
Efficiency Comparison of Document Matching

Techniques

Patrice Lacour, Craig Macdonald, and Iadh Ounis

Department of Computing Science,
University of Glasgow, Glasgow, G12 8QQ, UK.

{lacourp,craigm,ounis}@dcs.gla.ac.uk

Abstract. Inverted indices are one of the most commonly used tech-
niques to search very large document collections. While the typical size
of web document collections is constantly increasing, users have come to
expect a very quick response time, and accurate search results. Hence,
to make best use of available hardware resources, efficient and effective
retrieval techniques are desirable. We review several state-of-the-art ap-
proaches for matching documents to query terms, based on term-centric
and document-centric scoring. We test the techniques using three modern
Web Information Retrieval (IR) test collections, and conclude in terms
of the trade-off between retrieval effectiveness and efficiency.

1 Introduction

Inverted indices are one of the most commonly used techniques to search very
large document collections. Usually, these contain for each term a stream of
postings, i.e. the id of every document that the term occurs in, and the frequency
of the term in that document [18]. Other information may also be stored in the
posting list, such as term position information, or the HTML tags where the
term occurs within the document [3]. In this paper, we only consider a simple
inverted index containing the document identifier and term frequency postings.

The most common method for scoring documents retrieved in response to
a query (when using a bag-of-words retrieval approach) is to score each occur-
rence of a query term in a document using the information contained in its
corresponding posting list in the inverted file, and combining these scores for
each document. However, for terms with low discriminatory power, then every
document the term occurs in must be scored, leading to high retrieval time
without benefit to retrieval effectiveness.

While parallelised retrieval can mitigate the cost of high retrieval time, three
other matching approaches exist to reduce retrieval times, by trading off with
the overall effectiveness of system: Firstly, the pruning of low value documents
or terms from the inverted indices [2, 14]; secondly, ordering inverted indices
postings by their impact on retrieval [12]; thirdly avoiding scoring all occurrences
of the query terms. The focus of this work is to assess various techniques for
efficient matching in the latter case. Broadly, these efficient matching techniques

fall into two categories - scoring by each term, or scoring by documents - known
as Term-at-a-time (TAAT) and Document-at-a-time (DAAT), respectively.

We experiment using these techniques, and integrate them into an existing IR
platform. The platform provides a classical TAAT approach where every term oc-
currence for each query term is evaluated, and we apply this as the baseline in our
experiments. Moreover, several DAAT approaches utilise an improved inverted
index format, which allows the decompression of documents that are unlikely to
be relevant to be skipped - indeed we experiment with two skipping strategies.
All our experiments are conducted in a uniform experimental setting, consisting
of several standard Web IR test collections of varying size. We conclude in terms
of retrieval effectiveness, retrieval efficiency, and for the inverted index skipping
techniques, the additional disk space required by the skipping structures. The
contributions of this paper are two-fold: firstly, an in-depth study of the effi-
ciency versus the effectiveness of various matching techniques, and, secondly,
to relate the findings to the statistics of the applied test collections. Our work
differs from that of other studies such as that of Cambazoglu & Aykanat [7],
in that both efficiency and effectiveness measures are examined, and trade-off
conclusions made.

The remainder of this paper is structured as follows: Section 2 briefly reviews
various matching approaches; Section 3 describes several inverted index formats
supporting efficient skipping; Section 4 details our experimental setting; and
results are provided in Section 5. We provide concluding remarks in Section 6.

2 Matching Techniques

We now describe the matching techniques we experiment with in this paper. As
mentioned in the introduction, these fall into two categories - namely TAAT and
DAAT. One of the problems with TAAT approaches is that a larger number of
documents are scored, requiring more memory to accumulate their scores (known
as accumulators [7]). In contrast, DAAT techniques require less memory, as less
documents should be scored overall.

However, in all cases except for Full TAAT (the baseline), a trade-off is made
by recognising that most Web retrieval tasks favour high-precision retrieval, and
aiming to retain high precision effectiveness at the system’s top-ranked docu-
ments, while degrading retrieval effectiveness at lower ranks. This is typically
achieved by predicting which terms have the least impact on the retrieved doc-
uments and ignoring portions of their posting lists not likely to affect the top-
ranked documents.

Full TAAT. This is our baseline, a TAAT approach, where we compute the
score of all postings for every query term. This is in contrast to the other ap-
proaches, which aim to avoid some scoring computations, this technique exhibits
no degradation in the effectiveness of the ranking.

