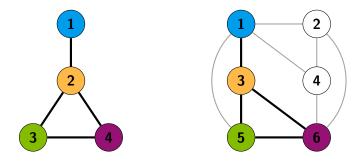

Heuristics and Really Hard Instances for Subgraph Isomorphism Problems Ciaran McCreesh, Patrick Prosser and James Trimble



Non-Induced Subgraph Isomorphism

Ciaran McCreesh, Patrick Prosser and James Trimble

Non-Induced Subgraph Isomorphism

Ciaran McCreesh, Patrick Prosser and James Trimble

Benchmarking

- Based upon chemical and computer vision datasets, we can handle patterns with 1,000 vertices and targets with 10,000 vertices.
- Do these results reflect the worst case, or are they too optimistic?
- Can we create "hard" benchmark instances?

Ciaran McCreesh, Patrick Prosser and James Trimble

Randomly Selected Subgraphs

- Start with a random target graph.
- Pick vertices at random to make a pattern.
- Shuffle the numbering.

Ciaran McCreesh, Patrick Prosser and James Trimble

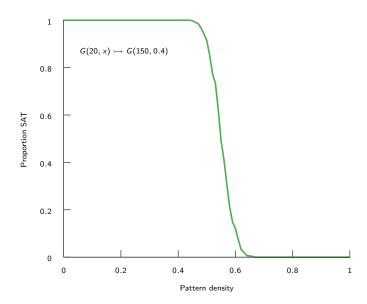
Randomly Selected Subgraphs

- Start with a random target graph.
- Pick vertices at random to make a pattern.
- Shuffle the numbering.
- These instances will always be satisfiable!

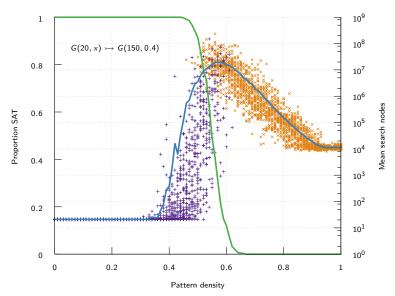
Ciaran McCreesh, Patrick Prosser and James Trimble

Independently Random Subgraphs

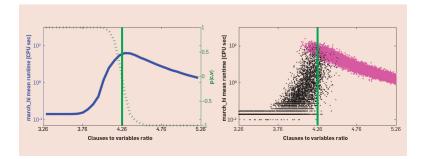
- Make a random target graph.
- Independently, make a random pattern graph.


Ciaran McCreesh, Patrick Prosser and James Trimble

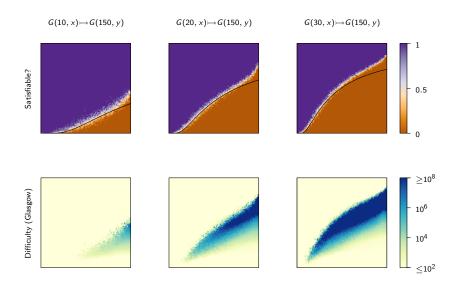
Independently Random Subgraphs


- Make a random target graph.
- Independently, make a random pattern graph.
- Will these instances ever be satisfiable?

Ciaran McCreesh, Patrick Prosser and James Trimble

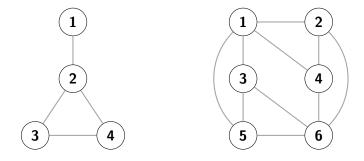

A Phase Transition

A Phase Transition

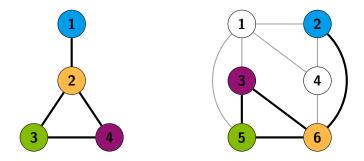


This Looks Familiar...

Understanding the Empirical Hardness of NP-Complete Problems. Kevin Leyton-Brown, Holger H. Hoos, Frank Hutter, Lin Xu. Communications of the ACM, Vol. 57 No. 5, Pages 98-107

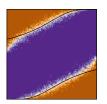

In Two Dimensions?

See The Paper For...


- Is this behaviour solver-independent?
- Estimating the phase transition location.
- Using this to rediscover variable and value ordering heuristics.

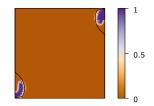
Induced Subgraph Isomorphism

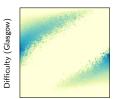
Ciaran McCreesh, Patrick Prosser and James Trimble

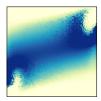

Induced Subgraph Isomorphism

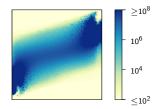
Ciaran McCreesh, Patrick Prosser and James Trimble

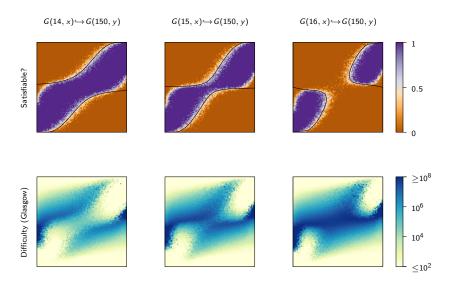
Induced in 2D

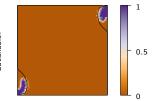

Satisfiable?



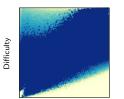

 $G(10, x) \hookrightarrow G(150, y)$

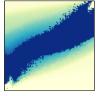

 $G(20, x) \hookrightarrow G(150, y)$



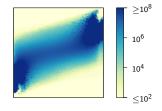


What Changes Between 10 and 20?



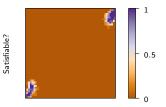

Is The Central Region Really Hard?

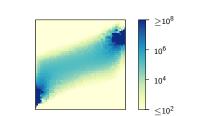
 $G(30, x) \hookrightarrow G(150, y)$



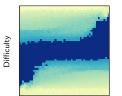
Satisfiable?

LAD




Glasgow

VF2


What About Encodings or Reductions?

 $G(25, x) \hookrightarrow G(75, y)$

Clasp (PB)

BBMC (Clique)

Glasgow

Constrainedness

$$\kappa = 1 - \frac{\log\left(t^{\underline{p}} \cdot d_t^{d_p \cdot \binom{p}{2}} \cdot (1 - d_t)^{(1 - d_p) \cdot \binom{p}{2}}\right)}{\log t^{\underline{p}}}$$

Ciaran McCreesh, Patrick Prosser and James Trimble

Constrainedness versus Difficulty

 $G(10, x) \hookrightarrow G(150, y)$ $G(20, x) \hookrightarrow G(150, y)$ $G(30, x) \hookrightarrow G(150, y)$ $\geq \! 10^8$ Difficulty (Glasgow) 10⁶ 10⁴ $\leq 10^2$ 3 Constrainedness 2 0

See The Paper For...

- More on solver-independence and reductions.
- Estimating the phase transition location.
- Using this to invent new variable and value ordering heuristics.
 - But something unexpected happens this time!

Ciaran McCreesh, Patrick Prosser and James Trimble

Future Work

- Other randomness models (bounded degree, regular, scale-free).
- Better estimates of the phase transition location for very sparse or very dense patterns.
 - This needs a horrible variance calculation. Please get in touch if you like doing this sort of thing.
- Dynamic heuristics?

Ciaran McCreesh, Patrick Prosser and James Trimble

http://www.dcs.gla.ac.uk/~ciaran

c.mccreesh.1@research.gla.ac.uk