the first time scientifically the scal-
ability limit of Riak 1.1.1 as 60 nodes on the Kalkyl cluster,
thereby confirming developer folklore (Section 4.3).

• We show that resources like memory, disk and network do not
limit the scalability of Riak (Section 4.5). By instrumenting
the global and gen server Erlang/OTP libraries we identify
a specific Riak remote procedure call that fails to scale. The
Basho developers had independently identified this bottleneck,
and a second bottleneck. We outline how Riak 1.3 and 1.4 are
refactored to eliminate the scalability bottlenecks (Section 4.5).

2. Scalable Persistent Storage
Distributed architectures such as clusters, Clouds, and Grids have
emerged to provide high performance computing resources from
low-cost unreliable components, i.e. commodity nodes and unre-
liable networks [24]. To better utilise these unreliable resources
distributed database systems have been developed, i.e. data is dis-
tributed among a collection of nodes, and each node maintains a
subset of the data. In this section we outline the principles of a
highly scalable and available persistent storage, i.e. data fragmen-
tation, data replication, partition tolerance, and query execution
strategies [25].

Data fragmentation improves performance by spreading loads
across multiple nodes and increases the level of concurrency
(Fig. 1). A scalable fragmentation approach should have the fol-
lowing features:

1. Decentralized model. In a decentralised model data is frag-
mented between nodes without a central coordination. The
models show a better throughput in large systems, and have
a higher availability in comparison with the centralised models
due to eliminating a single point of failures [13].

2. Load balancing, i.e. even distribution of data between the nodes.
A desirable load balancing mechanism should take the burden
of load balancing off the developer shoulders. For example,
such decentralized techniques as consistent hashing [20] may
be employed.

3. Location transparency. Placing fragments on a proper location
in a large scale system is very difficult to manage. Therefore,
the placement should be carried out automatically and system-
atically without a developer interference. Moreover, a reorgan-
isation of database nodes should not impact the programs that
access the database [11].

4. Scalability. A node departure and arrival should only affect the
node immediate neighbours, and the remaining nodes should be
unaffected. A new node should receive approximately the same
amount of data as other available nodes have, and when a node
goes down, its load should be evenly distributed between the
remaining available nodes [13].

Data Replication improves performance of read-only queries by
providing data from the nearest replica (Fig. 2). The replication
may also increase the system availability by removing a single

Figure 1: An Even Fragmentation of 20KB Data over Ten Nodes

Figure 2: Replication of Record X on Three Nodes

point of failures [25]. A scalable mechanism for replication should
have the following features:

1. Decentralized model. Data should be replicated to nodes with-
out using a concept of a master, so each node has a full DBMS
functionality [13]. A P2P model is desirable because each node
is able to coordinate the replication, and improve overall perfor-
mance by distributing computational and network traffic loads
over the available nodes.

2. Location transparency. The placement of replicas should be
handled systematically and automatically [11]. However, man-
aging the location of replicas can be a difficult task in large-
scale systems.

3. Asynchronous replication, i.e. write command is considered
complete as soon as the local storage acknowledges it without
necessity to wait for the remote acknowledgment [18]. In large-
scale systems with slow communication, such as wide area net-
works, waiting for the confirmation can be time consuming.
Many Internet-scale applications, e.g. email and social network
services, may be able to tolerate some inconsistency among the
replicas to provide a better performance. The approach may vi-
olate the consistency of data over time, so eventual consistency
can be used to address the problem. Eventual consistency [27]
is a specific form of weak consistency where updates are prop-
agated throughout the system, and eventually all participants
have the last updated value. Domain Name System (DNS) is
the most popular system that employs eventual consistency.

Partition Tolerance is essential to cope with node failures and
network partitions in loosely coupled large-scale distributed sys-
tems. A highly available system should continue to operate de-
spite a loss of connections between some nodes. The CAP theo-
rem [18] states a database cannot simultaneously guarantee consis-
tency, availability, and partition tolerance (Fig. 3). Thus, to achieve
partition tolerance and availability strong consistency must be sac-
rificed. The eventual-consistency mechanism can improve avail-
ability by providing weakened consistency, i.e. in case some nodes
fail or become unreachable while an update is being executed the
changes will be applied to the failed nodes as soon as they recover
from the failure.

