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Several questions remain unanswered by the existing literature concerning the deployment of query
dependent features within learning to rank. In this work, we investigate three research questions
to empirically ascertain best practices for learning to rank deployments: (i) Previous work in
data fusion that pre-dates learning to rank showed that while different retrieval systems could
be effectively combined, the combination of multiple models within the same system was not as
effective. In contrast, the existing learning to rank datasets (e.g. LETOR), often deploy multiple
weighting models as query dependent features within a single system, raising the question as to
whether such combination is needed. (ii) Next, we investigate whether the training of weighting
model parameters, traditionally required for effective retrieval, is necessary within a learning to
rank context. (iii) Finally, we note that existing learning to rank datasets use weighting model
features calculated on different fields (e.g. title, content or anchor text), even though such weight-
ing models have been criticised in the literature. Experiments to address these three questions
are conducted on Web search datasets, using various weighting models as query dependent, and
typical query independent features, which are combined using three learning to rank techniques.
In particular, we show and explain why multiple weighting models should be deployed as features.
Moreover, we unexpectedly find that training the weighting model’s parameters degrades learned
models effectiveness. Finally, we show that computing a weighting model separately for each field
is less effective than more theoretically-sound field-based weighting models.
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1. INTRODUCTION

Numerous statistical document weighting models have been proposed for informa-
tion retrieval (IR) systems, dating back to TF.IDF [Robertson and Jones 1976] and
beyond, which are able to weight the occurrence of query terms within a document,
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such that an effective ranking of documents can be obtained. Chief among the
predominant families include Okapi BM25 [Robertson et al. 1992], language mod-
elling [Zhai and Lafferty 2001] and Divergence From Randomness (DFR) [Amati
2003], which have all demonstrated effectiveness across a variety of test collections.
Different weighting models have different properties, by modelling the number of
occurrences of a term in a document of a given length - in contrast to the occur-
rences of the term in the entire corpus - in different manners. For instance, Fang
et al. [2004] identified different heuristics that the most effective weighting models
encapsulate to different extents.

The ability of different weighting models to identify both the same and different
relevant documents was first exploited by data fusion/metasearch approaches. For
example, Vogt and Cottrell [1998] noted that the chorus effect of agreement between
different IR systems should increase the expected relevance of a document. Simi-
larly, some attempts were made to use data fusion to combine retrieval scores from
different document representations (also known as fields, e.g. title, content and the
anchor text from incoming hyperlinks) within a single retrieval system [Ogilvie and
Callan 2003; Kamps 2006]. However, Robertson et al. [2004] warned against the lin-
ear combination of document weighting model scores for different representations,
due to the non-linear nature of term frequency saturation in weighting models. In-
deed, field-based models have since been proposed as a sound and more effective
alternative (e.g. BM25F [Zaragoza et al. 2004] or PL2F [Macdonald et al. 2006]).

Learning to rank is closely related to data fusion, whereby different features
computed for a sample of documents are appropriately combined within an effec-
tive learned model. In this work, we study how conclusions from earlier literature
including data fusion studies can be transferred to learning to rank. Indeed, we note
that the current deployments of learning to rank seem to be in contrast to earlier
literature, and use these contrasts to posit several questions. For instance, despite
concerns raised in the literature, many learning to rank settings have combined
multiple different weighting models within a single learned model, or even the com-
bination of the same weighting model for different document representations [Liu
2009]. Moreover, the various weighting models contain parameters (e.g. controlling
document length normalisation) that can significantly impact on their retrieval per-
formance [He and Ounis 2003; He et al. 2008]. Historically, these parameters have
been trained1 to determine values that result in an effective performance [Chowd-
hury et al. 2002]. Yet, it is unclear if training these parameters has a significant
impact when weighting models are combined within a learned model. Similarly,
within a learning to rank setting, it is important to determine if a field-based model
is more effective than the combination of models representing different fields.

Hence, in this work, we experiment to examine:

—the role of multiple weighting models within an effective learned model.
—the role of the training of the parameters of weighting models within an effective

learned model.
—the role of field-based models within an effective learned model.

1In this work, we differentiate between the training of parameters of features, and the learning of
combinations of features.
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We not only experimentally examine these roles, but analyse to determine the rea-
son behind our observations. Thorough experiments are conducted on two datasets,
namely the TREC 2009-2011 Web track and the corresponding test collection of
50 million Web documents, and the LETOR v4.0 learning to rank dataset, which
is based on the TREC 2007 and 2008 Million Query track and corresponding test
collection of 25 million Web documents. To enable thorough experimentation, we
employ an IR system adapted for the efficient calculation of multiple query de-
pendent features, which we call the fat framework. The fat framework is so-called
because it “fattens” the result set from the initial ranking (known as the sample [Liu
2009]) with the postings of matching terms from the inverted index. By doing so,
it allows additional features to be later computed for the application of a learned
model, without resorting to subsequent access(es) of the inverted index. Hence,
the framework provides advantages for the experiments in this paper, such as the
easy calculation of additional query dependent features for an existing document
sample, and the easy training of query dependent features.

From the observations arising from our experiments, we make recommendations
for the practical, effective deployment of weighting models within a learning to
rank setting, suitable for both learning to rank deployments and future datasets.
For instance, our results attest the effectiveness of using multiple weighting models
within a learned model. Moreover, we show how different features can be charac-
terised as chorus (a reinforcing feature), skimming (a contrasting feature) or dark
horse (an occasionally useful feature), as originally proposed by Vogt and Cottrell
[1998]. Next, contrary to previous evidence in the literature, we do not find any
significant evidence that there is a need to train the length normalisation param-
eters of weighting models to attain an effective learned model, and explain why
the learning to rank techniques are able to account within their learning processes
for any document length biases present in the features. Furthermore, we find that
current learning to rank datasets do not deploy the most effective approach for
creating features from document fields.

In light of the above research questions and findings, the central contributions of
this paper are that we revisit the historically accepted best practices for weighting
models, and investigate their impact in a modern learning to rank setting. The
remainder of this paper is structured as follows: Section 2 reviews literature on
learning to rank. Section 3 introduces the problem of combining multiple weighting
models that this work addresses, along with the tackled research questions. This
is followed in Section 4 by the details of our experimental setup. Sections 5 - 7
contain the results and analysis for each of our three research questions; Finally,
Section 8 provides concluding remarks.

2. BACKGROUND

Recently, the idea of learning a ranking model has become a predominant research
interest and a deployed approach for effective information retrieval systems [Liu
2009]. In particular, many learning to rank approaches attempt to learn a com-
bination of feature values (called the learned model). The resulting learned model
is applied to a vector of feature values for each document, to determine the final
scores for producing the final ranking of documents for a query.
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Regardless of the applied technique, the general steps for obtaining a learned
model using a learning to rank technique are the following [Liu 2009]:

1. Top k Retrieval: For a set of training queries, generate a sample of k documents
using an initial retrieval approach.

2. Feature Extraction: For each document in the sample, extract a vector of
feature values. A feature is a binary or numerical indicator representing the
quality of a document, or its relation to the query.

3. Learning: Learn a model by applying a learning to rank technique. Each tech-
nique deploys a different loss function to estimate the goodness of various com-
binations of features. Documents are labelled according to available relevance
assessments.

Once a learned model has been obtained from the above learning steps, it can be
deployed within a search engine as follows:

4. Top k Retrieval: For an unseen test query, a sample of k documents is generated
in the same manner as in step (1),

5. Feature Extraction: As in step (2), a vector of feature values is extracted for
each document in the sample. The set of features should be exactly the same
as for step (2).

6. Learned Model Application: The final ranking of documents for the query is
obtained by applying the learned model on every document in the sample, and
sorting by descending predicted score.

It is expensive to calculate all features on all documents in the collection, or
even all documents matching any query term at retrieval time [Liu 2009]. For this
reason, Liu [2009] introduces the notion of the sample of top-ranked documents for
which all features should be calculated (steps 1 and 4). The sample documents are
then re-ranked by the learned model. Typically, a standard weighting model, such
as BM25 [Robertson et al. 1992], is used to rank enough documents [Cambazoglu
et al. 2010; Liu 2009] to obtain sufficient recall. In this way, the sample is not an
unbiased statistical sample of a population, but instead contains a portion of the
corpus that is most likely to contain relevant documents for the query.

Once the sample has been identified, the additional features can be extracted or
computed (steps 2 or 5). Features can be query dependent (QD), e.g. document
weighting models such as BM25 [Robertson et al. 1992] or language modelling [Zhai
and Lafferty 2001], or query independent (QI), e.g. URL length [Kraaij et al. 2002]
or PageRank [Page et al. 1998].

When the features have been extracted, the model can be learned or applied
(steps 3 or 6). For some learners, such as Automatic Feature Selection (AFS) [Met-
zler 2007b], Adarank [Xu and Li 2007], RankSVM [Joachims 2002] and ListNet2 [Cao
et al. 2007], the learned model takes the form of a linear combination of feature
values:

score(d, Q) =
∑

f

αi · fi,d (1)

2when a linear Neural Network is applied, as is commonly performed.
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Fig. 1. Example regression tree for a Web search task.

where fi,d is the value of the ith feature for document d, and αi is the weight of
that feature.

On the other hand, the learned model obtained from some other learners takes the
form of regression trees [Ganjisaffar et al. 2011; Tyree et al. 2011; Weinberger et al.
2010; Wu et al. 2008]. In particular, the learned model is the linear combination of
the outputs from a set of regression trees T , known as an ensemble:

score(d, Q) =
∑
t∈T

t(fd). (2)

Each regression tree t returns a value depending on a series of decisions based
on the vector of feature values fd for document d. Figure 1 shows an example
regression tree for a Web search task. The output value for a particular tree is
obtained by traversing the nodes of the tree according to the decisions at each
node (“is a feature value higher or lower than a threshold?”), then returning the
value at the identified leaf node. In our experiments, we deploy three learning to
rank techniques that cover both linear and regression tree types of learned models.
These are AFS and RankSVM (both linear), as well as the state-of-the-art Lamb-
daMART technique [Wu et al. 2008], which won the 2011 Yahoo! learning to rank
challenge [Chappelle and Chang 2011].

In this paper, we focus on the role of query dependent features for attaining
effective learned models. Indeed, while research on query independent features
is wide and varied (e.g. [Bendersky et al. 2011; Page et al. 1998]), the role of
query dependent features within a learning to rank setting has seen considerably
less research. Various types of query dependent feature may exist: traditional
document weighting models that act on query terms; proximity models (e.g. [Peng
et al. 2007]) that act on pairs of query terms, or even link analysis approaches that
consider the linkage patterns within the top-ranked documents (e.g. SALSA [Lempel
and Moran 2001]). Our work investigates on the role played by multiple document
weighting models – e.g. Okapi BM25, language modelling – and how they bring
different evidence within the learning to rank process. Document weighting models
are possibly the most studied aspect of information retrieval, and perhaps due
to the plethora of proposed models in the literature, we observe that learning to
rank datasets often have multiple of such features. We aim to investigate if using
multiple weighting models within a learned model enhances effectiveness, or just
adds redundancy.

ACM Transactions on Information Systems, Authors’ preprint, 2013.
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Despite our focus on these query dependent features, we ensure that our exper-
iments are realistic by controlling for the presence of query independent features
within the learned models. In Section 3, we study the combination of document
weighting models from a historical perspective (e.g. in data fusion), which we con-
trast with modern learning to rank deployments. Based on the contrasts that we
observe, we posit several research questions that permit best practices in learning
to rank to be experimentally derived. This is followed in Section 4 by details of the
experimental setup that we deploy in this article.

3. COMBINING WEIGHTING MODELS

In the following, we motivate three research questions behind the use of multiple
weighting models in learning to rank, namely the combination of multiple weighting
models (Section 3.1), whether to train the weighting model parameters (Section 3.2)
and how fields should be encompassed by the weighting models deployed in learning
to rank (Section 3.3). For each, we identify historical perspectives in the literature
that pre-date learning to rank, and contrast these with current practices in learning
to rank, to formulate the research question that we later address through experi-
ments.

3.1 Multiple Weighting Models

The combination of weighting models or entire IR systems to produce improved
rankings has a long history in IR, stretching back to the initial data fusion work
in the first TREC conference [Fox et al. 1993]. Various data fusion/metasearch
techniques were proposed, such as CombSUM (a linear combination of the scores
of a document from each retrieval system), or CombMNZ (defined as CombSUM
multiplied by the number of systems that retrieved the document) [Fox and Shaw
1994], to name but a few. These are effective as they are able to accumulate
retrieval evidence from different retrieval systems. Indeed, Vogt and Cottrell [1998]
enumerated three beneficial effects of the combination of multiple systems:

—The skimming effect: different retrieval approaches may retrieve different rel-
evant items.

—The chorus effect: several retrieval approaches suggesting the same relevant
items provide stronger evidence of the relevance of those items.

—The dark horse effect: a retrieval approach may be particularly effective com-
pared to other approaches for retrieving at least some relevant items.

