
On the Usefulness of Query Features for Learning to Rank

Craig Macdonald
School of Computing Science
University of Glasgow
Glasgow, G12 8QQ, UK

craig.macdonald@gla.ac.uk

Rodrygo L.T. Santos
School of Computing Science
University of Glasgow
Glasgow, G12 8QQ, UK

rodrygo@dcs.gla.ac.uk

Iadh Ounis
School of Computing Science
University of Glasgow
Glasgow, G12 8QQ, UK

iadh.ounis@gla.ac.uk

ABSTRACT

Learning to rank studies have mostly focused on query-dep-
endent and query-independent document features, which en-
able the learning of ranking models of increased effective-
ness. Modern learning to rank techniques based on regres-
sion trees can support query features, which are document-
independent, and hence have the same values for all docu-
ments being ranked for a query. In doing so, such techniques
are able to learn sub-trees that are specific to certain types
of query. However, it is unclear which classes of features
are useful for learning to rank, as previous studies leveraged
anonymised features. In this work, we examine the useful-
ness of four classes of query features, based on topic classifi-
cation, the history of the query in a query log, the predicted
performance of the query, and the presence of concepts such
as persons and organisations in the query. Through ex-
periments on the ClueWeb09 collection, our results using a
state-of-the-art learning to rank technique based on regres-
sion trees show that all four classes of query features can
significantly improve upon an effective learned model that
does not use any query feature.

Categories & Subject Descriptors: H.3.3 [Information
Storage & Retrieval]: Information Search & Retrieval

Keywords: Learning to Rank, Query Features

1. INTRODUCTION

Learning to rank deployments leverage various query-dep-
endent (e.g. term weighting models, proximity) and query-
independent (e.g. URL length, PageRank, content quality)
features, with which to re-rank in an effective manner a
sample of documents obtained from a single feature (usu-
ally BM25 [12]). Such features are combined into a learned

model, obtained by minimising the loss function of a learning
to rank technique (see [12] for an overview).

While learning to rank techniques are often differentiated
as pointwise, pairwise, and listwise, depending on their loss
function [12], we focus on a different viewpoint. In particu-
lar, we separate techniques that learn a linear combination of
features (possibly after a kernel transformation) from tech-
niques based on regression trees, such as gradient boosted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

regression trees [21] and LambdaMART [23]. For such tree-

based learners, the partial score for a given document is ob-
tained by following a traversal of a regression tree. At each
node, a particular feature value is compared with a learned
threshold, to define a path towards the partial score for that
document. Typically, an ensemble consisting of multiple
trees is used to obtain the final score for each document [7].

In addition to the classical query-dependent and query-
independent document features, a third class of features has
seen comparatively less research in the learning to rank lit-
erature. In particular, a query feature is a quantifier for
some aspect of the query, and – in contrast to document
features – has the same value across all documents in the
sample. Query features can be used by tree-based learners,
serving as decision points between the various branches of
a learned ranking model, thereby permitting the learner to
‘customise’ the learned model with respect to an aspect of
the query [21]. An example query feature might be the num-
ber of terms in the query [21], which may trigger branches
of the learned model’s trees that are better suited for long
queries. Chapelle et al. [7] mention the ‘adult score’ of the
top retrieved documents as another example query feature.

Research encapsulating query features within learning to
rank is in its infancy. For instance, none of the standard
LETOR datasets for learning to rank [12] deploy query fea-
tures. This problem was addressed by the Yahoo! Learning
to Rank Challenge, whose dataset contains 36 query fea-
tures [7]. However, to the best of our knowledge, no pre-
vious work has analysed the usefulness of different types of
query features. As a matter of fact, the features included
in the Yahoo! Learning to Rank Challenge are anonymised,
which precludes any analysis on the effectiveness of individ-
ual query features. On the other hand, query features have
been used for customising rankings on a per-query basis.
For instance, Geng et al. [11] used query features to clus-
ter similar queries before learning common ranking models.
Santos et al. [20] used query features to learn the appropri-
ate amount of diversification to apply for a query. However,
in all of these works, query features were used to improve the
understanding of the query before the ranking stage, as op-
posed to being leveraged as an integral part of the learning
to rank process.