Query Execution Strategies provide mechanisms to retrieve a
specific information from a database. In addition to a good per-
formance a desirable query processing approach hides low-level
details of replicas and fragments [25]. A scalable query strategy
should have the following features:

1. Local execution. On geographically distributed large-scale sys-
tems where data is fragmented over nodes query response time
may become very high due to communication. Scalable tech-
niques like MapReduce [12] reduce the amount of transferring
data between the participating nodes in a query execution by
local processing, i.e. passing the queries to where the data lives
rather than transferring data to a client. After the local process-
ing the results of local executions are combined into a single
output.



2. Parallelism. In addition to improving the performance the lo-
cal processing increases parallel execution of large computa-
tions by dividing the query into sub-queries and spreading them
among multiple nodes. Thus, a good strategy should exploit the
local resources as much as possible to achieve the maximum
efficiency.

3. Fault tolerance. Since large-scale databases are distributed on
large clusters of nodes a node failure is very common. There-
fore, a query strategy should tolerate communication and node
failures. In case of a failure the query coordinator should mask
the failure by running the query on the available replicas.

3. Scalability of Erlang DBMSs
Recently, there has been a lot of interest in NoSQL databases
to store and process large-scale data sets, such as Amazon Dy-
namo [13], Google BigTable [7], Facebook Cassandra [22], Ya-
hoo! PNUTS [9]. These companies have rejected traditional rela-
tional DBMSs because these systems could not provide high scal-
ability, high availability, and low latency for large scale unreliable
distributed environments.

In this section we analyse the following four popular NoSQL
DBMSs for Erlang systems: Mnesia (Section 3.1), CouchDB (Sec-
tion 3.2), Riak (Section 3.3), and Cassandra (Section 3.4). The
databases are evaluated in terms of scalability and availability
against the principles outlined in Section 2.

3.1 Mnesia
Mnesia is a distributed DBMS written in Erlang for industrial
telecommunications applications [14]. The Mnesia data model con-
sists of tables of records. Attributes of each record can store ar-
bitrary Erlang terms. Mnesia provides ACID (Atomicity, Consis-
tency, Isolation, Durability) transactions, i.e. either all operations
in a transaction are applied on all nodes successfully, or, in case
of a failure, no node effected. In addition, Mnesia guarantees that
transactions which manipulate the same data records do not inter-
fere with each other. To read from, and write to, a table through
a transaction Mnesia sets and releases locks automatically. Fault
tolerance is provided in Mnesia by replicating tables on different
Erlang nodes. In Mnesia replicas are placed explicitly, e.g. Code 1
shows a student table replicated on three Erlang VMs.

Code 1: An Explicit Placement of Replicas in Mnesia
mnesia:create_table(student, [{disc_copies,
[node1@sample_domain, node2@sample_domain,
node3@sample_domain]},{type, set},{attributes,
[id,fname,lname,age]},{index,[fname]}]).

Figure 3: CAP Theorem [18]

In general, to read a record only one replica of that record is
locked (usually the local one), but to update a record all replicas
of that record are locked and must be updated. This can become a
bottleneck for write operations when one of the replica is not reach-
able due to node or network failures. To address the problem Mne-
sia offers dirty operations that manipulate tables without locking
all replicas. However, dirty operations do not provide a mechanism
to eventually complete the update on all replicas, and this may lead
to data inconsistency.

Another limitation of Mnesia is the size of tables. The limita-
tion is inherited from DETS tables, and since DETS tables use 32
bit file offsets, the largest possible Mnesia table per an Erlang VM
is 2GB. To cope with large tables Mnesia introduces a concept of
table fragmentation. A large table can be split into several smaller
fragments on different Erlang nodes. Mnesia employs a hash func-
tion to compute the hash value of a record key, and then that value is
used to determine the fragment the record belongs to. The downside
of the fragmentation mechanism is that the placement of fragments
should be specified explicitly by the user. Code 2 shows an explicit
placement of fragments in Mnesia.

