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ABSTRACT
Experimentation using information retrieval (IR) systems has tradi-
tionally been a procedural and laborious process. Queries must be
run on an index, with any parameters of the retrieval models suit-
ably tuned. With the advent of learning-to-rank, such experimental
processes (including the appropriate folding of queries to achieve
cross-fold validation) have resulted in complicated experimental
designs and hence scripting. At the same time, machine learning
platforms such as Scikit Learn and Apache Spark have pioneered
the notion of an experimental pipeline, which naturally allows a
supervised classification experiment to be expressed as a series of
stages, which can be learned or transformed. In this demonstration,
we detail Terrier-Spark, a recent adaptation to the Terrier IR plat-
form which permits it to be used within the experimental pipelines
of Spark. We argue that this (1) provides an agile experimental
platform for information retrieval, comparable to that enjoyed by
other branches of data science; (2) aids research reproducibility in
information retrieval by facilitating easily-distributable notebooks
containing conducted experiments; and (3) facilitates the teaching
of information retrieval experiments in educational environments.
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1 INTRODUCTION
Information retrieval (IR) has evolved through the systemic intro-
duction of supervised machine learning within commercial search
engines. Traditional theoretically-founded term weighting models
(e.g. BM25, language models, PL2) that could be combined with
other sources of evidence by learning parameters (circa 2004) have
been replaced with advanced rewritten query formulations (e.g.
Sequential Dependence [9]), and learning-to-rank techniques [6]
that combine evidence from many features to re-rank an initial
set of retrieved documents. Learning-to-rank has been integrated
within Terrier (from version 4.0, 2015), Solr (from version 6.0, 2017),
while for Elastic, learning-to-rank remains an experimental plugin.

While the techniques to perform effective ranking have there-
fore improved and been integrated within platforms, the tools and
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platforms to allow agile experimentation for information retrieval
researchers and practitioner have not kept up. Indeed, in this paper,
we draw distinctions between the deployers of a search engine, who
need to build and deploy an effective end-to-end search product,
and a researcher, who may be developing techniques, trying out
features, perhaps in an offline manner, before publishing, or de-
ployment into a search engine. The teaching of IR experimentation
concepts to graduate students also falls into this latter category.

Agile experimentation within other branches of supervised learn-
ing has been facilitated in recent years by the adoption of pro-
gramming languages such as Python and Scala, both having clean
syntax, and extensible libraries. We draw attention in particular
to the Scikit Learn toolkit from Python, where each supervised
technique expose a fit() method for training and a transform()
method for applying the trained model. Inspired by Scikit Learn,
Apache Spark’s MLib API similarly defines fit() and transform()
methods, which can be combined in series into Pipelines. In this
paper, we build upon Apache Spark MLib APIs using the Terrier IR
platform, and demonstrate how such Pipeline primitives allow the
easy expression of complex IR experiments.

We argue that the resulting Terrier-Spark, used within a Jupyter
notebook UI (1) provides an agile experimental platform for infor-
mation retrieval, comparable to that enjoyed by other branches of
data science; (2) aid research reproducibility in information retrieval
by facilitating easily-distributable notebooks containing conducted
experiments; and (3) facilitates the teaching of information retrieval
experiments in universities.

The structure of this paper is as follows: Section 2 highlights the
main requirements for an experimental IR platform; Section 3 sum-
marises the current Terrier platform; Section 4 introduces Terrier-
Spark and how to conduct IR experiment using it; Section 5 dis-
cusses the advantages of combining Terrier-Spark with Jupyter
notebooks. Concluding remarks follow in Section 6.