To further the understanding of the usefulness of query
features for learning to rank, we conduct the first empirical
analysis of query features in a state-of-the-art learning to
rank deployment. In the remainder of this paper, Section 2
describes the experimental methodology underlying our in-
vestigation. Our findings are discussed in Section 3, and
Section 4 presents our final remarks.

Features Type Total
Weighting models (DPH [2], PL2 [1], BM25 [18], LM, MQT [20]) QD 21
Fields-based models (PL2F [13]) QD 1
URL and link analysis features (e.g. PageRank, Absorbing Model [17], EdgeReciprocity) QI 13
Quality features (e.g., fraction of stopwords, table text [3]) QI 8
Click feature (click count) QI 1
Spam feature (Cormack’s fusion score [6]) QI 1
Term-dependence models (MRF [14], pBiL [16]) QD 2
TOTAL 47

Table 1: All query-dependent (QD) and query-independent (QI) document features used in this work.

Source Class Feature Description Total
query QPP AvICTF [4] Pre-retrieval performance predictor 1
query QPP AvIDF [4] Pre-retrieval performance predictor 1
query QPP AvPMI [4] Pre-retrieval performance predictor 1
query QPP EnIDF [4] Pre-retrieval performance predictor 1
query QPP Gamma1 [4] Pre-retrieval performance predictor 1
query QPP Gamma2 [4] Pre-retrieval performance predictor 1
query QPP TermCount Number of unique terms 1
query QPP TokenCount Number of tokens 1
query QPP N-GramScore Likelihood of ngram query in anchor or title fields 8
query QCI AcronymSenses Number of acronym senses 1
documents QCI WPDisambSenses [19] Number of disambiguation senses per document 18
documents QCI WPDisambCount Number of disambiguation pages retrieved 6
query QCI EntityCount Number of named entities in the query 4
query QLM NGramScore Likelihood of ngram query in query log 3
clicks QLM ClickCount Number of clicks 3
clicks QLM ClickEntropy [5] Click entropy at the URL level 1
clicks QLM HostEntropy [22] Click entropy at the host level 1
clicks QLM ResultCount Number of displayed results in a session 3
clicks QLM SessionDuration Session duration in seconds 3
documents QTC DocEntityCount Number of retrieved entities (products, persons,

organisation, locations)
18

documents QTC DocEntityEntropy Entity entropy of centroid document 18
documents QTC DocEntityPairwiseCosine Entity distance over pairs of top documents 54
documents QTC WPCategoryCount Number of retrieved categories 6
documents QTC WPCategoryEntropy Category entropy of centroid document 6
documents QTC WPPairwiseCosine Categorical distance over pairs of top documents 18
TOTAL 178

Table 2: All query features used in this work. Unreferenced query features are described by Santos et al. [20].

2. EXPERIMENTAL METHODOLOGY

In the following experiments, our goal is to assess the effec-
tiveness of a series of query features when added to an effec-
tive machine learned ranking model that does not employ
any query features. Our experiments use the ClueWeb09
(category B) collection, which comprises 50 million English
Web documents, and is aimed to represent the first tier in-
dex of a commercial search engine. We index this collection
using the Terrier information retrieval platform [15],1 with a
weak Porter stemmer. To form a sizable query set for our in-
vestigation, we use 98 topics and relevance assessments from
the TREC 2009-2010 Web tracks, and 140 from the TREC
2009 Million Query track. For each query, we use the Diver-
gence from Randomness DPH weighting model [2] to pro-
duce an initial sample of 5000 documents. For documents
in the sample, we calculate a total of 47 standard query-
dependent (e.g. term weighting models, proximity features)
and query-independent document features (e.g. link analy-
sis, URL length, content quality), similar to those deployed
within the LETOR datasets [12]. Table 1 lists the 47 query-
dependent (QD) and query-independent (QI) document fea-
tures used within our experiments.