Hence, the diversity of retrieval systems being combined is indicative of the result-
ing effectiveness [Vogt 1997]. Indeed, Vogt and Cottrell [1998] suggested it was
best to linearly combine two IR systems “when they do not rank relevant docu-
ments in a similar fashion”. On the other hand, the chorus effect assures us that
documents retrieved by multiple retrieval approaches are more likely to be relevant
- a property which is instilled in the CombSUM and CombMNZ data fusion tech-
niques [Lee 1997]. Indeed, Lee [1997] proposed overlap-based measures to compare
the documents retrieved by different systems, and asserted that “different [systems]
retrieve similar sets of relevant documents but retrieve different sets of irrelevant
documents” - a variation of the chorus effect. However, he did not show that such
systems were the best to combine.
ACM Transactions on Information Systems, Authors’ preprint, 2013.
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Given the effectiveness of combining multiple retrieval systems, it makes sense
to combine multiple retrieval approaches within the same system. Indeed, in the
LETOR v3.0 learning to rank dataset (which is based on a TREC Web track test
collection) [Qin et al. 2009], many query dependent (QD) weighting model features
are computed, such as: TF.IDF, BM25, Jelinek Mercer language modelling and
Dirichlet language modelling (see feature IDs 15, 25, 30 and 35 in Table I). Similar
to the LETOR datasets, the MSLR-WEB10K and MSLR-WEB30K datasets3 pre-
viously used by the Bing search engine and publicly released by Microsoft Research
also deploy multiple document weighting model features. Of the various heuristics
identified by Fang et al. [2004] that characterise the effective weighting models, the
weighting models in Table I encapsulate most of them to various degrees. Despite
these, we note no published evidence examining the role of multiple weighting as
features within learning to rank settings. For instance, despite his comprehensive
review and experimental comparison of learning to rank techniques, Liu [2009] does
not actually show that learning to rank beats the baseline formed by the sample,
yet alone the combination of multiple query dependent features. The same applies
to the review book of Li [2011]. Instead, it appears to be simply generally accepted
that learning to rank techniques should combine multiple query dependent features
for effective retrieval, without backing evidence addressing the issue in details.

On the other hand, Beitzel et al. [2004] showed that different retrieval approaches
within the same system were considerably more correlated than different systems.
Indeed, as the necessary diversity was not attained in combining different weight-
ing models using data fusion techniques, it did not result in improved effectiveness.
Similarly, within a learning to rank setting, each of the weighting models is com-
puted using the same retrieval system, using the same document representations
and query formulations. Therefore, the weighting models are likely not to present
the diversity in results required for effective combination, as suggested by Beitzel
et al. [2004]. This highlights a concern in deploying multiple weighting models as
features within learning to rank, which we address in this paper.

We also note that there are contrasts between previous studies in the data fusion
literature and modern learning to rank deployments. For instance, the data fusion
literature draws conclusions about linear combinations of weighting models using
data fusion techniques such as CombSUM and CombMNZ. However, in data fusion,
the sets of retrieved documents by each system are different, and the number of
systems retrieving a given document accounts for at least part of the benefit of data
fusion [Lee 1997] (as exemplified by the CombMNZ technique, where the total score
of a document across different retrieval approaches is multiplied by the number of
systems retrieving a given document). In contrast, in learning to rank, the sample
defines the set of documents that will have scores computed for each weighting
model feature. Hence, as every sample document is ranked and retrieved, the
importance of overlap disappears. Moreover, while the earlier data fusion work has
focused on linear combinations of weighting models (c.f. CombSUM), the setting
posed by learning to rank can differ. Indeed, as highlighted in Section 2, non-linear
learned models, such as regression trees, are often applied.

3http://research.microsoft.com/en-us/projects/mslr/
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ID Feature Description

... ...
11 TF*IDF of body
12 TF*IDF of anchor
13 TF*IDF of title
14 TF*IDF of URL
15 TF*IDF of whole document
... ...
21 BM25 of body
22 BM25 of anchor
23 BM25 of title
24 BM25 of URL
25 BM25 of whole document
26 LMIR.ABS of body
27 LMIR.ABS of anchor
28 LMIR.ABS of title
29 LMIR.ABS of URL
30 LMIR.ABS of whole document
31 LMIR.DIR of body
32 LMIR.DIR of anchor
33 LMIR.DIR of title
34 LMIR.DIR of URL
35 LMIR.DIR of whole document
... ...

Table I. Selection of weighting model features for the LETOR v3.0 dataset, reproduced from [Qin
et al. 2009].

Hence, a question arises concerning the motivation for deploying multiple weight-
ing models within a learned model: If more than one document weighting model can
be easily calculated, what is the resulting benefit in effectiveness when deploying
many weighting models with different properties compared to just the single model
that generated the sample? Indeed, the various publicly released learning to rank
datasets all deploy multiple document weighting models, without, to the best of our
knowledge, published theoretical or empirical justifications confirming the benefits
of doing so. For these reasons, we argue that there is an open question with respect
to the combination of weighting models, concerning whether conclusions from data
fusion generalise into the more modern learning to rank settings. In particular, does
the effectiveness attained by the data fusion of multiple retrieval systems translate
into effective learned models when using multiple weighting models as features, or
are such weighting models from a single system insufficiently diverse for effective
combination, as highlighted by Beitzel et al. [2004]? This provides the basis for the
first research question that we tackle in this paper:

RQ 1. Should multiple document weighting models be deployed as features within
a learned model for effective retrieval?

3.2 Weighting Model Parameters

If adding more than one document weighting model into the feature set is effec-
tive, then is there any advantage in training their document length normalisation
or smoothing parameters within the features deployed for learning? Much litera-
ture has investigated the proper setting of parameters: for example, the classical
ACM Transactions on Information Systems, Authors’ preprint, 2013.
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method of Singhal et al. [1996] pivots the document length normalisation factor to
fit the relevance judgement information. The default settings for BM25 of k1 = 1.2,
k3 = 1000 and b = 0.75 were obtained by taking into account the relevance judge-
ments in experiments on a merged dataset of TREC collections [Jones et al. 2000].
Indeed, in the past, the setting of such parameters of weighting models has typi-
cally been addressed through the training (also known as optimisation), where the
parameter value(s) are automatically found that maximise an evaluation measure
on a training dataset. For instance, in their study to ascertain how many relevance
assessments were necessary for effective training, He et al. [2008] used simulated
annealing [Kirkpatrick et al. 1983] to find length normalisation parameter values.
Metzler [2007a] used a more advanced function requiring gradients to find language
model smoothing parameters.

Chowdhury et al. [2002] argued that the document length normalisation parame-
ter required recalibration for different collections, and showed that without training,
performance could be negatively impacted. Indeed, the stability of document length
normalisation or smoothing parameters are key concerns [He and Ounis 2005; Zhai
and Lafferty 2001]. Other methods have been proposed to aid in the selection of
suitable length normalisation parameter values without excessive training [He and
Ounis 2003].

Given the importance of the proper training of the parameters of weighting mod-
els, it seems natural to question if their training is necessary for attaining effective
learned models. Indeed, if the proper setting of parameters is shown to be unneces-
sary, then the expensive training process could be omitted. Hence, from this arises
the second research question that we tackle in this paper:

RQ 2. Should the parameters of document weighting model features be trained
before deployment within a learned model for effective retrieval?

3.3 Fields and Weighting Models

Similar arguments arise concerning the use of weighting models based on different
document representations (or fields)4. Firstly, documents can be represented in
a semi-structured fashion, depending on where within the document the various
terms occur. To illustrate this, consider Figure 2, which illustrates the different
document representations used by both the LETOR v3.0 dataset and also applied
in this work. While term occurrences in the document’s main content (known as
the body) are important, their occurrences in other fields including title and URL
may also be important. We draw attention to the anchor text field, where the
text associated with hyperlinks from incoming documents is added to the target
document.

With respect to the role of document representations in weighting models, in
early work, Katzer et al. [1982] found that different document representations gave
similar retrieval effectiveness, but found different sets of relevant documents - known
as the skimming effect by Vogt and Cottrell [1998]. This suggests that within a
learned model, there is benefit in defining different query dependent weighting
model features for each field f of a document d. For example, a linear combination

4We use the terms ‘fields’ and ‘document representations’ interchangeably.
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Fig. 2. Different document representations (fields) of a Web document.

of weighting model scores (as learned by a linear learning to rank technique) takes
the following form:

score(d, Q) =
∑
t∈Q

∑
f

wf · w(tff ) (3)

where each query term t occurs tff times in field f of documents d, and the im-
portance of a term’s occurrences in a field f is weighted by wf . w() is a function
that scores the occurrences of a term within a document representation, and could
be any typical document weighting model, such as BM25. We call the calculation
of a weighting model for each field single-field models. Ogilvie and Callan [2003] as
well as Kamps [2006] have both considered the combination of different single-field
models using data fusion techniques.

However, Robertson et al. [2004] made a theoretical argument against the linear
combination of weighting model scores for different document representations. They
contrasted this approach to the linear weighted combination of the frequencies of
query terms within each field:

score(d, Q) =
∑
t∈Q

w(
∑

f

wf · tff ), (4)

which we refer to as a field-based weighting model. Contrasting the two approaches,
five different issues were identified with the combination of weighting model scores
calculated separately on different fields:

(i) nonlinear TF: through a figure, Robertson et al. [2004] show that due to
the non-linear nature of the various term frequency saturation functions, the

ACM Transactions on Information Systems, Authors’ preprint, 2013.
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combination of term scores would result in an inflated overall score for a
document than the combination of frequencies, as follows:

w(
∑

f

wf · tff ) ≤
∑

f

wf · w(tff ) (5)

(ii) equal field weights: It was argued that if the field importance weights wf

were equal, then it was natural that the weighting should revert to the case of
an unstructured document. However, for wf = 1, in the combination of term
weights rather than frequencies, this does not hold:

w(
∑

f

wf · tff ) 6=
∑

f

wf · w(tff ), wf = 1∀f (6)

(iii) background statistics: weighting models typically examine the importance
of a term with respect to its occurrences in a corpus, known as background
statistics. For a model computed on a single representation, this would natu-
rally be its occurrences within that representation of the document. However,
Robertson et al. [2004] argued that the background statistics for some types
of fields (such as the title of documents) could be quite sparse in contrast to
the corpus as a whole, leading to poorer estimation of term importance.

(iv) number of parameters: if weighting model scores are calculated for each
document – as per Equation (3) – then the number of weighting model pa-
rameters that may require training is multiplied by the number of document
representations. For instance, if the b and k1 parameters of BM25 require
training for invocation on three different fields, then including a weighting
parameter wf for their weighting linear combination, this would amount to 9
parameters for training (i.e. 3 parameters× 3 fields). In contrast, for the linear
combination of field frequencies (Equation (4)), only the three wf parameters
were necessary in addition to b and k1.

(v) document length: the final argument considered that document length nor-
malisation was originally motivated in terms of the verbosity of a document.
However, different fields have different length characteristics: terms in the ti-
tle and URL fields normally occur once; anchor text may have many repeated
terms. Robertson et al. [2004] questioned if normalisation should be per-
formed on separate fields or not. Indeed, in the formulation of Equation (4),
normalisation with respect to document length only occurs once for a docu-
ment. Later, a revised approach also known as BM25F [Zaragoza et al. 2004]
was proposed, as well as the similar PL2F [Macdonald et al. 2006]. Both
of these models perform normalisation on a per-field basis, suggesting that
length normalisation is better conducted in a per-field manner:

score(d, Q) =
∑
t∈Q

w(
∑

f

wf · tfnf ) (7)

where tfnf is the normalised term frequency with respect to the length of
field f and the average length of the field for all documents, as calculated by
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some term frequency normalisation function [Zaragoza et al. 2004; Macdonald
et al. 2006]5.

After these theoretical arguments, Robertson et al. [2004] provided experiments
validating that the employment of a field-based model which linearly combined the
frequency of query term occurrences in different fields did exhibit superior perfor-
mance compared to the linear combination of weighting model scores from separate
fields (single-field models). The effectiveness of BM25F and PL2F have also been
shown in the literature [Macdonald et al. 2006; Plachouras 2006; Zaragoza et al.
2004].

We contrast these stated theoretical and empirical arguments from the litera-
ture with the practices exhibited in existing learning to rank datasets. Indeed,
the LETOR v3.0 dataset deploys various weighting models, each computed on the
whole document, as well as single-field model features on four constituent document
representations, namely body, title, URL, and the anchor text of incoming hyper-
links (for instance, see feature IDs 21-25 in Table I, which calculate BM25 on five
different document representations). However, a field-based weighting model such
as BM25F [Zaragoza et al. 2004] is not deployed. The same situation is observed
with the MSLR-WEB10K and MSLR-WEB30K datasets.

There are theoretical and empirical arguments advocating field-based weighting
models, as well as against the linear combination of weighting models for different
representations. Yet, at least some learning to rank techniques deploy such linear
combinations of features (e.g. AFS [Metzler 2007b], Adarank [Xu and Li 2007] and
RankSVM [Joachims 2002]), which hence may be unsuitable for use with multiple
weighting model features for different representations. On the other hand, it is
unclear if arguments against the combination of such single-field model features
apply for other non-linear learning to rank techniques, such as those based on
regression trees (e.g. LambdaMART). Indeed, in the latter case, as the outcome of a
single regression tree is dependent on the feature values, but not actually dependent
on any form of linear combination of those feature values, then the argument against
combining single-field model features may no longer be appropriate.

This gives rise to our third research question, where we examine the use of weight-
ing models for fields as features by learning to rank techniques. In particular, we
compare field-based models – where the term frequency from different document
representation is linearly combined into one weighting model features – with single-
field model features – where weighting model scores are obtained separately for
each document representation:

RQ 3. Are field-based or single-field weighting models more effective as features?