Turtle TAAT. This technique is a TAAT approach developed by Turtle &
Flood in [17]. Firstly, the query terms are ordered by their maximum possible
impact on the retrieval score (called the term upper bounds). Then, the scoring

of occurrences is performed in two phases: During the first phase, all postings
are evaluated for each query term. At the end of the scoring of each query term,
if the minimum score of the current top-ranked R documents is greater than the
sum of the upper bounds of the query terms remaining to be scored, then the
first phase scoring is terminated, and we proceed to the second phase. In this
second phase, only the documents which have already been scored are computed
for the remaining query terms.

This technique ensures that the top R documents are correctly ordered com-
pared to a Full TAAT, but without the need to fully evaluate all the query terms,
leading to document relevance scores that are different from the Full TAAT, but
with broadly similar rankings.

Moffat TAAT. The idea for this approach introduced by Moffat and Zobel
in [10] is also to score the most important query terms first. However, when
K documents have been scored, the matching enters a second phase, where no
more documents are retrieved, and the K documents retrieved thus far are fully
scored. K is typically equal to 0.2% of the number of documents in the collection.
Note that Moffat and Zobel presented two different heuristics, called ‘Quit’ and
‘Continue’ to determine when the first phrase scoring should be terminated. In
the ‘Quit’ approach, the condition of accumulators reaching size K is checked for
every posting scored, while for the ‘Continue’ approach, the condition is checked
only after each query term has been scored. In this paper, we only experiment
using the ‘Continue’ approach as this has less efficiency overheads, but may
result in scoring far more than K documents if a term posting list is very long.

Note also that in the second phase of Turtle TAAT and Moffat TAAT match-
ing approaches, it is possible to omit large numbers of postings for each query
term. In this scenario, it is advantageous for the inverted index implementation
to support a next(docid) operation. In the following section, we review several
inverted index skipping techniques.

Lester et al. [9] describe adaptive improvements to the Moffat TAAT ap-
proach in the context of Web-style queries. We do not experiment with this
approach, as we wish to experiment with generic algorithms without specific
assumptions.

Turtle DAAT. This DAAT technique was also developed by Turtle & Flood
in [17]. In a DAAT technique, the postings lists for all query terms are read
concurrently. Similar to Turtle TAAT, the term upper bounds are computed.
Then all of the ith postings for each query term are evaluated in turn. When a
document is scored, we add to the actual score of the document, the sum of the
upper bound of the remaining terms to be scored. If this sum is less than the
minimum score of the current Rth-ranked document, then we do not calculate
the term score of the document, as the document could not be in the top R

documents.

It is of note that Turtle & Flood [17] suggest that their DAAT technique
could be improved by the use of inverted index posting skipping, however it is not
clear from their description how this would be applied. Turtle & Flood’s meth-
ods are known as MAX-SCORE (MAX-SCORE TAAT and DAAT). Moreover,

Stronham et al. [15]. revisit the MAX-SCORE approaches for DAAT, suggesting
heuristics to determine the top documents for a given query term, pre-scoring
these documents, and using these pre-scored documents as the threshold for the
MAX-SCORE algorithm. However, in contrast to the previously described ap-
proaches, their approach requires that posting lists be sorted by decreasing tf ,
not ascending docid.

3 Skipping Inverted Index Postings

Typically query term scoring in an IR system is disk IO intensive, however,
for larger Web-scale settings with many machines available, posting lists may be
kept in the main system memory or in the system cache [16]. In both cases, com-
pression is useful to reduce IO in favour of slight compression overheads [6]. Some
matching methods described above (in particular Moffat TAAT) can potentially
avoid scoring some postings of the query terms. Therefore, if this skipping could
reduce the IO operations, then the retrieval time can be reduced. Skipping tech-
niques on compressed inverted indices were first described by Moffat & Zobel
in [10]. In this work, we review both Moffat & Zobel’s approach as well as the
later approach proposed by Boldi & Vigna in [3].

Posting compression in inverted indices can be performed in several fashions.
One compression technique that can be applied is the use of Elias-Unary and
Elias-Gamma encoding [8]. While other techniques such as variable-byte encod-
ing exist (and may decode more efficiently), in this work we concentrate only on
these Unary and Gamma encodings.

As a given posting can then be of variable length, to efficiently skip over
postings in the posting list, additional pointers have to be embedded in the
posting list describing a potential skip when decoding. Unsurprisingly, these
additional pointers cause the size of the inverted index to grow.