To re-rank the documents in the sample, we use the Lamb-
daMART learning to rank technique [23] (as implemented by

1http://terrier.org

the Jforests package [9]2), a representative of current state-
of-the-art learning to rank techniques, as per its top-class
performance in the 2011 Yahoo! Learning to Rank Chal-
lenge [7]. A ranking model learned by LambdaMART based
on a loss function targeting NDCG, and using the afore-
mentioned 47 document features, forms the baseline for the
investigation in this paper. In particular, we investigate
whether query features can enhance this baseline, and anal-
yse the usefulness of different classes of query features.

Following Santos et al. [20], who investigated query fea-
tures for selective diversification, in addition to the 47 doc-
ument features, we calculate 178 query features, which are
classified according to the tasks that inspired them: query
concept identification (QCI); query performance prediction
(QPP); query log mining (QLM); and query topic classifi-
cation (QTC). More generally, these features examine the
statistics of the query within the corpus, how many times
it appears within the MSN 2006 query log,3 or how entities
(persons, products, organisations or locations) occur in the
query or the corresponding top-ranked sample documents.
Table 2 details the used query features for each class. This
table also lists the main evidence source for each feature,
namely the query itself, user click behaviour in the query log

2http://code.google.com/p/jforests/
3http://tiny.cc/wscd09

for that query, or a number of top-ranked sample documents
for the query. In particular, query features that examine
the sample documents are instantiated multiple times, ex-
amining different numbers of top-ranked sample documents.
For example, a query feature named DocEntityCount-org-50
considers the mean number of organisation entities identi-
fied in the top 50 retrieved sample documents. The distribu-
tion of entities across the top retrieved documents results in
further summary features, such as average, maximum, and
standard deviation.

Finally, our experiments are conducted using a 5-fold cross
validation across the 238 TREC topics (98 Web track + 140
Million Query track topics), where each fold has separate
training, validation and test query sets. Our experimental
results report NDCG@20 across the test sets from each fold.

3. EXPERIMENTAL RESULTS

For each query feature, we add it to the 47 document fea-
tures of the baseline ranking, and learn a ranking model for
each fold. Across the 5 folds, we found that all but 3 query
features exhibited improvements over the LambdaMART
baseline that has no query features. Of the improving fea-
tures, 46 brought significant improvements in NDCG@20
(paired t-test, p < 0.05). Table 3 shows the effectiveness of
the four best features for each class (QCI, QPP, QLM and
QTC) of query features, as well as the mean NDCG@20 of
all query features in each class, and the number of query fea-
tures exhibiting significant improvements compared to the
baseline (p < 0.05). On analysing the table, we observe that
the most useful query features result in statistically signif-
icant increases over the baseline that does not deploy any
query features.

In particular, the best query topic classification (QTC)
feature results in an 8% increase in NDCG@20 (0.2832 →

0.3109). This query feature examines the number of organ-
isations mentioned in the top 100 sample documents [20],
suggesting that QTC query features are useful for triggering
sub-trees that promote entity homepages.

Of the other query feature classes, query performance pre-
dictors (QPP) show promise in increasing effectiveness, with
the Gamma1 pre-retrieval predictor [20] being the most ef-
fective. By deploying such a query performance predictor
as a query feature, the learner is able to customise differ-
ent tree branches for easy and difficult queries. The sec-
ond most useful query performance predictor is simply the
query length, in tokens. This feature likely helps the learner
to decide the importance of proximity document weighting
features (e.g. MRF [14] or pBiL [16]). The last two features
concern the importance of 1-grams and 4-grams within an
anchor text index, and hence are likely to differentiate be-
tween navigational and informational queries, resulting in
different learned models for queries of different intents.