2 IR PLATFORM REQUIREMENTS FOR
CONDUCTING EMPIRICAL EXPERIMENTS

Below, we argue for, in our experience, the main attributes of an
experimental IR platform, described in terms of required func-
tionalities. In addition, there exist non-functional requirements,
such as running experiments efficiently on large corpora such as
ClueWeb09.
R1 Perform an “untrained” run for a weighting model over a set of
query topics, retrieving and ranking results from an index.
R2 Evaluate a run over a set of topics, based on relevance labels.
R3 Train the parameters of a run, which may require repetitive
execution of queries from an index and evaluation.
R4 Extract a run with multiple features that can be used as input to
a learning to rank technique.

https://doi.org/10.1145/3209978.3210174
https://doi.org/10.1145/3209978.3210174


R5 Re-rank results based on multiple features and a pre-trained
learning to rank technique.

R1 concerns the ability of the IR system to be executed in an
offline batch mode – to produce the results of a set of query topics.
Academic-based platforms such as Terrier, Indri, Galago etc. offer
such functionality out of the box. R2 concerns the provision of
evaluation tools that permit a run to be evaluated. Standard tools
exist such as the C-based trec_eval library, but integration in the
native language of the systemmay provide advantages for R3. Other
systems such as Lucene/Solr/Elastic may need some scripting or
external tools (Azzopardi et al. [1] highlight the lack of empirical
tools for IR experimentation and teaching on Lucene, and have
made some inroads into addressing this gap).

R3 represents the early advent of machine learning into the
IR platform, where gradient ascent/descent algorithms were used
to optimise the parameters of systems by (relatively expensive)
repeated querying and evaluation of different parameter settings.
Effective techniques such as BM25F [16] & PL2F [7] were facilitated
by common use of such optimisation techniques.

Finally, R4 & R5 are concerned with successful integration of
learning-to-rank into the IR system. As with new technologies,
there can be a lag between research-fresh developments and how
they are bled into production-ready systems. Of these, for the pur-
poses of experimentation, R4 is the more important - the ability to
efficiently extract multiple query dependent features has received
some coverage in the literature [8]. R5 is concerned with taking this
a stage further, and applying a learned model to re-rank the results.

In the following, we will describe how Terrier currently meets
requirements R1-R5 (Section 3), and how it can be adopted within a
Spark environment to meet these in a more agile fashion (Section 4).

3 BACKGROUND ON TERRIER
Terrier [11] is a retrieval platform dating back to 2001 with an ex-
perimental focus. First released as open source in 2004, it has been
downloaded >50,000 times since. While Terrier portrays a Java API
that allows extension and/or integration into a number of appli-
cations, the typical execution of Terrier is based upon procedural
command invocations from the commandline. Listing 1 provides
the commandline invocations necessary to fulfil requirements R1 &
R2 using Terrier. All requirements R1-R5 listed above are supported
by the commandline. Moreover, the use of a rich commandline
scripting language (GNU Bash, for instance) permits infinite com-
binations of different configurations to be evaluated automatically.
Moreover, with appropriate cluster management software, such
runs can be conducted efficiently in a distributed fashion.

However, we have increasingly found that a commandline API
was not suited for all purposes. For instance, the chaining of the
outcomes between invocations requires complicated scripting. For
instance, consider, for each fold of a 5-fold cross validation: training
the b length normalisation parameter of BM25, saving the optimal
value, and using that for input to a learning-to-rank run, distributed
among a cluster environment. Such an example would require
creating tedious amounts of shell scripting, for little subsequent
empirical benefit. In short, this paper argues that IR experimentation
has now reached the stage where we should not be limited by the
confines of a shell-scripting environment.

4 TERRIER-SPARK
To address the perceived limitations in the procedural commandline
use of Terrier, we have developed a new experimental interface
for the Terrier platform, building upon Apache Spark, and called
Terrier-Spark. Apache Spark is a fast and general engine for large-
scale data processing. While Spark can be invoked in Java, Scala
and Python, we focus on the Scala environment, which allows for
code that is more succinct than the equivalent Java (for instance,
through the use of functional progamming constructs, and auto-
matic type inference). Spark allows relational algebra operations
on dataframes (relations) to be easily expressed as function calls,
which are then compiled to a query plan that is distributed and
executed on machines within the cluster.

