
A Parallel, Backjumping Subgraph
Isomorphism Algorithm using
Supplemental Graphs

Ciaran McCreesh and Patrick Prosser



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

The Subgraph Isomorphism Problem

Given a little pattern graph and a large target graph, find “a
copy of” the pattern inside the target.

c d

ba

� 1

5 6

32

4

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 1 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

The Subgraph Isomorphism Problem

Given a little pattern graph and a large target graph, find “a
copy of” the pattern inside the target.

c d

ba

� 1

5 6

32

4

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 1 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Applications

Bioinformatics and chemistry.

Computer vision and pattern recognition.

Fraud detection and law enforcement.

Model checking.

Social network analysis.

Code generation in compilers.

Diseased cows.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 2 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

The Basic CP Model

One variable for each vertex in the pattern graph, with the
domains being the vertices of the target graph.

If two vertices are adjacent in the pattern, their values must be
adjacent in the target.

In the induced variant, non-adjacent vertices must be mapped
to non-adjacent vertices. We only discuss the non-induced
variant in this talk.

Each pattern vertex must be given a different value.

Often enhanced: for example, we can filter based upon degree.

Another perspective: find an injective mapping from the
pattern to the target, which preserves adjacency.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 3 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Selected Previous Work

VF2: backtracking search, interesting heuristics. Widely used.

A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs. Luigi P.

Cordella, Pasquale Foggia, Carlo Sansone and Mario Vento. IEEE Trans.

Pattern Anal. Mach. Intell., 2004.

LAD: locally all-different, and neighbourhood degree sequences.

AllDifferent-based filtering for subgraph isomorphism. Christine Solnon. Artif.

Intell., 2010.

SND: distance-based filtering.

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism

Problem. Gilles Audemard, Christophe Lecoutre, Mouny Samy Modeliar, Gilles

Goncalves and Daniel Porumbel. CP 2014.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 4 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Being Clever is Expensive

We want to work with up to 1,000 pattern vertices, and 10,000
target vertices.

When LAD and SND fail, they often manage less than one
recursive call per second, particularly with larger target graphs.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 5 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Our Approach

Cheaper inference: 104 to 106 recursive calls per second.

Expensive preprocessing once at the top of search, rather than
computing distances and degree sequences during search.

FC-CBJ instead of MAC.

A counting-based all-different propagator, which does more
than pairwise- 6= AC but less than GAC.

Bit-parallelism for all major operations.

Thread-parallel search.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 6 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Supplemental Graphs

Adjacent vertices must be mapped to adjacent vertices.
Used by SND:

Vertices that are distance 2 apart must be mapped to vertices
that are within distance 2.
Vertices that are distance k apart must be mapped to vertices
that are within distance k .

c d

ba

6� 1

5 6

32

4

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 7 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Supplemental Graphs

Gd is the graph with the same vertex set as G , and an edge
between v and w if the distance between v and w in G is at
most d .

For any d , a subgraph isomorphism i : P � T is also a
subgraph isomorphism id : Pd � T d .

c d

ba

6� 1

5 6

32

4

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 7 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Supplemental Graphs

We can do something stronger: rather than looking at
distances, we can look at (simple) paths, and we can count
how many there are.

This is NP-hard in general, but only lengths 2 and 3 and
counts of 2 and 3 are useful in practice.

We construct these graph pairs once, at the top of search, and
use them for degree-based filtering at the top of search, and
“adjacency” filtering during search.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 7 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Counting-Based All-Different

One pass through the variables, from smallest domain to
largest.

Track unions of domains as we go along.

Eliminate any detected Hall sets from future variables.

This can miss some deletions, but has a very fast bitset
implementation for large domains.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 8 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Backjumping

Rather than backtracking on failure, we can sometimes show
it’s safe to jump back several levels immediately.

This can be done with without explicit conflict sets, and
without modifying propagators.

Producing smaller conflict sets from a failed all-different gives
better results.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 9 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Experimental Setup

Dual Intel Xeon E5-2640 v2 (Q3’13), 64GBytes RAM. Our
code is C++, LAD and VFLib are C, SND is Java.

2,487 pairs of instances, selected by other people:

Real-world graphs.
2D images and 3D meshes from computer vision applications.
Random (simple, scale-free, 4D mesh, bounded degree).

Up to 900 vertices and 12,410 edges in the pattern, and 5,944
vertices and 34,210 edges in a target. A mix of satisfiable and
unsatisfiable instances, although there is a bias towards
satisfiable instances. . .

Please donate your subgraph isomorphism problem instances:
http://liris.cnrs.fr/csolnon/SIP.html

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 10 / 23

http://liris.cnrs.fr/csolnon/SIP.html


Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)



Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)

VF2



Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)

LAD



Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)

SND



Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)

Glasgow



Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)

VF2

2487

2250

2300

2350

2400

2450

1m 1h 1d

Glasgow

SND
LAD



Versus Virtual Best Other Solver

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

O
u

r
se

q
u

en
ti

a
l

ru
n

ti
m

e
(m

s)

Virtual best other solver runtime (ms)

LAD

VF2

SND

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Versus Virtual Best Other Solver

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

O
u

r
se

q
u

en
ti

a
l

ru
n

ti
m

e
(m

s)

Virtual best other solver runtime (ms)

LAD

VF2

SND

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Backjumping?