Assume that the inverted index postings are grouped into blocks (of p ≥ 3
postings). A pointer allows one or more blocks to be skipped, ensuring that the
next posting to be read has a document id greater than or equal to a required
document. Skipping is best illustrated following Moffat & Zobel [10]:

In a normal inverted index for a given term, a posting list of 〈docid,tf〉 tuples
is stored as follows:

〈5,1〉 〈8,1〉 〈12,2〉 〈13,3〉 〈15,1〉〈18,1〉〈23,2〉〈28,1〉〈29,1〉〈32,3〉

We insert the pointers 〈〈docid, bit address〉〉 every p pointers (say 3 in our
example), where the docid in the pointer is the first docid in the first posting
of the next block, and ai is the pointer to the next block. Note that the first
pointer is an exception, as a0 is not required.

〈〈5,a0〉〉 〈〈13,a1〉〉 〈5,1〉〈8,1〉〈12,2〉 〈〈23,a2〉〉 〈13,3〉〈15,1〉〈18,1〉 〈〈32,a3〉〉 〈23,2〉〈28,1〉〈29,1〉

We can compress further the data by removing redundant document ids and
by applying delta gaps between pointers.

〈〈5,a0〉〉 〈〈8,a1〉〉 〈1〉〈3,1〉〈1,2〉 〈〈9,a2 − a1〉〉 〈3〉〈2,1〉〈3,1〉 〈〈9,a3 − a2〉〉 〈2〉〈5,1〉〈1,1〉

This is a common approach of all of the skipping approaches. It allows us
skipping forward by an entire block, without decoding the information encoded
in the block.

From [3] & [10], we note three approaches. These differ in the way that they
determine the size of a block of postings p. Moreover, two approaches contain
multiple levels of pointers, allowing effective skipping of several blocks in one
disk seek.

Single Moffat: In this approach, the size of a posting block p for term t is
set as follows:

p =
√

LNt

2
(1)

where Nt is the number of documents that term t occurs in, and L is a free
parameter. Moffat & Zobel suggest three values of L, namely 10, 100 and 1000,
depending on statistics of the collection and of the query set [10].

Multi Moffat: In this method, the size of the skip pi of each level i of term
t is determined as a function of the skipping parameter L as follows:

pi =
1

2
L

i

h+1 p
h−i+1

h+1 (2)

where h is the number of levels to be computed for this term, calculated as:

h = (loge

Nt

L
) − 1 (3)

Multi Boldi: The lowest level has a block of L (32 or 64) postings, and
each higher level is composed of 2 lower ones [3]. Moreover, when a posting
list does not have exactly an exact multiple of L postings, extra unconnected
pointers can exist. In this approach they are removed, to prevent posting lists
being unnecessary large.

In the following section, we experiment with the Single Moffat and Multi
Boldi skipping techniques, as these are two representatives of the single and
multiple skipping level classes of techniques. Experiments using Multi Moffat
remain as future work.

4 Experimental Setting

In the following, we experiment with the reviewed matching techniques and
inverted index skipping techniques. To test the matching methods, we use three
different Web IR test collections, related to different domains and timescales. The
collections we experiment with are: two TREC Web test collections WT2G and
WT10G, which are medium-scale general Web crawls from early 1997; .GOV2
is a more recent and much larger TREC Web test collection - a crawl of the
.gov domain of the Web from 2003. Statistics from the collections are given
in Table 1, as well as the TREC topic sets applied. Note that, as expected,
the average length of the term postings increases as the collection size grows.
This infers that for larger collections, there is more potential improvements for

Collection #Docs Avg Doc Len #Terms Avg Posting Len Topics

WT2G 247,491 645.3 1,002,586 62.7 401-450
WT10G 1,692,096 399 3,140,838 89.1 451-500
GOV2 25,205,179 652.4 15,466,363 304.4 801-850

Table 1. Statistics of the Web IR test collections applied.

increasing the retrieval speed when skipping can be used. Finally, we experiment
with short (title-only) queries and long (title, description and narrative) queries
from the used test collections, to assess whether the topic length has an impact
on the efficiency or effectiveness retrieval performances1.

In most retrieval tasks, the user is interested in the accuracy of the first page
of documents retrieved. For this reason, in all methods, we set R, the number of
top-ranked documents which should be fully scored, to R = 20.

