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Benchmarking

Based upon chemical and computer vision datasets, we can
handle patterns with 1,000 vertices and targets with 10,000
vertices.

Do these results reflect the worst case, or are they too
optimistic?

Can we create “hard” benchmark instances?
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Randomly Selected Subgraphs

Start with a random target graph.

Pick vertices at random to make a pattern.

Shuffle the numbering.

These instances will always be satisfiable!
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Independently Random Subgraphs

Make a random target graph.

Independently, make a random pattern graph.

Will these instances ever be satisfiable?
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A Phase Transition
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This Looks Familiar. . .

Understanding the Empirical Hardness of NP-Complete Problems.
Kevin Leyton-Brown, Holger H. Hoos, Frank Hutter, Lin Xu.
Communications of the ACM, Vol. 57 No. 5, Pages 98-107
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In Two Dimensions?
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See The Paper For. . .

Is this behaviour solver-independent?

Estimating the phase transition location.

Using this to rediscover variable and value ordering heuristics.
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Induced Subgraph Isomorphism
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Induced in 2D
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What Changes Between 10 and 20?
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Is The Central Region Really Hard?
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What About Encodings or Reductions?
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Constrainedness

κ = 1 −
log

(
tp · dtdp ·(

p
2) · (1 − dt)

(1−dp)·(p2)
)

log tp
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Constrainedness versus Difficulty
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See The Paper For. . .

More on solver-independence and reductions.

Estimating the phase transition location.

Using this to invent new variable and value ordering heuristics.

But something unexpected happens this time!
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Future Work

Other randomness models (bounded degree, regular, scale-free).

Better estimates of the phase transition location for very sparse
or very dense patterns.

This needs a horrible variance calculation. Please get in touch if
you like doing this sort of thing.

Dynamic heuristics?
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http://www.dcs.gla.ac.uk/~ciaran
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