Abstract. This paper describes the results from a user evaluation of a robot bartender system, which supports situated, social interaction with multiple customers. The system is a Nao-based version of an existing robot bartender, developed in the JAMES project [1]. The Nao-based version has provided us with a local experimentation platform, bearing in mind that our focus is on social multi-user interaction, rather than the robot technology of object manipulation. We will describe the design of the Nao-based system and discuss the differences with the original JAMES system. The user evaluation is similar to an evaluation carried out recently with the JAMES robot, comparing a trained and a hand-coded version of the action selection component of the system, which uses Markov Decision Processes [2]. Task success was found to be almost 20% higher with the trained policy, with interaction times being about 10% shorter. Participants also rated the trained system as being significantly more natural, more understanding, and better at providing appropriate attention. These new results on the Nao platform confirm the conclusions of the previous experiment and provide further evidence in favour of the trained action selection mechanism.

1 Introduction

The use of service robots in the home as well as in public spaces has become increasingly viable over the last decade. The development of effective and robust models for social multi-user human robot interaction is continuing to be vital to this development. This paper builds on previous work on using machine learning techniques in this area, applied to the example of a robot bartender. This bartender should not only be task effective, i.e., taking orders from customers and serving the drinks they ordered, but also exhibit socially appropriate behaviour, e.g., serve multiple customers in the appropriate order, and follow other social conventions such as greeting and responding to a customer’s “thank you” with “you’re welcome”, making interactions with the robot more acceptable and pleasant for customers.
With the purpose of testing and evaluating such models for social interaction locally on a regular basis, the bartender system developed in the JAMES project\footnote{EU FP7 project JAMES: james-project.eu} was ported to a Nao torso robot platform. Although the Nao is not physically able to serve drinks, with our focus on social multi-user interaction rather than on object manipulation, we are able to perform meaningful experiments with this platform.

Using the Nao platform, we carried out a user evaluation similar to that described in [2], that focused on comparing a hand-coded and trained version of the action selection component of the system. Based on the current social state, which contains relevant higher level information such as which customers are present, whether a customer is seeking attention, or what they want to order, this action selection component decides what action (communicative and/or non-communicative) the robot should produce next.

The paper is organised as follows. In Section 2 we describe the Nao-based robot bartender system and contrast it with the original JAMES system. In Section 3 we describe in more detail the action selection component that the evaluation is focused on, called the Social Skills Executor (SSE). The evaluation itself is described in Section 4, followed in Section 5 by the results and discussion. The paper is concluded in Section 6.

2 Robot bartender system

The JAMES robot bartender [1] is equipped with modules for vision and speech processing, along with modules controlling the robot behaviour. The robot behaviour is realised in the form of both speech and head/arm gestures. Based on observations about the users in the scene, the system maintains a model of the social context, and decides on effective and socially appropriate responses in that context. The system thus aims to engage in, maintain, and close interactions with users, take a user’s order via spoken conversation, and serve their drinks. For the Nao-based bartender, we implemented versions of the vision system and the robot behaviour controller making use of a Nao torso robot and a single Microsoft Kinect as shown in Figure 1.
2.1 Vision module

The full JAMES computer vision system [3] tracks the location, facial expressions, gaze behaviour, and body language of all people in the scene in real time, integrating signals from multiple sensors including two calibrated stereo cameras and a Microsoft Kinect depth sensor. For the current study, we have developed a vision system that uses only a single Kinect sensor to track the location and torso orientation of all customers, using the built-in skeleton tracking provided by the Kinect for Windows SDK [4] as shown in Figure 2. Although the features tracked by the Kinect-based vision system are a subset of those handled by the full JAMES system, the information it publishes is still sufficient to for the Social State Recogniser (SSR) [5] to estimate the social state of all customers for use in interaction management as described below.

![Kinect-based vision system](image)

Fig. 2. Kinect-based vision system

2.2 Realisation of robot actions

As shown in Figure 1, the Nao robot hardware consists of two 5-degrees-of-freedom arms with hands, along with a head with 2-degrees-of-freedom for pan and tilt. The robot head is equipped with multi colour LED lights, along with two speakers in its ears for producing synthesised speech, and a camera which can capture 30 images/second. The Nao torso has an embedded computer provided with an API developed in Python [6] for programming different gestures and for data acquisition from sensors. A set of Nao robot behaviours was developed for the bartender domain, based on those supported by the full JAMES robot.
These behaviours were mainly verbal or gesture actions. The verbal actions were realised using the Nao’s built-in text-to-speech facilities, while the gesture actions (non-verbal) were realised using motion from hands and the robot head. Table 1 lists the behaviours supported by the Nao in this domain.