Code 2: An Explicit Placement of Fragments in Mnesia
mnesia:change_table_frag(SampleTable,
{add_frag, List_of_Nodes}).

Query List Comprehensions (QLCs) is an Erlang query inter-
face to Mnesia. QLCs are similar to ordinary list comprehensions
in Erlang programming language, e.g. Code 3 returns name of stu-
dent whose id=1.

Code 3: A Query Example in Mnesia
Query = query [S.lname ||

S <- table(student), S.id == 1] end,
Result = mnesia:transaction(

fun() -> mnemosyne:eval(Query)
end).

A summary of Mnesia limitations for large-scale systems is as
follows:

• Explicit placement of fargments and replicas.
• Limitation in size of tables.
• Lack of support for eventual consistency.

3.2 CouchDB
CouchDB (Cluster Of Unreliable Commodity Hardware) is a
schema-free document-oriented database written in Erlang [23].
Data in CouchDB is organised in a form of a document. Schema-
less means that each document can be made up of an arbitrary
number of fields. A single CouchDB node employs a B-tree stor-
age engine that allows to handle searches, insertions, and dele-
tions in logarithmic time. Instead of traditional locking mechanisms
for concurrent updates CouchDB uses Multi-Version Concurrency
Control (MVCC) to manage concurrent access to the database.
With MVCC a system is able to run at full speed all the time, even
when a large number of clients uses the system concurrently. In
CouchDB view creation and report aggregation is implemented by
joining documents using Map/Reduce technique.

Data fragmention over nodes is handled by Lounge – a proxy-
based partitioning/clustering framework for CouchDB [1]. To find
the shard where a document should be stored Lounge applies a
consistent hash function to the document’s ID. Lounge does not
operate on all CouchDB nodes. In fact, Lounge is a web proxy that



distributes HTTP requests to CouchDB nodes. Thus, to remove a
single point of failures multiple instances of Lounge should be run,
i.e a multi-server model.

CouchDB replication system synchronizes all copies of the
same database by sending the most recent changes to all other
replicas. Replication is an unidirectional process, i.e. the changed
documents are copied from one replica to another and not auto-
matically vice versa. Currently, replica placements are handled
explicitly (Code 4).

Code 4: An Explicit Placement of Replicas in CoachDB
POST /_replicate HTTP/1.1
{"source":"http://localhost/database",
"target":"http://example.org/database",
"continuous":true}

In Code 4, ‘‘continuous’’:true means that CouchDB
will not stop the replication and will automatically send new
changes of the source to the target by listening to the CouchDB
API changes. CouchDB has eventual consistency, i.e. document
changes are periodically copied to replicas. A conflict occurs when
a document has different information on different replicas. In case
of a conflict between replicas CouchDB employs an automatic con-
flict detection mechanism. CouchDB does not attempt to merge the
conflicting visions but only attempts to find the latest version of
the document. The latest version is the winning version. The other
versions are kept in the document’s history, and client applications
can use them to resolve the conflict in an alternative way.

In summary, CouchDB has the following limitations that can be
a bottleneck for large-scale systems:

• Explicit placement of fragments and replicas.
• Multi-server model to coordinate fragmentation and replication.
• Lounge program that handles data partitioning is not a part of

every CouchDB node.

3.3 Riak
Riak is a NoSQL, schemaless, open source, distributed key/value
data store primarily written in Erlang [4]. Riak is scalable, avail-
able, and fault tolerant database suitable for large-scale distributed
environments, such as Clouds and Grids. Riak is highly fault tol-
erant due to its masterless structure that offers no single point of
failures. Riak is commercially proven and is used by large and well
known companies and organizations such as Mozilla, Ask.com,
AOL, DotCloud, GitHub.