In the remainder of this paper, we experiment to address these three research
questions, using standard datasets within a variety of settings. In the next section,
we detail the experimental setup, while results and conclusions follow thereafter.

5It is of note that other per-field normalisation field-based models can be generated using the
generic outline of Equation (7), by alteration of the normalisation function for each field that
produced tfn, or the weighting function w() - other effective functions are provided in [He 2007].
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4. EXPERIMENTAL SETUP

Our experiments are conducted in a Web search setting, using features that are
often applied for ranking in Web corpora. In the previous section, we highlighted
many weighting model features that may be used in an effective learned Web search
model, such as field-based weighting models (e.g. BM25F) and single-field weight-
ing models (e.g. BM25 computed separately on each field). However, computing
all of these features for every document matching more than one query term would
result in unnecessary inefficiencies at retrieval time. Instead, Section 4.1 describes
the framework that we use for computing such query dependent features. Follow-
ing this, Section 4.2 details the dataset and features we deploy in our experiments,
while Section 4.3 describes the used learning to rank techniques.

4.1 Fat Framework for Calculating Query Dependent Features

Calculating all query dependent features for every document that matches one or
more query terms would be extremely inefficient - indeed, a query term may match
millions of documents, but only a few thousand are needed for the sample to be re-
ranked by the learned model. Instead, it is natural to only compute these features
for the documents that actually make the sample of size k. However, the informa-
tion to calculate these features (typically term frequencies) requires further access
to the inverted file posting lists. Moreover, due to their compression, inverted file
posting lists are always accessed in a stream fashion, which makes random access
for only the documents within the sample impossible. One alternative would be to
rescan the posting lists for the documents in the sample. Nevertheless, as the sam-
ple of documents is typically several orders of magnitude smaller than the length of
the posting lists, this would be particularly slow. Another alternative is to assume
that the entire posting lists for all query terms can be retained in memory - indeed
this is the approach taken by the Indri platform6, however for large corpora with
long posting lists this is not practical.

Instead, in this work, we use an approach that allows the additional document
weighting model features to be calculated only when the final sample has been
finalised. Firstly, in the manner described by Broder et al. [2003] and outlined
in Figure 3, we assume that the posting lists for each query term are accessed
using an iterator pattern, which allows access to each posting in ascending docid
order. In particular, next() moves the iterator to the term’s next posting, while
next(id) allows skipping [Broder et al. 2003; Moffat and Zobel 1996] onto the
next document with docid greater than that specified. Indeed, next(id) facili-
tates advanced document-at-a-time (DAAT) dynamic pruning strategies such as
WAND [Broder et al. 2003]. The frequency() and docLength() methods permit
access to the statistics of the term’s occurrence in the document represented by the
current posting.

Building upon the general pattern shown in Figure 3, we add a clone() method,
which returns a copy of the current posting, free of the underlying iterator. Note
that we use an object to represent each posting, as depending on the used indexing
configuration, each posting may contain additional information, such as field fre-

6http://www.lemurproject.org/indri/
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Posting

return the frequency for the current posting
int frequency()

return the document length for the current posting
int docLength()

Posting Iterator extends Posting

move to the next posting and return its docid
int next()

move to the next posting with docid ≥ target, return posting’s actual docid
int next(target)

return a copy of the current posting, free of the current iterator
Posting clone()

Fig. 3. Interfaces permitting access to a posting, and the iterator on a term’s posting list. The
clone() method is an important addition that makes the fat framework possible, by keeping a copy
of the current posting free of the underlying iterator on the term’s posting list in the inverted
index.

Fig. 4. Retrieval stages within the fat framework.

quencies, occurrence positions and other payload information, that also need to be
copied.

Figure 4 shows the stages of retrieval (corresponding to steps 4-6 from Section 2)
and the flow of information between them. In particular, the first-stage retrieval
identifies the sample, during which documents are scored in the DAAT fashion.
Whenever a document scores high enough to be a candidate to be retrieved in the
result set of k sample documents, all postings of the current document matching the
query terms are saved along with the document’s score to the result set. Once the
result set has k documents, each newly retrieved document exceeding the threshold
(the score of the current k lowest scored document) is added to the result set, while
the k-th ranked document and its saved postings are expelled and discarded.

After the first-stage retrieval to identify the sample, the postings for all k retrieved
sample documents are available to calculate all other weighting model features. In
particular, we say that the result set is fat, as it contains as much information as
possible for the top k documents for the current query. Hence, there is no need
to access the inverted file to calculate more weighting model features for these
documents. Moreover, the amount of memory required to store the postings (or
calculated features) for each query is fixed to an amount linear with the size of
the sample (k), instead of the number of documents matching any query term,
which will vary for each query, and may exceed the available memory for large
disk-based indices. In practice, a fat result set must also retain other statistics to
allow weighting model features to be calculated, listed below:
ACM Transactions on Information Systems, Authors’ preprint, 2013.
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—collection statistics: e.g. the number of documents and the number of tokens
in the collection, such that document length normalisation can occur. This can
also include the number of tokens in each field, to permit per-field normalisation
in field-based weighting models.

—term statistics: e.g. the number of documents containing the term, so that
background models/IDF can be calculated. Similarly to collection statistics, for
the purposes of field-based weighting models, this can also include the number
of occurrences in each field.

—query statistics: e.g. number of times each query term occurs in the query, such
that query terms re-occurring in long queries can be appropriately weighted.

Finally, once the additional features are calculated, the third stage calculates the
final document ranking by using a previously learned model combining the features.
While we use the fat framework to facilitate experiments within this paper, it has
advantages for both the deployment of IR systems and for conducting experimental
IR, as detailed below:

—Using the Fat Framework for Deployed IR systems: The fat framework can be
used as the basis of a search engine deploying many features in a learned model.
It is of note that only a DAAT retrieval strategy can be used in the first stage
retrieval to identify the sample. Indeed, as all postings for a given document
are processed at the same time, the postings for a document that will not make
the k documents in the sample are not required. In contrast, for term-at-a-time
retrieval strategies (TAAT), all postings for a given query term would have to be
retained in memory until the top k was decided. This may outstrip the available
memory. In contrast, with the fat framework, due to its DAAT nature, only
space for the postings of k documents is required.
The fat framework can be seen as orthogonal to that of Cambazoglu et al. [2010].
Their approach focuses on the pruning of documents that cannot make the re-
trieved set when applying the learned model. Firstly, they assume that all fea-
tures are already computed and held in memory. Then they propose that the
cost of scoring a document can be reduced by early terminating the accumula-
tion of the final score from the constituent regression trees of the learned model
(in a manner somewhat similar to the DAAT MaxScore dynamic pruning strat-
egy [Turtle and Flood 1995]). Depending on the index ordering, different variants
of the approach of Cambazoglu et al. [2010] can result in effectiveness degrada-
tion. Their approach could be applied in conjunction with the fat framework for
regression tree-based learned models during the application of the learned model.

—Using the Fat Framework for Experimental IR: As discussed above, the primary
advantage of a fat result set is that additional query dependent document fea-
tures can be calculated without resorting to a second access of the inverted file
posting lists. A fat result set also has several other benefits when developing and
experimenting with learned ranking models. For instance, the fat result sets for a
training query set can be saved to disk, such that more features can be calculated
without further access to the inverted file. Moreover, in contrast to an inverted
file, the fat result sets for a substantial set of queries can easily fit in memory, re-
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CW09B MQ2007 (LETOR v4.0) MQ2008 (LETOR v4.0)

Training 88 1014 470
Validation 30 339 157
Testing 30 339 157

Table II. For each query set, the number of queries for training, validation and testing in each of
5 folds. The total number of queries are 150 (CW09B), 1692 (MQ2007) and 784 (MQ2008).

Representation Tokens Avg. Length

CW09B

Entire Document 52,031,310,320 1036.0
Body 38,314,153,346 762.9
URL 373,922,803 7.4
Title 396,214,008 7.9
Anchor Text 12,947,022,766 257.8

GOV2 (LETOR v4.0)

Entire Document 19,910,298,659 789.9
Body 19,215,162,601 762.3
URL 469,974,906 18.6
Title 138,172,107 5.5
Anchor Text 86,989,045 3.5

Table III. Statistics across four fields of the 50M document CW09B corpus (as indexed by Terrier),
and the 25M document GOV2 corpus (as provided by LETOR v4.0).

gardless of the number of documents in the underlying index. This permits the ef-
ficient training of parameters of features, without repeated posting list traversals.

4.2 Datasets and Features

Our experiments are performed using two different corpora, namely the TREC
‘category-B’ ClueWeb09 Web crawl (CW09B), and the Million Query 2007 & 2008
track query sets from the LETOR v4.0 dataset, which are based on the TREC
GOV2 corpus.

The CW09B corpus comprises 50 million English Web documents and is aimed
to represent the first tier of a commercial search engine index [Callan et al. 2009].
With this corpus, we use queries and relevance assessments from three tasks of
the TREC Web track, 2009, 2010 and 2011 [Clarke et al. 2010; 2011; 2012]. In
particular, all 150 queries are mixed within a 5-fold cross validation, where in each
fold, there are 3 parts training queries, 1 part validation queries and 1 part test
queries. The 5-fold cross validation permits sufficient training and validation data
while smoothing the differences in the natures of the three tasks (e.g. TREC 2011
targets less frequent, “more obscure topics [queries]” [Clarke et al. 2012]).

On the other hand, the GOV2 corpus comprises a Web crawl of 25 million docu-
ments from the .gov domain. The LETOR v4.0 dataset provides standard queries
and features for 1692 and 784 queries from the TREC 2007 and 2008 Million Query
tracks, respectively. Importantly for our work, the dataset also provides low-level
information, namely document-level, term-level and collection-level statistics, which
permit new query dependent features to be calculated. Each query set is split into
5 folds, each with training, validation and testing queries. Salient statistics of the
three query sets are shown in Table II.
ACM Transactions on Information Systems, Authors’ preprint, 2013.
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We implement the fat framework on version 3.5 of the Terrier IR platform [Mac-
donald et al. 2012]. Hence, using Terrier, we index the documents of the CW09B
corpus, while considering the body, the title, the URL, and the anchor text from the
incoming hyperlinks to be separate fields of each document. For LETOR v4.0, we
use the fat framework to create postings from the provided low-level statistics in-
stead of a traditional inverted index. Table III reports the total number of indexed
tokens and the average length of each field for both CW09B and LETOR.

For CW09B, at retrieval time, for each query, we use a light version of Porter’s
English stemmer, and rank 5000 documents within the sample, following Craswell
et al. [2010]. We experiment with two document weighting models for the sample,
namely BM25 [Robertson et al. 1992] and PL2 [Amati 2003] from the Divergence
From Randomness framework, without considering anchor text, as this results in the
samples with the highest recall of relevant documents7. For the LETOR query sets,
we are limited to the proscribed sampling method, where a mean of 41 documents
are sampled using BM25.

On both datasets, for all sample documents, we calculate additional query depen-
dent (QD) and query independent (QI) features. The deployed features are often
used in the learning to rank literature [Qin et al. 2009]. In particular, we use the
same QD features for both CW09B and LETOR query sets, however, for LETOR
we are limited to the QI features provided by the dataset. All deployed features are
summarised in Table IV and further sub-divided to support the research questions:

QI - Features from hyperlink analysis, URL length, and document quality.

QD:WMWD - Multiple standard weighting models computed on whole documents
(the whole document contains terms occurring in all fields, as per Figure 2).

QD:WMSF - A standard weighting model calculated individually on each “single
field” of the document. In particular, we use PL2 or BM25.

QD:WMFB - A weighting model that is field-based, where term frequencies are
combined rather than the weighting model scores. We deploy BM25F [Zaragoza
et al. 2004] and PL2F [Macdonald et al. 2006], which both independently nor-
malise and weight the term frequencies from each field.

Two weighting models form the root of many features within this paper, namely
BM25 and PL2, with their corresponding field-based variants, i.e. BM25F [Zaragoza
et al. 2004] and PL2F [Macdonald et al. 2006]. In BM25, the relevance score of a
document d for a query Q is given by:

score(d, Q) =
∑
t∈Q

w(1) (k1 + 1)tfn

k1 + 1 + tfn

(k3 + 1)qtf
k3 + qtf

(8)

where qtf is the frequency of the query term t in the query Q; k1 and k3 are
parameters, for which the default setting is k1 = 1.2 and k3 = 1000 [Robertson et al.
1995]; w(1) is the idf factor, given by w(1) = log N−Nt+0.5

Nt+0.5 where N is the number
of documents in the collection, and Nt is the number of documents containing the

7A sample size of 5000 documents and use of a representation without anchor text follows from
the recommandations in [Macdonald et al. 2012].

ACM Transactions on Information Systems, Authors’ preprint, 2013.



18 · C. Macdonald et al.