We use the Terrier IR platform [11] in our experiments. The collections are
indexed, removing standard English stopwords, and applying Porter’s English
stemmer. For retrieval we use the BM11 document weighting model (as this is
similar to the TF-IDF which was applied in the original papers on DAAT and
TAAT matching approaches) [13], as follows:

score(d, Q) =
∑

t∈Q

qtw · tf · k1

tf + k1 · (1−b+b·l
avg l

)
· log2

N
N

Nt+1

(4)

where tf is the frequency of query term t in document d, l is the length of
document d, avg l is the average length of all documents in the collection, N is
the number of documents in the collection, and Nt is the number of documents
containing an occurrence of term t. k1 and b are parameters, for which we use
the default settings k = 1.2 and b = 0.75.

Note that BM11 includes a document length normalisation component, to
ensure a fair retrieval between long and short documents. By applying normali-
sation, the frequency of a term tf is normalised by the length of the document l,
with respect to the average document length avg l. However, this normalisation
can possibly hinder the correct calculation of the maximum score a term in a doc-
ument can achieve (the term upper bound), depending on whether the posting
with largest tf also has smallest document length. To simplify, we approximate
document length with average document length in the collection when calculat-
ing term upper bounds using BM11, as this avoids pre-scoring every posting for
every term in the collection, in order to obtain exact upper bounds. However,
since tf can exhibit strong correlations with l [1], average document length may
not be a good approximation. A more accurate approximation of the term upper
bounds is an appropriate future work direction.

For experiments where timing is recorded, these were carried out using a
dedicated Intel PIV 2GHz single CPU machine, with 512MB of RAM, running
Linux. The file-store is a RAID array attached to a Linux server by 20MB/sec
Wide SCSI. Machines are inter-connected by 100MBPs network.

1 Long queries on GOV2 are omitted.

Matching
Short Long

#Term Scorings P@20 MAP #Term Scorings P@20 MAP

WT2G

Full TAAT 24,926 0.3650 0.2613 498,966 0.3620 0.2784
Turtle TAAT 7,202 0.2411 0.1788 253,991 0.1980 0.1262
Turtle DAAT 23,649 0.3230 0.1300 253,911 0.0350 0.0059
Moffat TAAT 6,855 0.3460 0.2350 16,142 0.1560 0.0857

WT10G

Full TAAT 183,607 0.2030 0.1880 2,039,356 0.2810 0.2326
Turtle TAAT 29,553 0.1740 0.1295 740,658 0.1440 0.1043
Turtle DAAT 163,371 0.1690 0.1054 1,253,580 0.0290 0.0090
Moffat TAAT 27,845 0.1870 0.1793 49,860 0.1530 0.0803

GOV2

Full TAAT 2,221,422 0.2840 0.2244 - - -
Turtle TAAT 692,921 0.2360 0.1402 - - -
Turtle DAAT 2,003,572 0.2190 0.1134 - - -
Moffat TAAT 628,538 0.2330 0.1320 - - -

Table 2. Efficiency and effectiveness results applying various matching techniques to
the three Web test collections.

5 Experimental Results

Table 2 presents the experimental results for the tested matching approaches.
Effectiveness is measured using Mean Average Precision (MAP) and Precision
at rank 20 (P@20). P@20 is a useful measure as it represents the accuracy of
the first screen of search results presented to a search engine user [5]. Efficiency
is measured by the average number of query term-document scorings per query.
The results presented for all methods do not use any additional inverted index
structure for skipping postings, instead emulating skipping by simply iterating
through the postings until the required document is found.

From the result in Table 2, we note firstly that all three ‘efficient techniques’
(i.e. Turtle TAAT, Turtle DAAT and Moffat TAAT) can reduce the number of
term occurrence scorings compared to the Full TAAT (our baseline matching
technique). However, such increase in efficiency has a corresponding trade-off in
retrieval effectiveness - this is typically more marked for MAP than P@20. This
is expected, as all the efficient techniques aim to get the top ranked documents
correct while trading off overall retrieval performance.

Comparing the techniques for short queries, it is noticeable that Moffat TAAT
matching usually achieves the lowest overall drop in P@20 and MAP. This is
surprising, given that far less term occurrences are scored when compared to
Turtle DAAT, which has slightly lower MAP and P@20 scores. Turtle TAAT is
more comparable to Moffat TAAT in terms of number of scorings, but less so in
terms of retrieval performance.