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Say</td>
<td>The Nao speaks the text with default TTS</td>
</tr>
<tr>
<td>LookAt</td>
<td>Look at a given location position in space</td>
</tr>
<tr>
<td>Nod</td>
<td>Nodding or shaking head</td>
</tr>
<tr>
<td>GreetExpression</td>
<td>Nao greets by waving hand</td>
</tr>
<tr>
<td>ServeDrink</td>
<td>Makes a grabbing action and brings the hand to a serving position</td>
</tr>
<tr>
<td>SmileExpression</td>
<td>Eyes changes colour, or head and body move to show joy</td>
</tr>
</tbody>
</table>

Table 1. Nao behaviours for the bartender domain

3 Social Skills Execution

The Social Skills Executor (SSE) controls the behaviour of the robot bartender by selecting non-communicative robot actions and/or communicative actions, along with descriptions of their multi-modal realisations, based on the social state updates it receives from the SSR. In the bartender domain, the non-communicative actions typically involve serving a specific drink to a specific user, whereas the communicative actions have the form of dialogue acts [7], directed at a specific user, e.g., `setQuestion(drink)` (“What would you like to drink?”) or `initialGreeting()` (“Hello”). Full details of the SSE are presented in [2]; we summarise the main points here.

In our design of the SSE, the decision making process resulting in such actions (or the decision to do nothing) consists of three stages: 1) social multi-user coordination: managing the system’s engagement with the users present in the scene (e.g., accepting a user’s bid for attention, or proceeding with an engaged user), 2) single-user interaction: if proceeding with an engaged user, generating a high-level response to that user, in the form of a communicative act or physical action (e.g., greeting the user or serving him a drink), and 3) multi-modal fission: selecting a combination of modalities for realising a chosen response (e.g., a greeting can be realised through speech and/or a nodding gesture). Note that all non-verbal aspects of these actions make use of the Nao behaviours described above; in particular, the serving of drinks is done “symbolically” through a special gesture of placing an imaginary drink on the bar.

For the multi-user coordination and single-user interaction stages, the decision making process happens through a combination of two Markov Decision Process (MDP) models, which can be trained using reinforcement learning in interaction with a Multi-User Simulated Environment (MUSE) developed for this
purpose [2]. The MUSE allows for rapidly exploring the large space of possible states in which the SSE must select actions. A reward function that incorporates individual rewards from all simulated users in the environment is used to encode preferred system behaviour in a principled way. A simulated user assigns a reward if they are served the correct drink, and gives penalties associated with their waiting time and various other forms of undesired system responses.

The architecture for interactions in simulation using MUSE includes both SSE and SSR. MUSE produces inputs for the SSR: a) a multi-channel vision input stream containing information about the visible users, including their location and gaze direction; b) speech events in the form of user dialogue acts; c) rewards provided by the simulated users; and d) feedback about the execution of robot actions. MUSE also processes the output of the SSE to simulate action execution: the start of the action is signalled to the SSR, and when an action is completed, it is made available for processing by the simulated users. So in the simulated environment, actions have a duration (in terms of a number of frames), and MUSE can thus produce an input stream for the SSR, whereas the SSE processes input and generates output on the basis of events.

4 User evaluation

For the user evaluation of the Nao based robot bartender, 48 subjects were recruited and asked to interact with the system, resulting in a total of 96 two-user interactions. Each pair of subjects interacted four times with the system, two times whilst running the hand-coded SSE (labelled SSE-HDC), and two times whilst running the trained SSE (SSE-TRA), in varying orders. Before the four interactions, both users of each pair determined which of the three possible drink types (coke, blue lemonade, or green lemonade) they were going to order.

4.1 Godspeed evaluation

As a way to evaluate the overall impression of the Nao-based system, the subjects were asked to fill out a Godspeed questionnaire [8] before and after being exposed to the system. This was to give use some insight into whether the users’ expectations about the system were met. The questionnaire consists of five sets of questions, but in the interest of time we limited that to the two categories that interested us most, namely likeability and perceived intelligence (Figure 3).