Class Features Total

Weighting Models on Whole Documents

QD:WMWD

BM25 [Robertson et al. 1992]

4
Dirichlet [Zhai and Lafferty 2001]
PL2 [Amati 2003]
DPH [Amati et al. 2008]
No. of matching query terms [Qin et al. 2009]

Weighting Models on Single Fields

QD:WMSF
PL2

4
BM25

Field-based weighting model

QD:WMFB
BM25F [Zaragoza et al. 2004] or

2
PL2F [Macdonald et al. 2006]

Query Independent

QI (CW09B)

Absorbing [Plachouras et al. 2005]

23

Inlinks
PageRank
Edgerecip [Becchetti et al. 2006]
URL Length, type etc
Field lengths
Content quality [Bendersky et al. 2011]
Spam likelihood [Cormack et al. 2011]

QI (LETOR)

PageRank 8
Inlinks
Outlinks
URL length, etc
Number of child pages
Field lengths

Table IV. Features deployed on ranking documents. The query independent features vary in the
CW09B and LETOR query sets.

query term. The normalised term frequency tfn is given by:

tfn =
tf

(1 + b) + b · l
avg l

, (0 ≤ b ≤ 1) (9)

where tf is the term frequency of the term t in document d. b is the term frequency
normalisation hyper-parameter, for which the default setting is b = 0.75 [Robertson
et al. 1995]. l is the document length in tokens and avg l is the average document
length in the collection.

In contrast to BM25, for BM25F instead of calculating the normalised term
frequency tfn using Equation (9), tfn is instead obtained by normalising the term
frequency tff from each field f (body, title, anchor text, URL) separately:

tfn =
∑

f

wf ·
tff

(1− bf ) + bf · lf
avg lf

, (0 ≤ bf ≤ 1) (10)

where tff is the term frequency of term t in field f of document d, lf is the length
in tokens of field f in document d, and avg lf is the average length of f in all
documents of the collection. The normalisation applied to terms from field f can
be controlled by the field hyper-parameter, bf , while the contribution of the field
is controlled by the weight wf .
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In the PL2 weighting model [Amati 2003], the importance of a term occurring in a
document is obtained by measuring its divergence from the expectation given its oc-
currence in the corpus. Hence, PL2 scores term occurrences in documents as follows:

score(d, Q) =
∑
t∈Q

qtw · 1
tfn + 1

(
tfn · log2

tfn

λ
(11)

+(λ− tfn) · log2 e + 0.5 · log2(2π · tfn)
)

where λ is the mean and variance of a Poisson distribution, given by λ = F/N . F is
the frequency of terms t in the entire corpus. In the Divergence From Randomness
(DFR) framework, the query term weight qtw is given by qtf/qtfmax. qtf is the
query term frequency. qtfmax is the maximum query term frequency among the
query terms.

To accommodate document length variations, the normalised term frequency tfn
is given by the so-called Normalisation 2 from the DFR framework:

tfn = tf · log2(1 + c · avg l

l
), (c > 0) (12)

where tf is the actual term frequency of the term t in document d and l is the
length of the document in tokens. avg l is the average document length in the whole
collection (avg l = tokenc

N ). c is the hyper-parameter that controls the normalisation
applied to the term frequency with respect to the document length. The default
value is c = 1.0 [Amati 2003].

In the PL2F model, the document length normalisation step is altered to take a
more fine-grained account of the distribution of query term occurrences in different
fields. The so-called Normalisation 2 (Equation (12)) is replaced with Normalisation
2F [Macdonald et al. 2006], so that the normalised term frequency tfn corresponds
to the weighted sum of the normalised term frequencies tff for each used field f :

tfn =
∑

f

(
wf · tff · log2(1 + cf ·

avg lf
lf

)
)

, (cf > 0) (13)

where cf is a hyper-parameter for each field controlling the term frequency normal-
isation, and the contribution of the field is controlled by the weight wf . Together,
cf and wf control how much impact term occurrences in a field have on the final
ranking of documents. Again, tff is the term frequency of term t in field f of
document d, lf is the number of tokens in field f of the document, while avg lf is
the average length of field f in all documents, counted in tokens. Having defined
Normalisation 2F, the PL2 model (Equation (11)) can be extended to PL2F by
using Normalisation 2F (Equation (13)) to calculate tfn.

For both BM25F and PL2F, the proper setting of the normalisation parame-
ters (bf and cf ) as well as the field weights (wf ) depends on the distribution of
lengths observed in each fields, and their importance in effective retrieval. Hence,
in contrast to BM25’s b and PL2’s c parameters, there are no default recommended
settings. Instead, as detailed below, we train these parameters to maximise perfor-
mance on a training set of queries.
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The other weighting models from Table IV are language modelling using Dirichlet
smoothing [Zhai and Lafferty 2001], DPH [Amati et al. 2008] and the number of
matching query terms [Qin et al. 2009]. In Dirichlet, the score of a document is
rank equivalent under log transform to the smoothed probability query likelihood
P (d|Q) using a Dirichlet prior:

P (Q|d) =
∏

t

λP (t|d) + (1− λ)P (t) (14)

where P (t|d) is the maximum likelihood of the occurrence of query term t in docu-
ment d, and the P (t) is likelihood of t occurring in the whole corpus. Following Zhai
and Lafferty [2001], λ = µ

l+µ .
In DPH [Amati et al. 2008], the score of a document is obtained as follows:

score(d, Q) =
∑
t∈Q

qtw(1− tf
l )2

tf + 1
·
(
tf · log2(tf ·

avg l

l

N

F
)
)

+0.5 · log2(2π · tf · (1− tf

l
)) (15)

Finally, the use of the number of matching query terms as a query dependent
feature allows a learner to estimate if the document would have been retrieved by
a conjunctive retrieval approach:

score(d, Q) =
∑
t∈Q

{
1 if tf > 0,
0 otherwise.

4.3 Learners

Various learning to rank techniques in the literature fall into one of three categories,
namely pointwise, pairwise and listwise [Liu 2009]. Purely pointwise approaches
are rarely used, as they do not account for the relative importance of documents.
Instead, we deploy two listwise learners and one pairwise learner, which differ in
the form of their learned models:

—Automatic Feature Selection (AFS) [Metzler 2007b] obtains a weight for the
linear combination of the most effective feature at each iteration, which is then
added to the set of features already selected in the previous iteration(s). In
our implementation, we use simulated annealing [Kirkpatrick et al. 1983] to find
the combination weight for each feature that maximises NDCG@10008. Note
that such weights are obtained one by one, with no revisiting of the weights of
the already selected features. When validation data is used, the model of the
highest performing iteration as measured using the same evaluation measure on
the validation data is chosen (in this manner, the validation data is used to
determine the correct number of AFS iterations, as suggested by Liu [2009]).

8While a rank cutoff of 1000 increases the informativeness of the measure to additional swaps in
the ranking, it will likely not impact the final effectiveness of the learned model [Macdonald et al.
2012].
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—RankSVM [Joachims 2002] - a pairwise technique, as implemented by the svmrank

package9. To determine the Crank parameter of RankSVM, which affects the
trade-off between training error and margin, we pick the highest performing
Crank = {0.01, 0.05, 0.25, 1.25, 6.25, 31.25}, based on NDCG@1000 as computed
on the validation set. In the default svmrank configuration, a linear kernel is
used, such that the resulting model is a linear combination of features.

—LambdaMART [Wu et al. 2008] deploys boosted regression trees internally, where
the learning of the trees considers NDCG to obtain the gradient of the surrogate
loss function between pairs of documents. We use the implementation of the
Jforests open source package [Ganjisaffar et al. 2011]10. A LambdaMART ap-
proach was the winning entry in the 2011 Yahoo! learning to rank challenge [Chap-
pelle and Chang 2011]. The model of the highest performing iteration on the
validation data is chosen.

Finally, for training the parameters of the weighting models (namely b in Equa-
tion (9) for BM25, µ for Dirichlet and c in Equation (12) for PL2, as well as bf

and wf in Equation (10) for BM25F and cf and wf in Equation (13) for PL2F),
we use simulated annealing to maximise NDCG@1000. This training occurs inde-
pendently of the learning to rank approach used to combine these features. When
untrained, these parameters are left at their default settings from the literature
(b = 0.75 [Robertson et al. 1995], c = 1 [Amati 2003] and µ = 2500 [Zhai and
Lafferty 2001]).

In the following, we report the results and analysis for each of our three research
questions in Sections 5, 6 and 7, respectively. Each section consists of experiments,
analysis and summary.

5. MULTIPLE DOCUMENT WEIGHTING MODEL FEATURES

Recall that our first research question addresses whether the use of multiple weight-
ing models as query dependent features leads to an increased effectiveness. In the
following, Section 5.1 details our experiments to address the research question across
the CW09B and LETOR v4.0 query sets. In Section 5.2, we study the different
weighting model features used, including their usefulness and the correlation of
their generated rankings to the sample model, so as to understand whether they
can bring new evidence to improve the effectiveness of the learned model. We
summarise our findings for this research question in Section 5.3.

5.1 Experiments

In this section, we aim to determine if deploying multiple weighting models com-
puted on the whole document representation can result in increased effectiveness
over the weighting model used to obtain the sample alone. To do so, we control
both the presence of query independent features within the learned model, and the
choice of learner from those described in Section 4.3. In addition, for the CW09B
query set only, we control the choice of sample model, namely BM25 or PL2 – in-
deed, recall from Section 4.2 that for the LETOR v4.0 query sets, we can only use

9http://www.cs.cornell.edu/people/tj/svm light/svm rank.html
10http://code.google.com/p/jforests/
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Sample
Features

# Selected NDCG@20 NDCG@3 ERR@20
QD QI Total

AFS

BM25 7 7 1 1 0.2056 0.1932 0.0938
BM25 WMWD 7 6 4.0 0.2392� 0.2381> 0.1181�
BM25 7 4 24 10.0 0.2606 0.2655 0.1326
BM25 WMWD 4 29 12.8 0.2791= 0.2960= 0.1453=

PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMWD 7 6 4.2 0.2081> 0.2109> 0.1040�
PL2 7 4 24 10.2 0.2418 0.2335 0.1168
PL2 WMWD 4 29 12.4 0.2665= 0.2809> 0.1389�

RankSVM

BM25 7 7 1 1 0.2056 0.1932 0.0938
BM25 WMWD 7 6 - 0.2247= 0.2088= 0.1071>
BM25 7 4 24 - 0.2771 0.2775 0.1361
BM25 WMWD 4 29 - 0.2925= 0.3193� 0.1520�
PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMWD 7 6 - 0.2105� 0.1976> 0.1006�
PL2 7 4 24 - 0.2483 0.2667 0.1246
PL2 WMWD 4 29 - 0.2821� 0.3127> 0.1484�

LambdaMART

BM25 7 7 1 1 0.2056 0.1932 0.0938
BM25 WMWD 7 6 6.0 0.2266= 0.2018= 0.1074=
BM25 7 4 24 20.2 0.2620 0.2532 0.1277
BM25 WMWD 4 29 22.6 0.2735= 0.2790= 0.1369=

PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMWD 7 6 6.0 0.2110� 0.2028> 0.1004�
PL2 7 4 24 20.4 0.2044 0.2166 0.1118
PL2 WMWD 4 29 23.4 0.2844� 0.3070� 0.1467�

Table V. Results on the CW09Q query set comparing the use of multiple (query dependent)
weighting models as features in a learned model. NDCG@20, NDCG@3 and ERR@20 across 5
folds are reported, as well as the mean number of selected features (RankSVM always selects all
features, and hence the numbers of selected features are omitted for this learner).

the pre-determined samples for each query. Moreover, in these experiments, the
parameters of the weighting model features remain untrained using their default
settings as listed in Section 4.3 – instead, we address the training of the parameters
later, in Section 6. Note that the fat framework is very useful in conducting this
experiment, as a fat result set can easily have any number of additional features
calculated without resorting to further expensive inverted file disk accesses.

For the CW09B and LETOR query sets, Tables V & VI respectively report the
performance across various settings when varying the presence of multiple docu-
ment weighting models computed on the whole document representation within
the learned model. Mean performances are reported across 5 folds of the test
topics, using the appropriate evaluation measures. In particular, for the CW09B
query set, we report NDCG@20 and ERR@20 (which were the official TREC mea-
sures [Clarke et al. 2011]). For the LETOR query sets, we report NDCG@10 and
MAP@10. Moreover, for both query sets, we additionally report NDCG@3, to re-
flect a user’s perspective on the top ranked documents. For a given row of each
table, to show whether the addition of query dependent features benefits effective-
ness, statistically significant increases (decreases) from the row above in the tables,
ACM Transactions on Information Systems, Authors’ preprint, 2013.
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Query set
Features

# Selected NDCG@10 NDCG@3 MAP@10
QD QI Total

AFS

MQ2007 7 7 1 1 0.3036 0.1674 0.1968
MQ2007 WMWD 7 5 4.6 0.3651� 0.2073� 0.2519�
MQ2007 7 4 9 4.4 0.3148 0.1698 0.2040
MQ2007 WMWD 4 13 7.2 0.3641� 0.2066� 0.2508�
MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMWD 7 5 2.6 0.4977� 0.3503� 0.4290�
MQ2008 7 4 9 2.2 0.4602 0.3073 0.3888
MQ2008 WMWD 4 13 5.0 0.4961� 0.3481� 0.4276�

RankSVM

MQ2007 7 7 1 1 0.3036 0.1674 0.1968
MQ2007 WMWD 7 5 - 0.3583� 0.2020� 0.2456�
MQ2007 7 4 9 - 0.3093 0.1682 0.1999
MQ2007 WMWD 4 13 - 0.3562� 0.1992� 0.2431�
MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMWD 7 5 - 0.5033� 0.3600� 0.4382�
MQ2008 7 4 9 - 0.4618 0.3118 0.3891
MQ2008 WMWD 4 13 - 0.5003� 0.3543� 0.4338�

LambdaMART

MQ2007 7 7 1 1 0.3036 0.1674 0.1968
MQ2007 WMWD 7 5 5.0 0.3611� 0.2060� 0.2481�
MQ2007 7 4 9 8.0 0.3223 0.1747 0.2089
MQ2007 WMWD 4 13 12.0 0.3662� 0.2076� 0.2505�
MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMWD 7 5 5.0 0.4919� 0.3457� 0.4244�
MQ2008 7 4 9 8.0 0.4714 0.3217 0.3985
MQ2008 WMWD 4 13 12.0 0.4983� 0.3488� 0.4302�

Table VI. Results on the LETOR query sets comparing the use of multiple (query dependent)
weighting models as features in a learned model. NDCG@10 and MAP@10 across 5 folds are
reported, as well as the mean number of selected features (RankSVM always selects all features,
and hence the numbers of selected features are omitted for this learner).