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

R
u

n
ti

m
e

w
it

h
B

a
ck

ju
m

p
in

g
(m

s)

Runtime without Backjumping (ms)

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Backjumping?

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

R
u

n
ti

m
e

w
it

h
B

a
ck

ju
m

p
in

g
(m

s)

Runtime without Backjumping (ms)

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Counting All-Different?

100

101

102

103

104

105

106

107

108

109

100 101 102 103 104 105 106 107 108 109

R
ec

u
rs

iv
e

ca
ll
s

w
it

h
m

a
tc

h
in

g
-b

a
se

d
a

ll
-d

iff
er

en
t

Recursive calls with counting-based all-different

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Counting All-Different?

100

101

102

103

104

105

106

107

108

109

100 101 102 103 104 105 106 107 108 109

R
ec

u
rs

iv
e

ca
ll
s

w
it

h
m

a
tc

h
in

g
-b

a
se

d
a

ll
-d

iff
er

en
t

Recursive calls with counting-based all-different

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Counting All-Different?

100

101

102

103

104

105

106

107

108

109

100 101 102 103 104 105 106 107 108 109

R
ec

u
rs

iv
e

ca
ll
s

w
it

h
co

u
n

ti
n

g
-b

a
se

d
a

ll
-d

iff
er

en
t

Recursive calls with value-deleting all-different

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Parallel Preprocessing

Constructing supplemental graphs is expensive, but we have
lots of cores.

Parallelising the loops is entirely (mostly. . . ) routine and not
very interesting, but good at offsetting the cost of
supplemental graph construction.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 15 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Parallel Tree-Search

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 16 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Parallel Tree-Search

Explicit deterministic early-first work stealing, to offset
incorrect decisions early in search.

There are EHPs, and this gets rid of them more cheaply than
discrepancy searches.

Backjumping is a nested parallel fold with left-zero elements.

Speculative, so we should not expect linear speedups (even on
unsat instances).

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 16 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Sidenote on Safety, Parallelism, and Benchmarking

All comparisons are against a dedicated sequential
implementation of a strong algorithm, not a threaded
implementation run with one thread.

The way we do parallelism guarantees:

Parallel search will never be substantially worse than sequential
search.
Adding more cores will never make things substantially worse
(excluding hardware weirdness).
Running it twice will give more or less the same runtimes.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 17 / 23



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Parallel Experiments

2 CPUs, 8 cores per CPU, hyper-threaded, so 32 software
threads.

We do not have 32 times the computation power, and only
about twice the memory bandwidth. . .

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 18 / 23



Speedups

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

P
ar

a
ll
el

R
u

n
ti

m
e

(m
s)

Sequential Runtime (ms)

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Speedups

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

P
ar

a
ll
el

R
u

n
ti

m
e

(m
s)

Sequential Runtime (ms)

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Is Comparing Sequential and Parallel Solvers Fair?

Personal view: single-threaded for understanding “inside search”
behaviour, but “horse race” benchmarks should be a
free-for-all.

You’re paying for multi-core even if you aren’t using it.

Java uses multiple cores even for sequential code, so the
sequential benchmarks were unfair.

You are welcome to disagree, and ignore the following two
slides.

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 20 / 23



Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)

Glasgow



Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)

Parallel



Cumulative Instances Solved

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u

m
u

la
ti

ve
N

u
m

b
er

o
f

In
st

a
n

ce
s

S
o

lv
ed

Runtime (ms)

VF2

2487

2250

2300

2350

2400

2450

1m 1h 1d

Parallel

Glasgow

SND
LAD



Versus Virtual Best Other Solver

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

O
u

r
se

q
u

en
ti

a
l

ru
n

ti
m

e
(m

s)

Virtual best other solver runtime (ms)

LAD

VF2

SND

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Versus Virtual Best Other Solver

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

O
u

r
p

ar
a

ll
el

ru
n

ti
m

e
(m

s)

Virtual best other solver runtime (ms)

LAD

VF2

SND

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Subgraph Isomorphism Our Algorithm Sequential Experiments Thread Parallelism Future Work

Conspicuously Absent From This Talk

Labels? Directed edges? Induced? Wildcards?

Why that choice of supplemental graphs, using only paths of
lengths 2 and 3? It seems rather arbitrary. Can we do better
with domain knowledge, or with portfolios?

Caching supplemental targets (graph databases) or patterns
(code generation, kidney exchange).

Why does that counting all-different propagator do so well in
practice? Is it only subgraph isomorphism where it helps?

Ciaran McCreesh and Patrick Prosser

A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs 23 / 23



Reproduce, replicate, or recompute this paper:
http://dcs.gla.ac.uk/~ciaran

Tell me whether it worked:
c.mccreesh.1@research.gla.ac.uk

Donate your subgraph isomorphism problem instances:
http://liris.cnrs.fr/csolnon/SIP.html

http://dcs.gla.ac.uk/~ciaran
mailto:c.mccreesh.1@research.gla.ac.uk
http://liris.cnrs.fr/csolnon/SIP.html

	Subgraph Isomorphism
	Our Algorithm
	Sequential Experiments
	Thread Parallelism
	Future Work