In Riak data is stored using key/value pairs. A key/value pair is
stored in a bucket. A values can be retrieved using its unique key.
Data fragmentation in Riak is handled implicitly using a consistent
hashing technique [4]. Consistent hash dynamically distributes data
over nodes as nodes join and leave the system.

For availability Riak uses a replication and a hand-off technique.
By default each data bucket in Riak is replicated on three different
nodes. However, the number of replicas (N ) is a tunable parameter
and can be set for every bucket. Other tunable parameters are read
quorum (R) and write quorum (W ). A quorum is the number of
replicas that must respond to a read or write request before it is
considered successful. If R+W > N then Riak provides a strong
consistency which guarantees that a subsequent accesses returns
the previously updated value. When W +R <= N Riak provides
a weak consistency and some nodes may keep outdated data.

When a communication with a node is lost temporarily due
to a node failure or a network partitioning a hand-off technique
is used, i.e. neighbouring nodes take over the duties of the failed
node. When the failed node comes back a Merkle tree is used to

determine the records that need to be updated [4]. Each node has
its own Merkle tree for the keys it stores. Merkle trees reduce the
amount of data needed to be transferred to check inconsistencies
between replicas.

Riak provides eventual consistency, i.e. an update is propagated
to all replicas asynchronously. However, under certain conditions
such as node failures and network partitioning, updates may not
reach all replicas. Riak employs a vector clock (or vclock) mecha-
nism to handle the inconsistencies by reconciling the older version
and the divergent versions.

The default Riak backend storage is Bitcask. Although Bitcask
provides low latency, easy backup, restore, and is robust in the face
of crashes but it has one notable limitation. Bitcast keeps all keys
in RAM and therefore can store a limited number of keys per node.
For this reason Riak users may use other storage engines to store
billions of records per node.

LevelDB is a fast key-value storage library written at Google
that has no Bitcask RAM limitation. LevelDB provides an ordered
mapping from keys to values whereas Bitcask is a hash table.
LevelDB supports atomic batch of updates that may also be used
to speed up large updates by placing them into the same batch.
A LevelDB database may only be opened by one process at a
time. There is one file system directory per each LevelDB database
where all database content is stored. To improve the performance
adjacent keys are located in the same block. A block is a unit of data
used to transfer data to and from the persistent storage. The default
block size is approximately 8192 bytes. Each block is individually
compressed before being written to persistent storage, however,
compression can also be disable. It is possible to force a checksum
verification of all data that is read from the file system. Eleveldb
is an Erlang wrapper for LevelDB included in Riak, and does not
require a separate installation. LevelDB read access can be slower
in comparison with Bitcask because LevelDB tables are organized
into a sequence of levels. Each level stores approximately ten times
as much data as the level before it. For example if 10% of the
database fits in memory, one search is required to reach the last
level. But if 1% fits in memory, LevelDB will require two searches.

The theoretical analysis shows that Riak meets scalability re-
quirements of a large-scale distributed system. Here we summarize
the requirements:

• Implicit placement of fragments and replicas.
• Bitcask backend has a limitation in size of tables but LevelDB

backend has no such limitation, and can be used instead.
• Eventual consistency that consequently brings a good level of

availability.
• No single point of failures as peer to peer (P2P) model is used.
• Scalable query execution approach that supports MapReduce

queries.

3.4 Cassandra
There are other distributed DBMSs which are not written in Erlang
but Erlang applications can access them by using a client library.
The Apache Cassandra is a highly scalable and available database
written in Java recommended for commodity hardware or cloud in-
frastructure [17]. Cassandra is used at Twitter, Cisco, OpenX, Digg,
CloudKick, and other companies that have large data sets. Cassan-
dra offers an automatic, master-less and asynchronous mechanism
for replication. Cassandra has a decentralized structure where all
nodes in a cluster are identical, and therefore, there is no single
point of failures and no network bottlenecks. Cassandra provides a
ColumnFamily-based data model which is richer than typical key/-
value systems. Large scale queries can be run on a Cassandra clus-
ter by using Hadoop MapReduce. Hadoop runs MapReduce jobs to



retrieve data from Cassandra by installing a TaskTracker on each
Cassandra node. This is an efficient way to retrieve data because
each TaskTracker only receives queries for data that the local node
is the primary replica. This avoids an overhead of the Gossip pro-
tocol.