4.2 Subjective evaluation metrics

In order to compare the two versions of the system in terms of subjective performance, every subject filled out a questionnaire after each of the four interactions, as shown in Figure 4. The questions were designed to measure perceived system performance in terms of task success, ease of seeking the robot’s attention, ease of making the robot understand an order, and naturalness of the interaction.
Godspeed III: Likeability
Please rate your impression of the robot on these scales:

<table>
<thead>
<tr>
<th>Scale</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dislike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Like</td>
</tr>
<tr>
<td>Unfriendly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Friendly</td>
</tr>
<tr>
<td>Unkind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kind</td>
</tr>
<tr>
<td>Unpleasant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pleasant</td>
</tr>
<tr>
<td>Awful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nice</td>
</tr>
</tbody>
</table>

Godspeed IV: Perceived Intelligence
Please rate your impression of the robot on these scales:

<table>
<thead>
<tr>
<th>Scale</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incompetent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Competent</td>
</tr>
<tr>
<td>Ignorant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knowledgeable</td>
</tr>
<tr>
<td>Irresponsible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Responsible</td>
</tr>
<tr>
<td>Unintelligent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intelligent</td>
</tr>
<tr>
<td>Foolish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sensible</td>
</tr>
</tbody>
</table>

Fig. 3. Godspeed questionnaire sections used for evaluation. Note that for the pre-experiment test the questions were formulated to ask about the users’ expectation about the robot: “Please rate your expectation about the robot …”.

Q1: What did you try to order? [coke/blue lemonade/green lemonade]
Q2: Did you successfully order a drink from the bartender? [Y/N]

Please state your opinion on the following statements:

Q3: It was easy to attract the bartender’s attention [1–6]
Q4: The bartender understood me well [1–6]
Q5: The interaction with the bartender felt natural [1–6]
Q6: Overall, I was happy about the interaction [1–6]

Fig. 4. User questionnaire after each interaction
4.3 Objective evaluation metrics

Besides the subjective evaluation we also analysed the logged data, resulting in a number of objective evaluation metrics. These metrics are averages for the following values for each user in each interaction:

- Attention seeking time: the time in seconds between the moment of detection and the moment the user is detected as seeking attention by the social state recogniser;
- Interaction time: the time in seconds between the moment of detection by the vision system and either the moment a drink has been served to that user, or, if the user was not served, the moment the user leaves the scene (i.e., is no longer visible by the system);
- Serving time: the time in seconds between the moment of the user recognised as seeking attention and the moment the user has been served a drink (assuming the user has been served at all);
- Number of SSE level 1 decisions: the number of times the SSE multi-user coordination policy was triggered to make a decision;
- Number of SSE level 2 decisions: the number of times the SSE single user interaction policy was triggered to make a decision;
- Number of speech input events: the number of times the Kinect speech processing module detected speech input;
- Number of speaker identification failures: the number of times the social state recogniser could not assign speech input to a known customer;
- Number of ASR failures: the number of times speech input was discarded because the confidence score was below the threshold of 0.5.

5 Results and discussion

5.1 Godspeed questionnaire

The results from the Godspeed questionnaire pre and post test are shown in Figure 5. The responses on all questions decreased from the pre test to the post test: on the likeability questions, only a marginal decrease was observed, whereas the decreased in perceived intelligence was significant at $p < 0.05$ on a Wilcoxon signed rank test. The currently rather limited task domain supported by the system is likely one of the reasons why people perceived the robot as less intelligent than they had expected beforehand. On the other hand, the behaviour of the bartender system did not have as much effect on the users’ impression in terms of likeability. Note that a general decrease in Godspeed scores was also found in a similar experiment carried out recently with the full JAMES robot system [9].