Feature Set

QI 7 4 7 4 7 4

CW09B Mean NDCG@20 Mean NDCG@3 Mean ERR@20

(sample) 0.1909 0.2644 0.1753 0.2757 0.0866 0.1348
WMWD 0.2200 +15.2% 0.2797 +5.7% 0.2100 +19.7% 0.2992 +8.5% 0.1063 +22.7% 0.1447 +6.4%

LETOR Mean NDCG@10 Mean NDCG@3 Mean MAP@10

(sample) 0.3836 0.4101 0.2426 0.2598 0.2950 0.3188

WMWD 0.4296 +12.0% 0.4302 +4.9% 0.2785 +14.7% 0.2774 +6.8% 0.3395 +15.1% 0.3393 +6.4%

Table VII. Summary table for Table V & VI, detailing the mean effectiveness for different feature
sets, across different samples and learners.

according to the paired t-test are denoted by > (<) for p < 0.05 and � for p < 0.01.
p ≥ 0.05 is denoted by =. Finally, the number of features available, and the mean
number of features selected by the AFS and LambdaMART learners across 5 folds
are shown (RankSVM always selects all features, and hence the numbers of selected
features are omitted for this learner).

For example, the second row of Table V is explained as follows: the sample
is obtained using BM25; WMWD denotes that in addition to the sample, the 5
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whole document weighting model features are deployed (BM25, Dirichlet language
modelling, PL2, DPH, and the number of matching query terms); In addition, there
are no query independent features; Of the 6 total features, on average across the 5
folds, 4 features have been selected in the learned model obtained from AFS; The
resulting mean retrieval performances across the test topics of each fold are 0.2392
(NDCG@20), 0.2381 (NDCG@3) and 0.1181 (ERR@20) - all of which represent
significant increases over the line above, which does not deploy multiple query
dependent features.

To permit easy analysis of Tables V & VI across the multiple dimensions, sum-
mary Table VII reports the mean effectiveness for different feature sets (with or
without WMWD), across different samples and learners (AFS, RankSVM and
LambdaMART). For instance, in the first row of Table VII, mean NDCG@20 of
0.1909 is the mean of the NDCG@20 of both the BM25 and PL2 samples (first row
for each learner group) in Table V.

Our analysis of Table V & VI always consider pairs of rows, without and with mul-
tiple whole document weighting model (WMWD) features. In general, on analysing
these tables, we note marked increases on adding multiple weighting models as fea-
tures. Indeed, 23 out of a total 36 cases in Table V exhibit statistically significant
increases, while all 36 cases exhibit significant improvements in Table VI. These
results can be observed across different learners and samples, as shown by the
increases observed in summary Table VII. Indeed, for the CW09B query set (Ta-
ble V), significant increases are observed for each learner: AFS (8 out of 12 cases);
LambdaMART (6 cases); RankSVM (9 cases). Moreover, across all query sets –
CW09B, MQ2007 and MQ2008 – the number of selected features always increases
when adding multiple weighting models into the feature set, illustrating the per-
ceived usefulness by the learners of the multiple weighting model features, and their
resulting positive impact on the effectiveness of the resulting learned models.

The learned models that encapsulate query independent features perform con-
siderably better, showing the value of the deployed QI features for Web search.
Adding multiple weighting models (WMWD) to QI features always results in in-
creases in performance. In particular, comparing the QI vs. WMWD+QI for the
CW09B query set in Table V, the increases are statistically significant in 10 out of
18 cases. On the other hand, comparing sample vs. WMWD, 13 out of 18 signifi-
cant increases are observed, suggesting that the WMWD feature set is more useful
when QI features are not present. Similarly, for the LETOR query sets (Table VI),
the improvements brought by multiple weighting models is less marked when QI
features are present. Indeed, this result can also be observed for all query sets
in Table VII, where the margin of relative improvement brought by the WMWD
features is always less marked when QI features are already present. This suggests
that the benefit of the multiple weighting model features is less important in the
presence of other useful features.

Finally, we contrast the results for when BM25 and PL2 samples are used for the
CW09B query set (Table V)11. In general, we note that while performance using
the sample based on the PL2 weighting model are slightly lower, the observations
are consistent across the two weighting models. The difference in performance can

11Recall that the LETOR v4.0 query set has a fixed sample.
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be easily attributed to the slightly lower recall of the PL2 samples (indeed, on fur-
ther inspection of the samples, we find that the PL2 sample identified 63% of the
relevant documents vs. 65% for BM25).

5.2 Analysis

Our findings above suggest that multiple query dependent features resulting in
effective learned models, particularly when the QI features are not present. In
the following, we aim to determine which query dependent features bring the most
benefit in addition to the sample weighting model, contrasted with their similarity
to the sample. In doing so, we bring an explanation as to why multiple document
weighting model features are beneficial to the effectiveness of learned models. In
particular, we postulate that the usefulness of the different weighting model features
depends on how much they add to the evidence of relevance provided by the sample
weighting model. For instance, Vogt and Cottrell [1998] enumerated the chorus,
skimming and dark horse effects as possible reasons for the effectiveness of the data
fusion combination of multiple retrieval approaches. In the following, we describe
a method to characterise features inspired by these three effects, allowing us to
understand how a given weighting model feature contributes towards an effective
learned model.

In general, a chorus effect has been shown to be the most useful, as documents
retrieved by multiple retrieval approaches are more likely to be relevant [Lee 1997].
In contrast, as noted in Section 3, the use of the sample in learning to rank ensures
that all features retrieve exactly the same documents. To account for this in our
approach, we ascertain if a feature ranks highly the same relevant documents as the
weighting model used to create the sample (the sample feature). Indeed, features
that do rank highly the same relevant documents as the sample are more likely to
be exhibit a chorus effect.

To this end, we propose a ‘top-heavy’ set-based measure based on Dice’s coeffi-
cient, which measures the similarity of the relevant documents ranked in the sample
for two features F1 and F2. In particular, we define Dice Top (DT) as follows:

DT (F1, F2) =
1
Z

N∑
i=1

Dice(F i
1 ∩R,F i

2 ∩R) (16)

where F1 is a ranking of sample documents by feature F1, and F i
1 is the subset

within ranks 1..i. R denotes the set of relevant documents for the query that are
present in the sample (and by extension in F1 and F2), while N is the size of the
sample (e.g. N = 5000 for the CW09B query set, as per Section 4.2). Dice’s co-
efficient for two sets X and Y is defined as Dice(X, Y ) = 2|X∩Y |

|X|+|Y | [van Rijsbergen
1979]. We normalise by Z, defined as N minus the number of top-ranked positions
for which no relevant document appears for both features:

Z = N −min(f1, f2) + 1 (17)

where f1 (respectively, f2) is the (1-based) position of the first relevant document
ranked by F1 (resp., F2). Note that the DT measure is ‘top-heavy’ - i.e. it primarily
focuses on the top of the document ranking - as it considers N−i times the similarity
of documents at rank i. Moreover, N+|R|

N2 ≤ DT (F1, F2) ≤ 1, where 1 represents
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the same ranking that ranks the relevant documents in the same order. Indeed, by
using DT , we can ascertain the similarity of two different weighting model features
at ranking highly the same relevant documents.

In addition to the DT similarity of a feature with respect to the sample feature,
we also consider the effectiveness of a feature at ranking the sample documents
without the presence of any other features (independent effectiveness). Indeed, a
feature need not be effective in independence - e.g. a ‘weak’ feature such as URL
length is only useful when combined with a stronger, query dependent feature. In
the following, we postulate that such weaker features are more likely to generate
skimming or dark horse effects, by only ranking highly some relevant documents
some of the time.

Indeed, by making use of the DT and independent effectiveness measures, we are
able to characterise the features that improve the retrieval effectiveness of a learned
model, which is based upon a sample of reasonable effectiveness. In particular, we
extend the chorus, skimming and dark horse definitions of Vogt and Cottrell [1998]
as follows:

chorus effect: a feature generates a chorus effect if it is independently effective,
retrieves the same relevant documents as the sample (i.e. has a high DT ), yet
still improves performance when added to the learned model. Indeed, by scoring
highly the same relevant documents, it is providing reinforcing evidence to the
learned model of the likely relevance of these documents.

skimming effect: a feature generates a skimming effect if it scores highly different
relevant documents than a chorus feature. In doing so, it will have a lower DT ,
and may also have only a moderate independent effectiveness.

dark horse effect: a feature generates a dark horse effect if it has low independent
effectiveness, as well as a lower DT , but can still improve the effectiveness of the
learned model.

Of course, features that do not improve effectiveness when added to a learned
model (known as delta effectiveness) are not useful, regardless of their independent
effectiveness and similarity in terms of DT . Based on the dimensions of this char-
acterisation, Figure 5 presents the five WMWD features with respect to the BM25
sample for the CW09B query set12 and the AFS learned model. Moreover, recall
from Section 4 that the sample weighting model for CW09B excludes anchor text,
explaining why BM25 on the whole document is a separate feature from the sample
feature. Effectiveness is measured by NDCG@20.

On analysing Figure 5, we can observe both how each weighting model feature
improves the learned model, as well as how it can be characterised in terms of cho-
rus, skimming or dark horse effect. For instance, DPH clearly brings the highest
benefit to effectiveness, with PL2 and the number of matching query terms bring-
ing very small amounts of relative benefit. Indeed, we observe that the number of
matching query terms is delineated as a feature with a dark horse effect, as it is
dissimilar to the sample, both in terms of DT and independent effectiveness, yet
improves the learned model. On the other hand, BM25 has a clear chorus effect,

12Our methodology is equally applicable to the MQ2007 and MQ2008 query sets from LETOR
v4.0. However, for reasons of brevity we only report results for the CW09B query set.
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Fig. 5. Plot characterising five weighting model (WMWD) features in terms of chorus, skimming
and dark horse features. Effectiveness is measured by NDCG@20.

with high effectiveness and high DT similarity to the sample. Dirichlet and DPH,
as well as - to a lesser extent - PL2 also exhibit a chorus effect. Indeed, while PL2
is more independently effective than Dirichlet, and both are quite similar to the
sample, it is Dirichlet that brings additional effectiveness to the learned model. For
Dirichlet, this additional effectiveness is partly explained by how it handles docu-
ments with different lengths, as we will discuss in Section 6. Lastly, DPH exhibits
less correlation with the sample, and is more independently effective, leading to
largest improvement in effectiveness for all the WMWD features.

Overall, our observations allow us to demonstrate that features which exhibit
both chorus or dark horse effects can be beneficial to the effectiveness of a learned
model, although the feature with the most benefit was DPH, which was chorus in
nature.

5.3 Summary

We conclude that deploying multiple weighting models as features brings new ev-
idence that a learning to rank technique can successfully integrate into a learned
model, resulting in significantly increased effectiveness. The different properties of
weighting models mean that they can rank documents in different ways. Features
that exhibit both chorus or dark horse effects can be used to enhance the effective-
ness of a learned model: for instance, a feature with chorus characteristics (such
as similar weighting models) allow a learned model to rank highly the documents
that are highly scored by multiple weighting models; while features with dark horse
effects (such as the number of matching query terms) may strongly indicate the
likely relevance of a few documents; among the WMWD feature set, we found no
features which exhibited a skimming effect.

With respect to our first research question concerning the use of multiple doc-
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ument weighting models as features, the concerns of Beitzel et al. [2004] appear
to be less important within a learning to rank setting. Even though the different
weighting model features are all applied on the same underlying IR system imple-
mentation, document representation and query formulation, they contrast in how
they rank relevant documents. In doing so, they can improve the retrieval effec-
tiveness of a learned model. We note that as features in learning to rank re-rank
the set of documents identified by the sample, the overlap aspects of data fusion
identified by Lee [1997] are not present within this setting.

6. TRAINING OF DOCUMENT WEIGHTING MODEL FEATURES

In the previous section, we concluded that multiple document weighting model fea-
tures add effectiveness to a learned model for Web search. Our second research
question concerns the manner in which these multiple document weighting model
features should be deployed, with respect to the training of their parameters. In
the following, Section 6.1 experiments to address our second research question, Sec-
tion 6.2 investigates the length normalisation characteristics of the learned models
compared with the untrained and trained weighting model features, while Sec-
tion 6.3 summarises our findings.