For query concept identification (QCI), the deployed query
features include the number of acronyms and the number of
entities (locations, organisations, products, and persons) in
the query. Three of the four highest performing features con-
sider the ambiguity of the query: for instance, the highest-
performing query feature counts the number of disambigua-
tion pages ranked in the top 3 Wikipedia pages for the query.
The fourth feature denotes the presence of known person en-
tities in the query, again suggesting that queries for entities
require adapted ranking models.

Of our query log mining (QLM) features, three of the four
most useful query features considered the complexity of the

user sessions for such a query. For instance, longer mean
user session duration for a query may indicate a more diffi-
cult query, with a similar interpretation if more results are
viewed. Moreover, a query whose sessions exhibit a high
variance in durations may be ambiguous. Hence, both these
query features and the QCI Wikipedia disambiguation query
features suggest that different sub-trees for queries with dif-
ferent levels of ambiguity can be learned. Finally, the 1-
gram score for the query is an indication of query popular-
ity, suggesting that more popular (head) queries can have
customised ranking models – indeed, head queries are likely
to be more navigational in nature.

Comparing the mean performance across all features in
a class (see Mean rows in Table 3), we find that all classes
of query features exhibit similar improvements above the
baseline, suggesting that each could bring further evidence
to the LambdaMART learning to rank technique. However,
the QTC and QLM classes exhibited a higher fraction of
features leading to significant effectiveness improvements.
Overall, the results in Table 3 provide concrete examples of
several types of features that can be successfully integrated
with document features to result in learned models with sig-
nificantly improved effectiveness.

Finally, we combine the best feature from each class with
the 47 document features. The performance of the com-
bined learned model with 47+4 features is shown in Table 3.
As the performance does not improve over the 47-feature
baseline, we conclude that LambdaMART can easily over-
fit for multiple query features. This is explainable in that
the learner has far less queries than documents (144 training
queries vs 720,000 training documents). While more queries
should prevent this overfitting, feature selection approaches
(e.g. adapting [10] to query features) may also be beneficial
- we leave this to future work.

4. CONCLUSIONS

While query features are mentioned in the recent learning
to rank literature, there has been no empirical investigation
into which types of query feature are useful to improving
learned models. In this paper, we investigated the benefit
of several classes of query features, when integrated with
document features using the state-of-the-art LambdaMART
learning to rank technique. We found that almost all query
features could improve performance, with over a quarter of
the 178 features exhibiting significant improvements. In par-
ticular, our results show that query features can be success-
fully employed to customise ranking models for queries with
different popularity, length, difficulty, ambiguity, and related
entities. Future work will examine other possible classes of
query features, and ways in which multiple query features
can be combined.

5. REFERENCES

[1] G. Amati. Probability models for information retrieval

based on Divergence From Randomness. PhD thesis,
Univ. of Glasgow, 2003.

[2] G. Amati, E. Ambrosi, M. Bianchi, C. Gaibisso, and
G. Gambosi. FUB, IASI-CNR and Univ. of Tor
Vergata at TREC 2007 Blog track. In TREC, 2007.

[3] M. Bendersky, W. B. Croft, and Y. Diao. Quality-
biased ranking of web documents. In WSDM, 2011.

[4] D. Carmel and E. Yom-Tov. Estimating the query
difficulty for information retrieval. Synthesis Lectures

Class Feature NDCG@20
Baseline (no query features) 0.2832

QPP
Rank 1 Gamma1 0.3033N

Rank 2 TermCount 0.30217△

Rank 3 1-GramScore on anchor field 0.29857
Rank 4 4-GramScore on anchor field 0.29727
Mean - 0.2955 (2/16)

QTC
Rank 1 DocEntityCount-org-100 0.3109N

Rank 2 DocEntityPairwiseCosine-std-products-10 0.30635 N

Rank 3 WPTopPairwiseCosine-PL2-avg-50 0.30612 N

Rank 4 WPTopPairwiseCosine-PL2-max-3 0.30605 △

Mean - 0.2950 (36/120)
QCI

Rank 1 WPDisambCount-3 0.3049N

Rank 2 WPDisambSenses-avg-50 0.30282△

Rank 3 WPDisambSenses-std-50 0.30196△

Rank 4 PersonCount 0.29688
Mean - 0.2917 (3/29)