5.2 Subjective scores

The results from the questionnaire in Table 4 are given in Table 2, in the form of a percentage (success rate) for question Q2, and average scores for questions Q3 to Q6. The trained SSE significantly outperforms the hand coded SSE on all scores ($p < 0.05$ on a Wilcoxon signed rank test).
5.3 Objective analysis

The results of the objective analysis of the experiments are summarised in Table 3. The average time between detecting a user and recognising them to seek attention (AvgAttTime) was very short and only marginally longer for the interactions with the SSE-TRA. This is according to expectations since subjects were asked to enter the scene and (immediately) approach the robot to order a drink, and the SSE component does not play a direct role in recognising users seeking attention. The average time of interactions (AvgIntTime) with the SSE-TRA were shorter than those with the SSE-HDC, suggesting that the trained policy resulted in more efficient interactions. Also the average time it takes to serve a user (AvgServTime) is shorter for the SSE-TRA. Part of this difference in performance can be explained by the performance of the speech processing component. In the SSE-HDC interactions, the speech rejection rate (rejections due to failed speaker identification, SpeakerIdFailRate, or due to the ASR confidence score being too low, AsrConfRejRate) is 6% higher, which would affect the overall performance. However, this difference is not statistically significant.
Table 3. Objective measurements on the logs of the collected interactions, comparing the hand-coded and trained SSE (indicated by SSE-HDC and SSE-TRA respectively), where statistically significant differences are marked with an asterisk.

<table>
<thead>
<tr>
<th></th>
<th>SSE-HDC</th>
<th>SSE-TRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvgAttTime</td>
<td>0.519</td>
<td>0.617</td>
</tr>
<tr>
<td>AvgIntTime *</td>
<td>45.119</td>
<td>40.492</td>
</tr>
<tr>
<td>AvgServTime</td>
<td>30.166</td>
<td>27.172</td>
</tr>
<tr>
<td>AvgNumDecs1</td>
<td>14.56</td>
<td>14.21</td>
</tr>
<tr>
<td>AvgNumDecs2</td>
<td>5.56</td>
<td>6.00</td>
</tr>
<tr>
<td>AvgNumDecs2a</td>
<td>2.83</td>
<td>3.79</td>
</tr>
<tr>
<td>SpeakerIdFailRate</td>
<td>44.63%</td>
<td>46.78%</td>
</tr>
<tr>
<td>AsrConfRejRate</td>
<td>56.60%</td>
<td>50.62%</td>
</tr>
</tbody>
</table>

The results from the human user evaluation presented here indicate that in terms of subjective measures as well as objective interaction time, the trained SSE outperforms the hand-coded version. This result confirms the findings in [2], where the trained SSE also obtained better subjective scores overall, and a significantly better score for perceived success.

One of the main differences between the two SSE versions is that in the initial state of a single user interaction, the hand-coded SSE decides randomly between asking the user for their order and doing nothing, i.e., waiting for the user to order on their own initiative, whereas the trained SSE always asks the user immediately for their order. This difference is also reflected in the average number of decisions made by the single user interaction policies in Table 3. Especially when no-action decisions are excluded, this number (AvgNumDecs2a) is higher for the SSE-TRA policy because it asks the user for their order more often. Although in real bar situations, it seems perfectly reasonable to assume that a customer can order without the bartender explicitly asking, in this more artificial human-robot interaction setting, this strategy might have been too confusing, resulting in the lower scores presented above.

6 Conclusion

We have presented a socially intelligent robot bartender, ported to the Nao torso robot platform. This new robot bartender is not capable of actually serving drinks, but using a gesture for this action, sufficiently realistic interactions can be supported for useful multi-user human robot interaction experiments.

Using the new Nao robot bartender system we carried out a user evaluation, focused on comparing a trained and hand-coded version of the Social Skills Executor (SSE), the action selection component of the system. The results confirmed the results from a similar, recent evaluation on the original robot bartender system [2], and provided even further evidence in favour of the trained...
version of the SSE, which received significantly higher subjective scores than the
hand-coded version, and objectively also resulted in more efficient interactions.
Task success was found to be almost 20% higher with the trained policy, with
interaction times being about 10% shorter. Participants also rated the trained
system as being significantly more natural, more understanding, and better at
providing appropriate attention.

For future work we plan to extend the functionality of the system, aiming
at more natural interactions. Another aim is to use the data collected on the
new platform to adapt the current models which were based on human-human
interactions in real bars as well as human robot interaction data collected with
the original JAMES robot bartender.

Acknowledgements

The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007–2013) under grant agree-
ment no. 270435, JAMES: Joint Action for Multimodal Embodied Social Sys-

References