Examining the long queries, it is noticeable that all of the efficient matching
techniques perform less well here than on short queries. This contrasts from the
baseline matching technique, which usually increases in effectiveness (MAP and

P@20). In particular, Turtle DAAT exhibits very low effectiveness. We believe
that the low performance of the efficient techniques for long queries is because
each approach tries to ascertain the impact of each query term in the retrieval
process. Indeed, for Turtle DAAT, the order of term scoring may be predicted
incorrectly, and hence the more important query terms occurring in the title of
the topics may not be scored. It is of note that the collection originally tested
by Turtle & Flood was much smaller than WT2G and WT10G (11K docs vs.
200K docs and 1.6 million docs respectively), and only medium length queries
(on average, 9.1 terms each) were used [17].

Comparing techniques across collections, it is noticeable that the efficiency
benefit of applying efficient techniques grows for larger collections, as more term
occurrences can be omitted from the scoring. Indeed, for GOV2 with short
queries, Moffat TAAT requires only 72% of term occurrences scorings compared
to the Full TAAT baseline for a 17% drop in P@20.

Overall, as expected, the techniques reviewed here can be applied to speed up
retrieval, if some degradations in retrieval effectiveness can be tolerated. Of all
the techniques, Moffat appears the most promising in reducing term occurrence
scorings while minimising the corresponding reduction in retrieval performance.

Table 3 presents a comparison of the time taken to perform retrieval for
short and long queries on the the WT2G and WT10G collections using the Turtle
TAAT and Moffat TAAT approaches. Using these efficient matching approaches,
we compare the efficiency of two inverted index skipping approaches reviewed in
Section 3. The baseline inverted index does not skip any postings.

From Table 3, we firstly note that (unsurprisingly) index sizes are increased
by the inclusion of skipping pointers to the inverted index. For some collections,
this can be as high as a 46% increase (see WT2G, Single Moffat L = 1000).
However, as collection size increases, the overhead in index size associated with
the skipping pointers decreases (down to 23% increase for L = 1000 on WT10G).

In terms of retrieval time, we found that most inverted index skipping settings
improved the average query time, particularly on WT2G. On this collection, the
retrieval efficiency is benefited most by Moffat TAAT, particularly with Single
Moffat skipping. For WT10G, there is no large benefits in applying skipping
techniques, and the most benefit is shown when using Multi Boldi (with mini-
mum skip size L = 32) for short queries. Comparing short and long queries in
general, the differences in retrieval times are largely correlated with the number
of term occurrence scorings reported in Table 2 above. Overall, we conclude that
the application of the skipping methods only benefited retrieval time on WT2G.
For WT10G, it appears that the overheads in decoding the more complicated
inverted index format outweighs the benefit in reducing the disk IO by skipping.

While the overall timing statistics may change if other compression tech-
niques (e.g. variable-byte encoding) had been applied, the conclusions would
not change, as the compression methods are not varied and the comparisons in
Table 3 are fair.

No Skipping Single Moffat Multi Boldi

L = - 10 100 1000 32 64

WT2G

SQ Turtle TAAT 0.0899 0.0804 0.0803 0.0806 0.0804 0.0803
LQ Turtle TAAT 0.549 0.438 0.440 0.438 0.612 0.438
SQ Moffat TAAT 0.0962 0.0829 0.0831 0.0840 0.0841 0.0841
LQ Moffat TAAT 0.202 0.154 0.159 0.187 0.222 0.176

Index Size 100% 122% 136% 146% 110% 105.8%

WT10G

SQ Turtle TAAT 0.304 0.312 0.315 0.307 0.277 0.409
LQ Turtle TAAT 2.271 2.227 2.244 2.314 2.275 2.240
SQ Moffat TAAT 0.304 0.335 0.327 0.342 0.293 0.319
LQ Moffat TAAT 0.691 0.819 0.839 0.899 0.879 0.800

Index Size 100% 111% 115% 123% 107.8% 104.3%

Table 3. Mean query time (seconds) using the Moffat TAAT and Turtle TAAT match-
ing techniques for the various collections and inverted index skipping techniques. SQ
and LQ denote short and long queries, respectively. Index sizes are also reported; L is
the inverted index skipping parameter. Experiments on GOV2 are omitted.