QLM
Rank 1 SessionDuration-std 0.3085N

Rank 2 SessionDuration-avg 0.30647△

Rank 3 ResultCount-med 0.30520N

Rank 4 NGramScore-query-1 0.30364△

Mean - 0.2964 (5/14)
Top query feature from each class combined 0.2809

Table 3: NDCG@20 of the four best ranked for each class of query features, along with the mean performance
of all features of each class. The symbol △ (N) denotes a significant improvement according to the paired
t-test for p < 0.05 (p < 0.01), with respect to the baseline that uses no query features. Fractions in parenthesis
for each class denote the number of query features with significant improvement over the baseline.

on Information Concepts, Retrieval, and Services,
2(1):1–89, 2010.

[5] P. Clough, M. Sanderson, M. Abouammoh,
S. Navarro, and M. Paramita. Multiple approaches to
analysing query diversity. In SIGIR, 2009.

[6] G. V. Cormack, M. D. Smucker, and C. L. A. Clarke.
Efficient and effective spam filtering and re-ranking for
large Web datasets. Inf. Retr., 14(5):441–465, 2011.

[7] O. Chapelle, Y. Chang. Yahoo! learning to rank
challenge overview. J. Machine Learning: Workshop

and Conference Proceedings, 14:1–24, 2011.

[8] S. Cronen-Townsend, Y. Zhou, and W. B. Croft.
Predicting query performance. In SIGIR, 2002.

[9] Y. Ganjisaffar, R. Caruana, and C. Lopes. Bagging
gradient-boosted trees for high precision, low variance
ranking models. In SIGIR 2011.

[10] X.-B. Geng, T.-Y. Liu, T. Qin, H. Li. Feature
selection for ranking. In SIGIR 2007.

[11] X.-B. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li,
H.-Y. Shum. Query dependent ranking using k-nearest
neighbor. In SIGIR 2008.

[12] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[13] C. Macdonald, V. Plachouras, B. He, C. Lioma, and
I. Ounis. Univ. of Glasgow at WebCLEF 2005:
Experiments in per-field normalisation and language
specific stemming. In CLEF, 2005.

[14] D. Metzler and W. B. Croft. A Markov random field
model for term dependencies. In SIGIR, 2005.

[15] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and C. Lioma. Terrier: A high
performance and scalable information retrieval
platform. In OSIR at SIGIR, 2006.

[16] J. Peng, C. Macdonald, B. He, V. Plachouras, and
I. Ounis. Incorporating term dependency in the DFR
framework. In SIGIR, 2007.

[17] V. Plachouras, I. Ounis, and G. Amati. The static
absorbing model for the Web. J. Web Eng.,
4(2):165–186, 2005.

[18] S. E. Robertson, S. Walker, S. Jones,
M. Hancock-Beaulieu, and M. Gatford. Okapi at
TREC-3. In TREC, 1994.

[19] M. Sanderson. Ambiguous queries: Test collections
need more sense. In SIGIR, 2008.

[20] R. L. T. Santos, C. Macdonald, and I. Ounis. Selectively
diversifying Web search results. In CIKM 2010.

[21] S. Tyree, K. Weinberger,
K. Agrawal, and J. Paykin. Parallel boosted regression
trees for Web search ranking. In WWW 2011.

[22] Y. Wang and E. Agichtein. Query ambiguity revisited:
clickthrough measures for distinguishing informational
and ambiguous queries. In NAACL-HLT 2010, 2010.

[23] Q. Wu, C. J. C. Burges, K. M. Svore,
and J. Gao. Ranking, boosting, and model adaptation.
Technical Report MSR-TR-2008-109, Microsoft, 2008.