6.1 Experiments

Various weighting models have parameters that control the term frequency versus
document length, or the smoothing. Finding appropriate settings of these parame-
ters can significantly impact the effectiveness of the weighting models [Chowdhury
et al. 2002; He and Ounis 2003; He et al. 2008]. Hence, we experiment to ascertain
whether learned models that encapsulate multiple document weighting model fea-
tures that have been trained are more effective than learned models with untrained
document weighting model features, for which the parameters remain at their de-
fault settings as listed in Section 4.3. Indeed, there is a distinct efficiency advantage
if training can be omitted without significant degradations in effectiveness.

The fat framework described in Section 4.1 provides a key advantage for answer-
ing this research question, as the postings for all the documents in the samples of
the training topic sets can be easily held in memory. Hence, for repeated evalua-
tion of different parameter settings during training, there is no need to resort to
accessing the inverted file. Indeed, during training, for each trial parameter set-
ting, the documents are ranked for the training queries and then evaluated. For
instance, for the CW09B query set, using fat allows each training iteration to be
completed in approximately one second on a single machine, rather than several
minutes when using traditional inverted file disk access for the training queries in
every iteration13.

The results of our experiments are reported in Table VIII & IX with similar no-
tation to Tables V & VI. We use the subscripts u and t to denote untrained and
trained weighting model features, respectively. The previously explained symbols
(�, <, =, > and �) are used to denote the statistical significance of the difference
between WMWDu and WMWDt. Moreover, summary Table X summarises the

13Experiment conducted on a quad-core Intel Xeon 2.4GHz CPU, with 8GB RAM and 400GB
SATA disk containing the index.
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Sample
Features

# Selected NDCG@20 NDCG@3 ERR@20
QD QI Total

AFS

BM25 7 7 1 1 0.2056 0.1932 0.0938
BM25 WMWDu 7 6 4.0 0.2392 0.2381 0.1181
BM25 WMWDt 7 6 5.0 0.2206� 0.2220= 0.1073<
BM25 7 4 24 10.0 0.2606 0.2655 0.1326
BM25 WMWDu 4 29 12.8 0.2791 0.2960 0.1453
BM25 WMBt 4 29 10.0 0.2716= 0.2801= 0.1398=

PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMWDu 7 6 4.2 0.2081 0.2109 0.1040
PL2 WMWDt 7 6 3.8 0.2035= 0.2025= 0.1011=
PL2 7 4 24 10.2 0.2418 0.2335 0.1168
PL2 WMWDu 4 29 12.4 0.2665 0.2809 0.1389
PL2 WMBt 4 29 8.0 0.2716= 0.2818= 0.1390=

RankSVM

BM25 7 7 1 1 0.2056 0.1932 0.0938
BM25 WMWDu 7 6 - 0.2247 0.2088 0.1071
BM25 WMWDt 7 6 - 0.2219= 0.2095= 0.1037=
BM25 7 4 24 - 0.2771 0.2775 0.1361
BM25 WMWDu 4 29 - 0.2925 0.3193 0.1520
BM25 WMBt 4 29 - 0.2920= 0.3088= 0.1511=

PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMWDu 7 6 - 0.2105 0.1976 0.1006
PL2 WMWDt 7 6 - 0.2139= 0.2006= 0.1022=
PL2 7 4 24 - 0.2483 0.2667 0.1246
PL2 WMWDu 4 29 - 0.2821 0.3127 0.1484
PL2 WMBt 4 29 - 0.2825= 0.3144= 0.1488=

LambdaMART

BM25 7 7 1 1 0.2056 0.1932 0.0938
BM25 WMWDu 7 6 6.0 0.2266 0.2018 0.1074
BM25 WMWDt 7 6 6.0 0.2279= 0.2178= 0.1090=
BM25 7 4 24 20.2 0.2620 0.2532 0.1277
BM25 WMWDu 4 29 22.6 0.2735 0.2790 0.1369
BM25 WMBt 4 29 23.6 0.2867= 0.2978= 0.1457=

PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMWDu 7 6 6.0 0.2110 0.2028 0.1004
PL2 WMWDt 7 6 6.0 0.2223= 0.2297> 0.1103=
PL2 7 4 24 20.4 0.2044 0.2166 0.1118
PL2 WMWDu 4 29 23.4 0.2844 0.3070 0.1467
PL2 WMBt 4 29 22.2 0.2592� 0.2785= 0.1336<

Table VIII. Results on the CW09B query set comparing the training of (query dependent) multiple
weighting models as features in a learned model. Statistical significance between WMWDu and
WMWDt are denoted using the symbols �, <, =, > and �.

mean performances of each feature set for each corpus, across different samples and
learners.

On analysing Table VIII (CW09B query set), we observe that training the weight-
ing model features make very little change in the effectiveness of the learned models.
In fact, in just under half of the cases (17 out of 36), the performance of the trained
features (WMWDt) are lower than WMWDu, but only 4 of these decreases are
significant. Of the 19 increases, none are significant. Comparing the number of
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Query set
Features

# Selected NDCG@10 NDCG@3 MAP@10
QD QI Total

AFS

MQ2007 7 7 1 1 0.3036 0.1674 0.1968
MQ2007 WMWDu 7 5 4.6 0.3651 0.2073 0.2519
MQ2007 WMWDt 7 5 4.4 0.3640= 0.2089= 0.2519=
MQ2007 7 4 9 2.8 0.3138 0.1718 0.2046
MQ2007 WMWDu 4 13 7.2 0.3641 0.2066 0.2508
MQ2007 WMWDt 4 13 4.8 0.3647= 0.2093= 0.2517=

MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMWDu 7 5 2.6 0.4977 0.3503 0.4290
MQ2008 WMWDt 7 5 2.4 0.4983= 0.3542= 0.4327=
MQ2008 7 4 9 2.2 0.4629 0.3118 0.3918
MQ2008 WMWDu 4 13 5.0 0.4961 0.3481 0.4276
MQ2008 WMWDt 4 13 2.6 0.4971= 0.3512= 0.4295=

RankSVM

MQ2007 7 7 1 1 0.3036 0.1674 0.1968
MQ2007 WMWDu 7 5 - 0.3583 0.2020 0.2456
MQ2007 WMWDt 7 5 - 0.3557= 0.1973= 0.2423=
MQ2007 7 4 9 - 0.3075 0.1670 0.1998
MQ2007 WMWDu 4 13 - 0.3562 0.1992 0.2431
MQ2007 WMWDt 4 13 - 0.3563= 0.1987= 0.2422=

MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMWDu 7 5 - 0.5033 0.3600 0.4382
MQ2008 WMWDt 7 5 - 0.4964< 0.3497< 0.4318=
MQ2008 7 4 9 - 0.4659 0.3166 0.3956
MQ2008 WMWDu 4 13 - 0.5003 0.3543 0.4338
MQ2008 WMWDt 4 13 - 0.4971= 0.3505= 0.4320=

LambdaMART

MQ2007 7 7 1 1 0.3036 0.1674 0.1968
MQ2007 WMWDu 7 5 5.0 0.3611 0.2060 0.2481
MQ2007 WMWDt 7 5 5.0 0.3566= 0.2015= 0.2438=
MQ2007 7 4 9 3.0 0.3305 0.1790 0.2150
MQ2007 WMWDu 4 13 12.0 0.3662 0.2076 0.2505
MQ2007 WMWDt 4 13 7.0 0.3603< 0.2045= 0.2459=

MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMWDu 7 5 5.0 0.4919 0.3457 0.4244
MQ2008 WMWDt 7 5 5.0 0.4936= 0.3468= 0.4260=
MQ2008 7 4 9 3.0 0.4727 0.3219 0.4005
MQ2008 WMWDu 4 13 12.0 0.4983 0.3488 0.4302
MQ2008 WMWDt 4 13 7.0 0.4973= 0.3480= 0.4297=

Table IX. Results on the LETOR query sets comparing the training of (query dependent) multiple
weighting models as features in a learned model. Statistical significance between WMWDu and
WMWDt are denoted using the symbols �, <, =, > and �.

features selected by AFS and LambdaMART, we observe very little differences
between WMWDu and WMWDt: two increases, four decreases, and two learned
models that selected the same number of features. Similar observations are made
for the LETOR query sets in Table VIII, where only 12 out of 36 cases result in
increased effectiveness with the trained features (none by a statistically significant
margin), while 23 cases exhibit decreases, two by significant margins. Moreover,
comparing the learned models between the WMWDu and WMWDt feature sets
ACM Transactions on Information Systems, Authors’ preprint, 2013.
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Feature Set

QI 7 4 7 4 7 4

CW09B Mean NDCG@20 Mean NDCG@3 Mean ERR@20

(sample) 0.1909 0.2687 0.1753 0.2816 0.0866 0.1375
WMWDu 0.2200 +15.2% 0.2797 +4.1% 0.2100 +19.8% 0.2992 +6.3% 0.1063 +22.7% 0.1447 +5.2%
WMWDt 0.2183 +14.3% 0.2773 +3.2% 0.2137 +21.9% 0.2936 +4.2% 0.1056 +21.9% 0.1430 +4.0%

LETOR Mean NDCG@10 Mean NDCG@3 Mean MAP@10

(sample) 0.3836 0.4171 0.2426 0.2664 0.2950 0.3264
WMWDu 0.4296 +12.0% 0.4302 +3.1% 0.2785 +14.7% 0.2774 + 4.1% 0.3395 +15.1% 0.3393 +4.0%
WMWDt 0.4274 +11.4% 0.4288 + 2.8% 0.2764 +13.9% 0.2770 +3.9% 0.3381 +14.6% 0.3385 +3.7%

Table X. Summary table for Table VIII & IX, detailing the mean effectiveness for different feature
sets, across different samples and learners.

used by the AFS and LambdaMART learners, we observe that the number of se-
lected features also decreases in 6 out of 8 cases.

Comparing across the learners, we observe in Table VIII that LambdaMART
exhibits the most number of increases in effectiveness (9 out of 12 cases), com-
pared to 3 and 6 cases for AFS and RankSVM, respectively - yet recall that none
of these increases are significant. This is likely the result of the regression tree-
based LambdaMART learner being able to create more effective learned models
compared to the linear AFS or RankSVM. However, for the LETOR query sets
(Table IX), the AFS learner exhibits the most number of increases in effectiveness
(9, versus 1 for RankSVM and 3 for LambdaMART). Given the small margins of
these improvements, we conclude that the choice of learner has no great impact on
the role of training the parameters of the user weighting model features. Finally,
for the CW09B query set14, the number of increases in effectiveness observed for
the different sample weighting models are widely similar (7 out of 18 for BM25, 12
for PL2), suggesting that the choice of the sample weighting model has no impact
on our conclusions.

The overall performances in summary Table X are indicative of the observed
trends: for both CW09B and the LETOR query sets, any training of the weighting
model features generally results in overall decreased effectiveness.

6.2 Analysis

Our results above suggest that the training of the weighting model parameters,
which typically control the amount of length normalisation applied, is unnecessary
in a learning to rank setting. In this section, we explain why the training of these
normalisation parameters is not beneficial to learned model effectiveness. Indeed, to
analyse the impact of the length normalisation parameters of the weighting model
features, we measure how the parameters affect any tendency to highly score shorter
or longer documents, and compare this with the effectiveness of the feature. In
particular, for a given test query, we measure the correlation (using Spearman’s ρ)
between the ranking of documents in the sample according to a particular weighting
model feature, and when ranked by document length l. This correlation is measured
before and after the weighting model’s parameter has been trained.

14Recall that the sample model is fixed for the LETOR query sets.
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QI
BM25 sample PL2 sample

ρ wrt l NDCG@20 ρ wrt l NDCG@20

Features

BM25u - 0.01 0.1925 -0.01 0.1913
BM25t - 0.18 0.2005 0.27 0.2008
PL2u - 0.13 0.1596 0.10 0.1544
PL2t - 0.32 0.1834 0.32 0.1721
Dirichletu - 0.30 0.1693 0.32 0.1622
Dirichlett - 0.21 0.1774 0.22 0.1702

Meanu 0.14 0.14
Meant 0.24 0.27

AFS

WMWDu 7 0.29 0.2392 0.14 0.2081
WMWDt 7 0.37 0.2206 0.26 0.2035
WMWDu 4 0.36 0.2791 0.20 0.2791
WMWDt 4 0.45 0.2716 0.27 0.2716

RankSVM

WMWDu 7 0.27 0.2247 0.16 0.2105
WMWDt 7 0.28 0.2219 0.21 0.2139
WMWDu 4 0.31 0.2925 0.25 0.2821
WMWDt 4 0.36 0.2920 0.28 0.2825

LambdaMART

WMWDu 7 0.20 0.2266 0.09 0.2110
WMWDt 7 0.31 0.2279 0.18 0.2223
WMWDu 4 0.27 0.2735 0.20 0.2844
WMWDt 4 0.28 0.2867 0.23 0.2592

Meanu 0.28 0.18
Meant 0.34 0.24

Table XI. Mean correlation, in terms of Spearman’s ρ across all CW09B test queries between
feature/learned model scores and document length, along with corresponding NDCG@20 perfor-
mance.