Since both Riak and Cassandra are inspired by Amazon’s de-
scription of Dynamo [13], their methods for load-balancing, repli-
cation, and fragmentation are similar. So we do not repeat details
here. Erlang applications employ the Thrift API to use Cassandra.
There are also some client libraries for common programming lan-
guages such as Erlang, Python, Java, recommended to use instead
of raw Thrift. Cassandra meets the general principles of scalable
persistent storages, i.e.

• Implicit placement of fragments and replicas.
• ColumnFamily-based data model.
• Eventual consistency.
• No single point of failures due to using a P2P model.
• Scalable query execution approach by integrating Hadoop

MapReduce.

3.5 Discussion
The theoretical evaluation shows that Mnesia and CouchDB have
some scalability limitations, i.e. implicit placement of replicas and
fragments, single point of failures due to lack of P2P model (Sec-
tions 3.1 and 3.2). Dynamo-style NoSQL DBMS like Riak and
Cassandra do have a potential to provide scalable storage for large
distributed architecture as required by the RELEASE project (Sec-
tions 3.3 and 3.4). In Section 4 we investigate Riak scalability and
availability in practice.

4. Riak Scalability and Availability
This section investigates scalability of Riak DBMS, i.e. how system
throughput increases by adding Riak nodes. In addition to scalabil-
ity we measure Riak availability and elasticity. In an availability
benchmark we examine the effect of node failures. Elasticity is an
ability to cope with loads dynamically when the number of nodes
in the cluster changes.

We use the popular Basho Bench benchmarking tool for NoSQL
DBMS [3]. Basho Bench is an Erlang application that has a plug-
gable driver interface and can be extended to serve as a benchmark-
ing tool for data stores.

4.1 Experiment Setup
Platform. The benchmarks are conducted on the Kalkyl clus-
ter [26]. The Kalkyl cluster consists of 348 nodes with 2784 64-bit
processor cores connected via 4:1 oversubscribed DDR Infiniband
fabric. Each node comprises Intel quad-core Xeon 5520 2.26 GHz
processors with 8MB cache, and has 24GB RAM memory and 250
GB hard disk. The Kalkyl cluster runs Scientific Linux 6.0, a Red
Hat Enterprise Linux. Riak data is stored on the local hard drive of
each node.

Parameters. In the experiments we use Riak version 1.1.1. The
number of partitions, sometimes referred to as virtual nodes or
vnodes, is 2048. In general, each Riak node hosts N1 number of
vnodes, i.e.

N1 =
Nvnodes in the cluster

Nnodes in the cluster

Riak documentation recommends 16-64 vnodes per node,
e.g. 64-256 vnodes for a 4-node cluster. In the experiments we
keep the default setting for replication, i.e. data is replicated to

three nodes on the cluster. The number of replicas that must re-
spond to a read or write request is two, which is also the default
value.

4.2 How Does the Benchmark Work?
We have conducted the experiments on a cluster where each node
can be either a traffic generator or a Riak node. A traffic generator
runs one copy of Basho Bench that generates and sends commands
to Riak nodes. A Riak node contains a complete and independent
copy of the Riak package which is identified by an IP address and a
port number. Fig. 4 shows how traffic generators and Riak nodes are
organized inside a cluster. There is one traffic generator for every
three Riak nodes.