6 Conclusions

In this paper, we reviewed several approaches for efficiently matching and scor-
ing documents in response to queries, and evaluated their efficiency and effec-
tiveness on three standard Web IR test collections. We found that, compared
to a full TAAT scoring baseline, these approaches could markedly reduce the
number of term occurrence scorings, but at the cost of reduced overall effective-
ness (MAP). However, high precision accuracy was usually maintained. There
is anecdotal evidence in this paper that the efficient matching techniques can
give larger benefits in retrieval performance for larger collections. However, im-
provements in applying inverted index skipping techniques did not appear to
scale to a larger collection. In the future, we intend to investigate how efficiency
changes when using larger test collections such as UK-2006, and comparing to
the systems submitted to the Efficiency task in the TREC 2004-2006 Terabyte
tracks [5]. In particular, it is probably more useful to evaluate effectiveness using
50 assessed queries, but evaluating efficiency using larger number of queries, to
gain more accurate timing measurements, as performed in the TREC Terabyte
track Efficiency tasks.

Other future investigations will include study into other techniques for reduc-
ing the number of term occurrences scored, such as the newer versions of Turtle
TAAT [9], MAX-SCORE DAAT [15], and finally the WAND iterator proposed
by Broder et al. in [4]. We would also like to understand more fully the rela-
tionship between retrieval performance and the R parameter (which controls the
number of documents that are scored and retrieved), especially with respect to
the application of document priors commonly required for Web search tasks such
as home-page and named-page finding tasks.

References

1. Amati G.: Probabilistic Models for Information Retrieval based on Divergence

from Randomness. PhD thesis, Department of Computing Science, University of
Glasgow, 2003.

2. Blanco R., Barreiro A.: Static Pruning of Terms in Inverted Files. In Proceedings

of ECIR 2007: (2007) 64–75
3. Boldi, P., Vigna, S.: Compressed Perfect Embedded Skip Lists for Quick Inverted-

Index Lookups. In Proceedings of SPIRE 2005 LNCS 3772 (2005) 25–28
4. Broder A., Carmel D., Herscovici M., Soffer A., Zien J.: Efficient Query Evaluation

using a Two-Level Retrieval Process. In Proceedings of CIKM 2003 (2003) 426–434
5. Buttcher S., Clarke C.L.A., Soboroff I.: The TREC 2006 Terabyte Track. In

Proceedings of TREC 2006, (2007)
6. Buttcher S., Clarke C.L.A.: Index Compression is Good, Especially for Random

Access. In Proceedings CIKM 2007, (2007)
7. Cambazoglu B. B., Aykanat C.: Performance of query processing implementa-

tions in ranking-based text retrieval systems using inverted indices. Inf. Process.

Manage. 42(4) (2006) 875–898
8. Elias, P.: Universal codeword sets and representations of the integers. IEEE

Transactions on Information Theory 21(2) (1975) 194–203
9. Lester N., Moffat A., Webber W., Zobel J.: Space-limited ranked query evaluation

using adaptive pruning. In Proceedings of the WISE Workshop on Information

Systems Engineering (2005) 470–482
10. Moffat A., Zobel J.: Self Indexing Files for Fast Text Retrieval ACM Transactions

on Information Systems 14(4) (1996) 349–379
11. Ounis I., Amati G., Plachouras V., He B., Macdonald C., and Lioma C.: Terrier:

A high performance and scalable information retrieval platform. In Proceedings of

SIGIR OSIR Workshop 2006 (2006)
12. Persin M., Zobel J., Sacks-Davis R.: Filtered document retrieval with frequency-

sorted indexes. J. American Society of Information Science, 47 (1996)
13. Robertson S.E., Walker S., Jones S., Hancock-Beaulieu M.M., Gatford M.: Okapi

at TREC-3 In Proceedings of TREC 3 (1994)
14. Soffer A., Carmel D., Cohen D., Fagin R., Farchi E., Herscovici M., Maarek Y.S.:

Static Index Pruning for Information Retrieval Systems. Proceedings of ACM

SIGIR 2001 (2001) 43–50
15. Strohman T., Turtle H., Croft W.B.: Optimization strategies for complex queries

In Proceedings of ACM SIGIR 2005 (2005) 219-225
16. Strohman T., Croft W.B.: Efficient document retrieval in main memory In Pro-

ceedings of ACM SIGIR 2007 (2007) 175–182
17. Turtle H., Flood J.: Query Evaluation : Strategies and Optimisations. Information

Processing & Management: 31(6) (1995) 831-850
18. Witten I.H., Moffat A., Bell T.C.: Managing Gigabytes: Compressing and Indexing

Documents and Images Morgan Kaufmann (1999).