For the CW09B query set15, the top part of Table XI shows the mean correlation
with across all test queries for three WMWD weighting model features, namely
BM25, PL2 and Dirichlet – we omit the two parameter-free features, namely DPH
and number of matching query terms – with parameters untrained and trained. In
addition, for each feature, its untrained and trained NDCG@20 test performance
is also shown. Finally, a summary mean obtained by averaging all of the untrained
and trained correlations (Meanu and Meant, respectively) are also shown.

Examining the three WMWD weighting model features, we find that for BM25
and PL2, the correlation with document length increases on training of the param-
eter. Moreover, as expected, the test effectiveness always increases after training.
Indeed, He and Ounis [2007b] found that the default b = 0.75 and c = 1 for the
BM25 and PL2 weighting models are harsh normalisation settings that penalise
long documents.

On the other hand, Dirichlet exhibits a higher correlation with document length
than BM25 and PL2, while the correlation of Dirichlet with l actually decreases
when µ is trained. Indeed, smoothing has a role in document length normalisa-

15This methodology can equally be applied to the LETOR v4.0 query sets, which are omitted for
reasons of brevity.
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tion [Smucker and Allan 2005], but our results suggest that the default parameter
setting for Dirichlet has a preference for highly scoring longer documents. Overall,
from the average of the untrained and trained correlations (Meanu and Meant, re-
spectively), we can see that training the weighting model parameters increases the
correlations to ρ = 0.24..0.27 on average.

Next, we contrast the correlations of the weighting model features with any those
exhibited by the learned models. Both correlations with document length and
performances for each learned model are shown in the lower parts of Table XI.
From the table, we note that the correlation for all learned models are typically
higher than most of the untrained features alone. Indeed, even without training,
the correlations exhibited by the learned models for the BM25 sample can rise as
high as 0.29. However, the correlations of the learned models using the trained
weighting model features are higher still, despite exhibiting no marked increases
in effectiveness. This suggests that the learned models using the trained features
may not be penalising long documents sufficiently. Indeed, a high correlation with
l suggests a bias towards longer documents, and means that the relevance scores of
long documents have been over-estimated.

The general trend from Table XI demonstrates that the learners intrinsically ac-
count for document length bias during learning. This is because the untrained
weighting model features exhibit different length normalisation properties, and
hence an over-estimated relevance score by one feature can be counteracted by
stronger application of another feature that under-estimates the relevance score
with respect to document length.

This effect can be explained for the various learners as follows: For RankSVM,
as the training examples are pairs of documents, every over-estimated relevance
score is subtracted by another over-estimated relevance score. For LambdaMART,
the scenario is similar. In particular, LambdaMART is an improved version of
LambdaRank, which is a listwise algorithm based on the pairwise RankNet [Burges
et al. 2005]. A subtraction of two documents’ relevance scores is defined in its loss
function such that it is only the relative difference between scores matters. For a
listwise technique such as AFS, the inflation of relevance scores can be controlled
by the linear combination weights for different features. Indeed, an over-estimated
relevance score by a weighting model may be addressed by the learner through
a higher than expected feature weight for another weighting model that under-
estimates the relevance score with respect to document length.

Overall, we conclude that any document length bias present in the weighting
model features is implicitly handled by the learners, by the nature of their combi-
nation of multiple weighting model features, due to the diverse length normalisation
effects exhibited by different weighting models. On the other hand, by training the
weighting model features prior to learning, the ability of the learners to combine
multiple weighting models to address document length bias is hindered, as the
weighting models features have more similar length normalisation effects. This
results in learned models that may be overfitted to the training queries.

6.3 Summary

With respect to our second research question concerning the training of the parame-
ters of document weighting model features within a learned model, our observations
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from Section 6.1 above find that this is unnecessary for effective learned models.
Indeed, from Section 6.2 we conclude that training the parameters of weighting
models results in changes to the bias in document length that the learning to rank
technique would have anyway accounted for, and hence does not lead to signifi-
cantly improved learned models using those trained features. Hence, for effective
learned models, it is not necessary to train the weighting model features. As a
result, deployments of learned models can avoid such costly training operations.

7. FEATURES BASED ON WEIGHTING MODELS FOR FIELDS

Our final research question is concerned with the treatment of fields within a learned
model. In particular, Robertson et al. [2004] contrasted linearly combining model
scores for each field with field-based weighting models – where the (possibly nor-
malised [Zaragoza et al. 2004; Macdonald et al. 2006]) term frequency in each field
is linearly combined before scoring. They argued, with theoretical motivations
(summarised in Section 3.3 above), as well as with empirical evidence, that field-
based models should be used in preference to linearly combining weighting models
for each field. However, this work pre-dated the introduction of learning to rank
and contrasts with recent learning to rank deployments where weighting models are
typically calculated on each field in isolation (e.g. LETOR v3.0 [Qin et al. 2009]
and v4.0), for later combination within the learned model. In the following, we
experiment to investigate the most effective approach for combining fields within a
learned model (Section 7.1), characterise the various field features as introducing
chorus, skimming or dark horse effects (Section 7.2) and summarise our findings
(Section 7.3).

7.1 Experiments

To address our final research question, we measure the difference in the effectiveness
of the learned models that have one weighting model for each field (Equation (4)),
versus a field-based weighting model (Equation (7)), for which we use feature sets
WMSF and WMFB respectively from Section 4.2. In both cases, all four fields
illustrated by Figure 2 are used: title, URL, body and anchor text. Moreover,
recall from Section 4.2 that we use BM25 or PL2 as the models for the single-
field features, and the related BM25F or PL2F as the field-based weighting model
features. As neither BM25F nor PL2F have stated default parameter settings, we
resort to training the length normalisation parameters for each field (bf for BM25F
in Equation (10), or cf for PL2F in Equation (13)) and the weight of each field
(wf ). Finally, to ensure a fair setting, the length normalisation parameters for each
of the single-field model features are also trained.

Results are reported in Tables XII & XIII, grouped by the four different choices
for query dependent features (i.e. none, WMSF, WMFB and WMSF+WMFB). Sig-
nificance is measured according to the four rows within each group, so that each row
contains symbol(s) denoting the significance compared to the rows above it. Once
again, for each corpus, the mean performance of each feature set averaged across
different samples, weighting models and learners is reported in summary Table XIV.

From Table XII, we observe that for the CW09B query set, adding weighting
models computed on each field as features can benefit the effectiveness of the learned
models (only 5 decreases in performance across 36 cases), with significant increases
ACM Transactions on Information Systems, Authors’ preprint, 2013.
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Sample
Features

# Selected NDCG@20 NDCG@3 ERR@20
QD QI Total

AFS

PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMSF(PL2)t 7 5 3.4 0.1892= 0.1632= 0.0818=
PL2 WMFB(PL2F)t 7 2 2.0 0.2075�= 0.1732== 0.0922>=
PL2 WMSF(PL2)t + WMFB(PL2F)t 7 6 3.8 0.2147�== 0.1897=== 0.0986�>=
PL2 7 4 24 10.2 0.2418 0.2335 0.1168
PL2 WMSF(PL2)t 4 40 11.0 0.2379= 0.2657> 0.1224=

PL2 WMFB(PL2F)t 4 25 7.2 0.2786>� 0.2855>= 0.1433�>
PL2 WMSF(PL2)t + WMFB(PL2F)t 4 29 7.2 0.2764>�= 0.2811>== 0.1417�>=

BM25 7 7 1 1 0.2056 0.1932 0.0938

BM25 WMSF(BM25)t 7 5 3.8 0.2213= 0.2156= 0.1073>
BM25 WMFB(BM25F)t 7 2 1.4 0.2197== 0.1812== 0.0989==
BM25 WMSF(BM25)t + WMFB(BM25F)t 7 6 4.2 0.2272>== 0.2017=== 0.1044===
BM25 7 4 24 10.0 0.2606 0.2655 0.1326
BM25 WMSF(BM25)t 4 28 10.8 0.2809= 0.2999= 0.1444=
BM25 WMFB(BM25F)t 4 25 11.6 0.2612== 0.2657=< 0.1316=<
BM25 WMSF(BM25)t + WMFB(BM25F)t 4 29 13.0 0.2645=== 0.2730=== 0.1367===

RankSVM

PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMSF(PL2)t 7 5 - 0.1884= 0.1736= 0.0826=
PL2 WMFB(PL2F)t 7 2 - 0.2057�= 0.1753== 0.0914>=
PL2 WMSF(PL2)t + WMFB(PL2F)t 7 6 - 0.2209�>� 0.1920=== 0.0996�>�
PL2 7 4 24 - 0.2483 0.2667 0.1246
PL2 WMSF(PL2)t 4 40 - 0.2422= 0.2659= 0.1257=
PL2 WMFB(PL2F)t 4 25 - 0.2911�� 0.3064>> 0.1451��
PL2 WMSF(PL2)t + WMFB(PL2F)t 4 29 - 0.2824��= 0.3105>>= 0.1456��=

BM25 7 7 1 1 0.2056 0.1932 0.0938

BM25 WMSF(BM25)t 7 5 - 0.2143= 0.2119= 0.1033=
BM25 WMFB(BM25F)t 7 2 - 0.2198== 0.1869== 0.0992==
BM25 WMSF(BM25)t + WMFB(BM25F)t 7 6 - 0.2268>�= 0.2065=== 0.1062===
BM25 7 4 24 - 0.2771 0.2775 0.1361
BM25 WMSF(BM25)t 4 28 - 0.2815= 0.3007= 0.1437=
BM25 WMFB(BM25F)t 4 25 - 0.2789== 0.2974>= 0.1431>=
BM25 WMSF(BM25)t + WMFB(BM25F)t 4 29 - 0.2788=== 0.3066=== 0.1450===

LambdaMART

PL2 7 7 1 1 0.1762 0.1575 0.0795
PL2 WMSF(PL2)t 7 5 5.0 0.1802= 0.1674= 0.0854=
PL2 WMFB(PL2F)t 7 2 2.0 0.1973== 0.1637== 0.0878==
PL2 WMSF(PL2)t + WMFB(PL2F)t 7 6 6.0 0.2138��= 0.2037=== 0.1023>>>
PL2 7 4 24 20.4 0.2044 0.2166 0.1118

PL2 WMSF(PL2)t 4 40 23.2 0.2299� 0.2266= 0.1174=
PL2 WMFB(PL2F)t 4 25 21.6 0.2748�� 0.2845�� 0.1393��
PL2 WMSF(PL2)t + WMFB(PL2F)t 4 29 24.8 0.2733��= 0.2817��= 0.1344��=

BM25 7 7 1 1 0.2056 0.1932 0.0938
BM25 WMSF(BM25)t 7 5 5.0 0.2024= 0.1800= 0.0973=
BM25 WMFB(BM25F)t 7 2 2.0 0.2130== 0.2044== 0.1030==
BM25 WMSF(BM25)t + WMFB(BM25F)t 7 6 6.0 0.2116=== 0.2005=== 0.1012===
BM25 7 4 24 20.2 0.2620 0.2532 0.1277
BM25 WMSF(BM25)t 4 28 24.2 0.2826= 0.3094� 0.1477>
BM25 WMFB(BM25F)t 4 25 20.2 0.2762== 0.3055�= 0.1447>=
BM25 WMSF(BM25)t + WMFB(BM25F)t 4 29 24.8 0.2785=== 0.3037>== 0.1474�==

Table XII. Results on the CW09B query set comparing the use of weighting models computed
on each single-field versus a field-based weighting model as features in a learned model. On each
row, denoted using the usual symbols, there are k significance tests compared to the k rows above.
For instance, for WMFB(BM25F)t, significant differences are shown compared to the 1 feature
sample and compared to WMSF(BM25)t, respectively.

observed in three cases. Using a field-based weighting model (i.e. PL2F or BM25F)
as a feature instead of the weighting models computed on each field almost always
results in improved effectiveness (significantly improved in 17 cases). Indeed, PL2F
or BM25F can even improve on the single-field models in 18 out of 36 cases, 8
significantly so.