Each Basho Bench application creates and runs in parallel 90
Erlang process, i.e. workers (Fig. 5). We picked this particular
number of processes because it seems large enough to keep traf-
fic generators busy. Then, every worker process randomly selects
an IP address from a predefined list of Riak nodes. A worker pro-
cess randomly selects one of the following database operation: get,
insert, or update, and submits the corresponding HTTP or Pro-
tocol Buffer command to the selected IP address and port number.
The default port number for the HTTP communication is [8098],

Figure 4: Riak Nodes and Traffic Generators in Basho Bench

Figure 5: Structure of Basho Bench



Figure 6: Riak Throughput vs. Number of Nodes

Figure 7: Number of Failures vs. Number of Nodes

and for the protocol buffer the number is [8087]. A list of database
operations and corresponding HTTP commands is as follows:

1. Get corresponds to the HTTP GET command

2. Insert corresponds to the HTTP POST command

3. Update corresponds to the HTTP PUT command

4.3 Scalability Measurements
We measure how throughput rises as the number of Riak nodes
increases, i.e. on 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100-
node clusters. In the experiments the traffic generators issue as
much database commands as the cluster can serve. We repeat every
experiment three times. Fig. 6 depicts the mean values. The results
show that Riak scales linearly up to 60 nodes, but it does not scale
beyond 60 nodes. In Fig. 6 the green line represents variation, and
it is very small for the clusters with up to 60 nodes, but significantly
increases when the number of nodes increases.

Fig. 7 shows the number of failed operations. In a cluster with
up to 60 nodes the number of failures is 0, but when we increase
the size of the cluster failures emerge. For example there are 2 mil-
lion failures on a 70-node cluster, i.e. 1.3% of failures to the total
number of operations. From the log files the reason of the failures
is timeout. Fig. 8 shows the mean latency of successful operations.
The mean latency of operations in a 60-node cluster is approxi-
mately 21msec, which is much less than timeout, i.e. 60sec.

Figure 8: Mean Command Latency (Sec. 4.2) vs. Number of Nodes

4.4 Resource Scalability Bottlenecks
To identify possible bottlenecks of the Riak scalability we measure
the usage of random access memory (RAM), disk, cores, and net-
work.

Fig. 9 shows RAM utilisation on Riak nodes and traffic genera-
tors depending on the total number of nodes. The maximum mem-
ory usage is 720MB out of 24GB of total RAM memory, i.e. less
than 3%. We conclude that RAM is not a bottleneck for Riak scal-
ability.

Fig. 10 shows percentage of time that a disk spends serving
requests. The maximum usage of disk is approximately 10% on a
10-node cluster. Disk usage for traffic generators is approximately
0.5%. We conclude that disk is not a bottleneck for Riak scalability
either.

Fig. 11 shows mean core utilisation on 8-core Riak nodes and
traffic generators. As Riak is P2P we anticipate that all nodes
have similar mean utilisation. The maximum mean utlisation is
approximately 550%, so 5.5 cores of the 8 cores are used. We have
not yet measured the maximum load on all cores to be sure that
no core is overloaded, but the Figure shows that there are cores
available.

When profiling the network we count the number of the follow-
ing packets: sent, received, and retransmitted. Fig. 12 and 13 show
results for traffic generators and Riak nodes respectively. An in-
crease of the number of sent and received packets is consistent with
the increase of throughput. The number of sent and received pack-
ets increases linearly up to 60 nodes and beyond that there is a sig-
nificant decrease. To check whether there is a TCP incast [16, 21]

Figure 9: Maximum RAM Usage vs. Number of Nodes



Module Function Runtime on a cluster of
4 nodes 8 nodes 16 nodes 24 nodes

rpc call Tmean 1953 2228 8547 15180
Nmean 106591 77468 49088 31104

riak kv put fsm sup start put fsm Tmean 2019 2284 8342 13461
Nmean 104973 82070 48689 33898

Table 1: Two the Most Time-consuming Riak Functions

we count the number of retransmitted packets. In general, TCP in-
cast occurs when a number of storage servers send a huge amount
of data to a client, and Ethernet switch is not able to buffer the pack-
ets. When TCP incast strikes the number of lost packets increases
and consequently causes a growth in the number of retransmitted
packets. However, counting of the retransmitted packets shows that
TCP incast has not occurred during the benchmark. The maximum
number of retransmitted packets is 200 packets which is negligible.