However, analysing the results for the LETOR query sets in Table XIII produces
some contrasting results. In particular, adding single-field or field-based weighting
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Query set
Features

# Selected NDCG@10 NDCG@3 MAP@10
QD QI Total

AFS

MQ2007 7 7 1 1 0.3036 0.1674 0.1968
MQ2007 WMSF(BM25)t 7 5 3.6 0.3583� 0.2056� 0.2408�
MQ2007 WMFB(BM25F)t 7 2 2.0 0.3489�� 0.1932�� 0.2339�<
MQ2007 WMSF(BM25)t + WMFB(BM25F)t 7 6 4.8 0.3594�=� 0.2058�=� 0.2420�=�
MQ2007 7 4 3 2.8 0.3138 0.1718 0.2046

MQ2007 WMSF(BM25)t 4 7 4.8 0.3578� 0.2039� 0.2400�
MQ2007 WMFB(BM25F)t 4 3 2.4 0.3467�� 0.1896�� 0.2331�=

MQ2007 WMSF(BM25)t + WMFB(BM25F)t 4 8 5.4 0.3588�=� 0.2043�=� 0.2411�=>

MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMSF(BM25)t 7 5 2.8 0.4970� 0.3557� 0.4302�
MQ2008 WMFB(BM25F)t 7 2 2.0 0.4843�� 0.3376�� 0.4152��
MQ2008 WMSF(BM25)t + WMFB(BM25F)t 7 6 3.6 0.4973�=� 0.3545�=� 0.4314�=�
MQ2008 7 4 3 2.2 0.4629 0.3118 0.3918
MQ2008 WMSF(BM25)t 4 7 4.2 0.4978� 0.3542� 0.4308�
MQ2008 WMFB(BM25F)t 4 3 2.2 0.4891�< 0.3471�= 0.4246�=

MQ2008 WMSF(BM25)t + WMFB(BM25F)t 4 8 3.0 0.4960�== 0.3551�== 0.4302�==

RankSVM

MQ2007 7 7 1 1 0.3036 0.1674 0.1968
MQ2007 WMSF(BM25)t 7 5 - 0.3607� 0.2049� 0.2429�
MQ2007 WMFB(BM25F)t 7 2 - 0.3489�� 0.1938�� 0.2340��
MQ2007 WMSF(BM25)t + WMFB(BM25F)t 7 6 - 0.3615�=� 0.2057�=� 0.2439�=�
MQ2007 7 4 3 - 0.3075 0.1670 0.1998
MQ2007 WMSF(BM25)t 4 7 - 0.3604� 0.2045� 0.2411�
MQ2007 WMFB(BM25F)t 4 3 - 0.3399�� 0.1815�� 0.2275��
MQ2007 WMSF(BM25)t + WMFB(BM25F)t 4 8 - 0.3621�=� 0.2063�=� 0.2445���
MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMSF(BM25)t 7 5 - 0.4973� 0.3505� 0.4290�
MQ2008 WMFB(BM25F)t 7 2 - 0.4840�� 0.3366�= 0.4158�<
MQ2008 WMSF(BM25)t + WMFB(BM25F)t 7 6 - 0.4965�=� 0.3506�== 0.4290�=>
MQ2008 7 4 3 - 0.4659 0.3166 0.3956

MQ2008 WMSF(BM25)t 4 7 - 0.5052� 0.3633� 0.4400�
MQ2008 WMFB(BM25F)t 4 3 - 0.4875�� 0.3454�< 0.4230��
MQ2008 WMSF(BM25)t + WMFB(BM25F)t 4 8 - 0.5009�<� 0.3563�<= 0.4341��=

LambdaMART

MQ2007 7 7 1 1 0.3036 0.1674 0.1968

MQ2007 WMSF(BM25)t 7 5 4.8 0.3570� 0.2041� 0.2392�
MQ2007 WMFB(BM25F)t 7 2 2.0 0.3464�� 0.1923�� 0.2311��
MQ2007 WMSF(BM25)t + WMFB(BM25F)t 7 6 6.0 0.3586�=� 0.2054�=� 0.2409�=�
MQ2007 7 4 3 3.0 0.3305 0.1790 0.2150
MQ2007 WMSF(BM25)t 4 7 7.0 0.3598� 0.2029� 0.2405�
MQ2007 WMFB(BM25F)t 4 3 3.0 0.3524�< 0.1966�= 0.2364�=
MQ2007 WMSF(BM25)t + WMFB(BM25F)t 4 8 8.0 0.3653�>� 0.2084�>� 0.2468���
MQ2008 7 7 1 1 0.4635 0.3179 0.3932
MQ2008 WMSF(BM25)t 7 5 5.0 0.4951� 0.3492� 0.4268�
MQ2008 WMFB(BM25F)t 7 2 2.0 0.4810�� 0.3329>� 0.4132��
MQ2008 WMSF(BM25)t + WMFB(BM25F)t 7 6 6.0 0.4968�=� 0.3546�=� 0.4295�=�
MQ2008 7 4 3 3.0 0.4727 0.3219 0.4005

MQ2008 WMSF(BM25)t 4 7 6.8 0.4916� 0.3497� 0.4230�
MQ2008 WMFB(BM25F)t 4 3 3.0 0.4865�= 0.3429�= 0.4178�=
MQ2008 WMSF(BM25)t + WMFB(BM25F)t 4 8 8.0 0.4961�=> 0.3506�== 0.4282�=>

Table XIII. Results on the LETOR query sets comparing the use of weighting models computed
on each single-field versus a field-based weighting model as features in a learned model. On each
row, denoted using the usual symbols, there are k significance tests compared to the k rows above.
For instance, for WMFB(BM25F)t, significant differences are shown compared to the 1 feature
sample and compared to WMSF(BM25)t, respectively.

models as features always results in a significant improvement over the sample.
However, in contrast to Table XII, the field-based models do not outperform single-
field models, and are significantly worse in 27 out of 36 cases. These observations
can also be made from summary Table XIV, which shows smaller margins of im-
provement over the sample for WMFB than for WMSF for the LETOR query sets,
and the opposite for the CW09B query sets. These results suggest that the field-
based weighting models do not provide as useful evidence on the LETOR query sets.
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Feature Set

QI 7 4 7 4 7 4

CW09B Mean NDCG@20 Mean NDCG@3 Mean ERR@20

(sample) 0.1909 0.2652 0.1753 0.2785 0.0866 0.1354

WMSFt 0.1993 +4.4% 0.2592 -2.3% 0.1853 +5.7% 0.2780 -0.2% 0.0930 +7.3% 0.1335 -1.4%

WMFBt 0.2148 +12.5% 0.2762 +4.1% 0.1899 +8.3% 0.2918 +4.8% 0.0987 +14.0% 0.1415 +4.5%

WMFBt+WMSFt 0.2192 +14.8% 0.2757 +3.9% 0.1990 +13.5% 0.2928 +5.1% 0.1020 +17.7% 0.1418 +4.7%

LETOR Mean NDCG@10 Mean NDCG@3 Mean MAP@10

(sample) 0.3836 0.4170 0.2426 0.2679 0.2950 0.3254

WMSFt 0.4276 +11.5% 0.4288 +2.8% 0.2783 +14.7% 0.2797 +4.4% 0.3348 0.3359 +3.2%

WMFBt 0.4220 10.0% 0.4234 +1.5% 0.2719 +12.1% 0.2737 +2.2% 0.3300 0.3323 +2.1%

WMFBt + WMSFt 0.4283 +11.6% 0.4299 +3.1% 0.2794 +15.2% 0.2802 +4.5% 0.3361 +13.9% 0.3375 +3.7%

Table XIV. Summary table for Tables XII & XIII, detailing the mean performances on each corpus
for different feature sets, across different samples and learners.

Next, when weighting models computed on each field and the field-based models
are all deployed as features, performance can be further increased. On the CW09B
query set, the increases when WMFB+WMSF features are added to learned models
that have QI features are less marked (see Table XIV). This suggests that the
benefit brought by the weighting models computed on each field are encapsulated
by the query independent features. To illustrate this, consider a document that has
an amount of anchor text related to the query, as identified by a single model on the
anchor text field. Our results suggest that it may be sufficient for the learned model
to know that the document has a significant amount of anchor text (as measured by
QI features such as field length, or inlink count), and that the document is about the
query (c.f. PL2F or BM25F). On the other hand, we observe no discernible pattern
concerning the margin of effectiveness improvement brought by WMFB+WMSF
with/without QI features for the LETOR query sets.

Moreover, contrasting across the different learners in Tables XII & XIII, we
observe no marked difference in the effectiveness between the use of linear learned
models (as obtained from AFS or RankSVM) compared to LambdaMART, which is
based on regression trees. This shows that our empirical findings are robust to the
type of learner deployed, and that the type of learned model (linear combination or
regression tree) does not impact on the earlier arguments of Robertson et al. [2004].

Overall, we conclude that for creating effective learned models for Web search
tasks, the use of a field-based weighting model can be more effective than computing
weighting model features on each field. These observations are easily observable in
summary Table XIV for the CW09B query set, with WMFBt models performing
markedly higher than WMSFt, and WMFBt + WMSFt showing only a little added
value above WMFBt. However, the benefit for the LETOR query sets is less marked
- we postulate that anchor text is less useful for the GOV2 collection and/or the
Million Query track query sets. This could be because the queries are informational
in nature, where anchor text is less important than for navigational queries [Croft
et al. 2009]. However, we also note that the system used to create the LETOR v4.0
has not identified much anchor text within the GOV2 corpus - indeed, comparing
the statistics in Table III with those reported in [He and Ounis 2007a] shows that
LETOR v4.0 anchor text token estimates differ by an order of magnitude (86M vs.
966M tokens, equating to average anchor text field length of 3.5 vs. 32.3 tokens).
With such a low level of anchor text, the benefits brought by per-field normalisation
are unlikely to be needed, explaining why the single-field features are more effective.
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Fig. 6. Plot characterising five WMSF and WMFB features in terms of chorus, skimming and dark
horse features. Effectiveness is measured by NDCG@20. BM25 WMSF feature are parametrised
by their field (Title, URL, Body or Anchor Text).

The results in this section consolidate the theoretical argument of Robertson
et al. [2004] (see Section 3.3) showing the appropriateness of field-based weighting
models, even within a learning to rank setting. Indeed, we conclude that field-based
weighting models should be deployed for effective retrieval. A related consequence
is that the existing learning to rank datasets (LETOR and MSLR-WEB10K, etc)
could be improved by the introduction of field-based weighting models such as
BM25F and PL2F.

7.2 Analysis

To understand the impact of the various field weighting model features on effective-
ness of the learned model, and why they have such impact, we again characterise
the features in terms of dark horse, skimming or chorus effects, as proposed in Sec-
tion 5.2. Figure 6 shows the independent effectiveness, DT and delta effectiveness
for the AFS learner and the BM25 sample on the CW09B query set of BM25F and
the the four BM25 single-field features (denoted BM25(T) for title, BM25(A) for
anchor text, BM25(B) for body and BM25(U) for URL)16.

On analysing Figure 6, we observe that calculating BM25 on the URL field
exhibits a dark horse effect, as it does not positively impact effectiveness. On the
other hand, calculating BM25 on the title and anchor text fields exhibit skimming
effects - they retrieve different relevant documents to the sample, but dramatically
improve a learned model. We note that this confirms the early work of Katzer et al.
[1982] on different document representations. BM25 on the body alone appears

16We omit the figures for the LETOR query sets for reasons of brevity.
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to lead to a chorus effect but does not help to improve effectiveness. Finally,
BM25F exhibits a strong chorus effect - this is likely as it integrates the evidence
brought by BM25(T) and BM25(A) at lower ranks. Indeed, a feature with high
effectiveness like BM25F has a chorus-like effect, even if it integrates other features
with skimming properties. Further empirical validation, e.g. through empirical
ablation studies could better determine the dependencies between features with
chorus and skimming properties.

7.3 Summary

For our third research question, we examined how weighting model scores obtained
from different document representations should be combined. Our results show that
field-based weighting models, such as PL2F or BM25F, can be more appropriate
than their corresponding single-field weighting models on the CW09B query set.
This consolidates the earlier arguments of Robertson et al. [2004] concerning the
advantages of field-based models to a learning to rank setting, where they are shown
to hold regardless of the applied learning to rank technique. Indeed, we find that a
field-based model exhibits an chorus effect, providing effective reinforcing evidence
for the learner. However, for the LETOR query sets, field-based weighting models
tend to be significantly less effective. This suggests that the per-field normalisation
brought by such weighting models is not needed, probably due to the sparseness of
the anchor text in LETOR v4.0, as discussed above.

8. CONCLUSIONS

This paper concerns the deployment of effective ranking models obtained using
learning to rank, particularly when these contain multiple weighting models as
query dependent features. We investigated three particular questions within this
context, namely the deployment of multiple weighting model features, the setting
of their parameters, and, finally, the proper use of weighting models considering
different document representations or fields. By doing so, we are able to make
empirically justified recommendations of the best practices for deploying multiple
query dependent weighting models within learning to rank deployments.

Indeed, while some existing learning to rank datasets appear to use multiple
document weighting model features, there exists no empirical validation of the ef-
fectiveness of such a setting in the literature. Our results in Section 5 attest the
effectiveness of deploying multiple document weighting models as features - con-
trasting with earlier studies within the data fusion literature. Moreover, we show
how different weighting model features can be characterised as exhibiting chorus,
skimming or dark horse effects within the learned model.

In Section 6, we show that the training of the parameters of these multiple
document weighting model features is unnecessary and hence can be safely omitted
when building a search engine in a learning to rank setting. This is explained
in that any correction of document length penalisation obtained by training of
a weighting model’s parameters is implicitly carried out by the learning to rank
technique during the learning process.

Finally, while the LETOR learning to rank datasets deploy weighting models
calculated on each field individually as features, we showed in Section 7 that, for
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the ClueWeb09 corpus and corresponding query set, such features are inferior to
deploying a field-based weighting model such as PL2F or BM25F on their own.
This consolidates the arguments of Robertson et al. [2004] which pre-dates the
introduction of learning to rank. However, for the LETOR v4.0 query sets, the
field-based weighting models were not effective - this may be due to the sparsity
of anchor text within LETOR v4.0 that is not observed by another work on the
underlying GOV2 collection [He and Ounis 2007a].

To facilitate the experiments in this paper, we introduced the fat framework that
we use, which permits the calculation of multiple weighting model features without
resorting to multiple accesses to the inverted file posting lists on disk. In particular,
the fat framework “fattens” result sets with the postings of sample documents, such
that additional features can be calculated using these postings at a later stage in
the retrieval process. This framework can be used both for efficient and effective
search engine deployments, as well as to increase the efficiency of experimentation
within a learning to rank context.
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