A comparison of network traffic between traffic generators and
Riak nodes shows that Riak nodes produce five times more network
traffic than traffic generators. For example on a 10-node cluster
traffic generators send 100 million packets, whereas Riak nodes
send 500 million packets on the cluster of the same size. The reason
is due to the fact that to replicate and maintain data Riak nodes
in addition to communicating with generators also communicate
between each other.

Figure 10: Maximum Disk Usage vs. Number of Nodes

Figure 11: Core Usage on 8-core Nodes

4.5 Riak Software Scalability
The profiling above reveals that Riak scalability is not bound by
resources like memory or disk, so we need to investigate the scala-
bility of Riak software. It is well known that the frequency of global
operations limits scalability. Indeed in separate work we show the
limitations imposed by the percentage of global operations in Dis-
tributed Erlang [19].

While it is not feasible to search the entire Riak codebase for
global operations in the form of iterated P2P operations, we inves-
tigated two likely sources of global operations.

1. We instrument the global name registration module global.erl
to identify the number of calls, and the time consumed by
each global operation. The result shows that Riak makes no
global.erl calls.

2. We also instrument the genserver module gen server.erl.
Of the 15 most time-consuming operations, only the time

Figure 12: Network Traffic of Traffic Generators

Figure 13: Network Traffic of Riak Nodes



Figure 14: Throughput and Latency in the Availability and Elasticity Benchmark

of rpc:call grows with cluster size. Moreover, of the five
Riak RPC calls, only start put fsm function from mod-
ule riak kv put fsm sup grows with cluster size (Table 1).
Tmean shows the mean time that each function call takes to be
completed in microseconds and Nmean is the mean number of
times that a function is called during 5 minutes benchmarking
in 3 executions.

Independently, Basho [3] have analysed Riak scalability and had
identified the riak kv get/put fsm sup issue, together with a
scalability issue with statistics reporting. To improve the Riak scal-
ability Basho applied a number of techniques and introduced new
library sidejob (https://github.com/basho/sidejob). These modifi-
cations are available in Riak version 1.3 and upcoming version 1.4.
An overview of the modifications is presented below.

In Riak version 1.0.x through 1.2.x creating get/put FSM (Fi-
nite State Machine) processes go through two supervisor pro-
cesses, i.e. riak kv get/put fsm sup. The supervisors are im-
plemented as single-process gen servers and become a bot-
tleneck under heavy load, exhibiting build up in message queue
length. In Riak version 1.3 get/put FSM processes are created di-
rectly on the external API-handling processes that issue the re-
quests, i.e. riak kv pb object (protocol buffers interface) or
riak kv wm object (REST interface). To track statistics and un-
expected process exits without supervisors the get/put FSM pro-
cesses registere themselves asynchronously with a new monitoring
process riak kv getput mon. Similarly, to avoid another single

process bottleneck, Basho replaced RPC calls in the put FSM im-
plementation that forwards data to responsible nodes with direct
proc lib:spawn. This avoids another single-process bottleneck
through the rex server used by rpc:call. Riak version 1.3 also
has some refactoring to clean up unnecessary old code paths and
do less work, e.g. the original map/reduce cache mechanism that
was replaced by riak pipe was still having cache entries ejected
on every update.

In Riak version 1.4 the get/put FSM spawn mechanism was
replaced by a new mechanism presented in the sidejob library. The
library introduces a parallel mechanism for spawning processes and
enforces an upper limit on the number of active get/put FSMs to
avoid process table exhaustion when the node is heavily loaded.
Exhaustion of the process table has caused a cascade cluster failure
in a production deployments. The library was also used to eradicate
the bottleneck caused by the statistics reporting process.

4.6 Availability and Elasticity
Distributed database systems must maintain availability despite
network and node failures. Another important feature of distributed
systems is elasticity. Elasticity means an equal and dynamic distri-
bution of the load between nodes when resources (i.e. Riak nodes)
either removed or added to the system [10]. To benchmark Riak
availability and elasticity we run seven generators and twenty Riak
nodes. During the benchmark the number of generators remains
constant (seven) but the number of riak nodes changes. Fig. 15



shows that during the first 30 minutes of the benchmark there are 20
Riak nodes. We choose 30 minutes because we want to be sure that
the system is in a stable state. After 30 minutes nodes go down ev-
ery two minutes. In total 9 nodes go down until minute 48, i.e. ap-
proximately50% of failures. Between minutes 48 and 78 the system
has 11 Riak nodes. After minute 78 nodes come back every two
minutes. Thus, after minute 96 all 20 nodes are back. After minute
96 the benchmark runs on 20 Riak nodes for another 30 minutes.

Fig. 14 shows that when the cluster loses 50% of its Riak nodes
(between minutes 30 and 48) Riak throughput decreases and the
number of failures grows. However, in the worst case the number
of failures is 37 whereas the number of successful operations is
3.41 million. Between minutes 48 and 78 the throughput does not
change dramatically, and during and after adding new nodes the
throughput grows. Thus, we conclude that Riak has a very good
level of availability and elasticity.

4.7 Summary
Riak version 1.1.1 scales up to approximately 60 nodes linearly on
the Kalkyl cluster (Section 4.3). But beyond 60 nodes throughput
does not scale and timeout errors emerge (Fig. 6 and 7). To identify
the Riak scalability problem we profiled RAM, disk, cores, and
network (Section 4.4). The results of RAM and disk profiling show
that these cannot be a bottleneck for Riak scalability, maximum
RAM usage is 3%, and the maximum disc usage is 10%. Maximum
core usage on 8 core nodes is 5.5 cores, so cores are available. The
network profiling shows that the number of retransmitted packets
is negligible in comparison with the total number of successfully
transmitted packets, i.e. 200 packets out of 5 · 108 packets.

Our observations of Riak, together with correspondance with
the Basho developers reveal that the scalability limits are due to sin-
gle supervisor processes such as riak kv get/put fsm sup pro-
cesses and rex process in rpc.erl (Section 4.5). These scalability
obstacles were eliminated in Riak versions 1.3 and 1.4. Riak shows
very good availability and elasticity (Section 4.6). After losing 9
Riak nodes only 37 failures occured, whereas the number of suc-
cessful operations was 3.41 million. When failed nodes come back
up the throughput grows.

5. Conclusion and Future Work
We have rehearsed the requirements for scalable and available
persistent storage (Section 2), and evaluated four popular Erlang
DBMS against these requirements. We conclude that Mnesia and
CouchDB are not suitable persistent storage at our target scale, but
Dynamo-style NoSQL DBMS like Cassandra and Riak have the
potential to be (Section 3).

We have investigated the current scalability limits of the Riak
version 1.1.1 NoSQL DBMS using Basho Bench on 100-node
cluster with 800 cores. We establish for the first time scientifically

Figure 15: Availability and Elasticity Time-line

the scalability limit of Riak 1.1.1 as 60 nodes on the Kalkyl cluster,
thereby confirming developer folklore.

We show that resources like memory, disk, and network do
not limit the scalability of Riak (Section 4.5). By instrumenting
the global and gen server OTP libraries we identify a specific
Riak remote procedure call that fails to scale. We outline how
later releases of Riak are refactored to eliminate the scalability
bottlenecks (Section 4).

We conclude that Dynamo-like NoSQL DBMSs provide scal-
able and available persistent storage for Erlang. The RELEASE
target architecture requires scalability onto 100 hosts, and we are
confident that Dynamo-like NoSQL DBMSs will provide it. Specif-
ically the Cassandra interface is available and Riak 1.1.1 already
provides scalable and available persistent storage on 60 nodes.
Moreover the scalability of Riak is much improved in versions 1.3
and 1.4 and will continue to improve.

In ongoing work we are investigating the scalability limitations
of Distributed Erlang, and developing techniques to improve those
limitations [8]. The technologies we introduce may further improve
the scalability of persistent storage engines implemented in Dis-
tributed Erlang.
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