Spark borrows the notions of dataframes from Pandas1 (a Python
data analysis library), and similarly the notion of machine learning
pipeline constructs and interfaces (e.g. fit and transform meth-
ods) from Scikit Learn2 (Python machine learning library), namely:

• DataFrame: a relation containing structured data
• Transformer: an object that can transform a data instance
from a DataFrame.

• Estimator: an algorithm, which can be fitted to data in a
DataFrame. The outcome of an Estimator can be a Trans-
former - for instance, a machine-learned model obtained
from an Estimator will be a Transformer.

• Pipeline: A series of Transformer and Estimators chained
together to create a workflow.

• Parameter: A configuration option for an Estimator.
In our adaptation of Terrier to the Spark environment, Terrier-

Spark, we have implemented a number of Estimators and Trans-
formers. These allow the natural stages of an IR system to be com-
bined in various ways, while also leveraging the existing supervised
ML techniques within Spark to permit the learning of ranking mod-
els (e.g. Spark contains logistic regression, random forests, gradient
boosted regression trees, but notably no support for listwise-based
learning techniques such as LambdaMART [15], which are often
the most effective [2, 6]).

Table 1 summarises the main components developed to sup-
port the integration of Terrier into Apache Spark, along with their
inputs, outputs and key parameters. In particular, QueryingTrans-
former is the key Transformer, in that this internally invokes Terrier
to retrieve the docids and scores of each retrieved document for
the queries in the input data frame. As Terrier is written in Java,
and Scala and Java both are JVM-based languages, Terrier can run
“in-process”. In the future, we will investigate accessing remotely
hosted Terrier servers, similar to that performed by Elastic’s3 and
Solr’s4 Spark tools.

In the following, we provide examples of retrieval experimental
listings using Spark through Scala.

4.1 Performing an untrained retrieval run
Listing 1 shows how a simple retrieval run can be made using
Terrier’s commandline API. The location of the topics and qrels
files, as well as the weighting model are set on the commandline,
although defaults could instead be set in a configuration file.

In contrast, Listing 2 shows how the exact same run might be
achieved from Scala in a Spark environment. Once the topics files
1 http://pandas.pydata.org/ 2 http://scikit-learn.org/
3 https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html
4 https://github.com/lucidworks/spark-solr
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Component Inputs Output Parameters
QueryingTransformer Queries docids, scores for each query number of docs; weighting model
FeaturedQueryingTransformer Queries docids, scores of each feature for each query + feature set
QrelTransformer results with docids results with docids and labels qrel file
NDCGEvaluator results with docids and labels Mean NDCG@K cutoff K

Table 1: Summary of the primary user-facing components available Terrier-Spark.

bin/trec_terrier.sh -r -Dtrec.topics=/path/to/topics \
-Dtrec.model=BM25

bin/trec_terrier.sh -e -Dtrec.qrels=/path/to/qrels

Listing 1: A simple retrieval run and evaluation using Ter-
rier’s commandline interface - c.f. requirements R1 & R2.

val props = Map("terrier.home" -> "/path/to/Terrier")
LTRPipeline.configureTerrier(props)
val topicsFile = "/path/to/topics.401-450"
val qrelsFile = "/path/to/qrels.trec8"

val topics = LTRPipeline.extractTRECTopics(topicsFile)
.toList.toDF("qid", "query")

val queryTransform = new QueryingTransformer()
.setTerrierProperties(props)
.setSampleModel("BM25")

val r1 = queryTransform.transform(topics)
//r1 is a dataframe with results for queries in topics
val qrelTransform = new QrelTransformer()

.setQrelsFile(qrelsFile)

val r2 = qrelTransform.transform(r1)
//r2 is a dataframe as r1, but also includes a label column

val meanNDCG = new NDCGEvaluator(20).evaluate(r2)

Listing 2: A retrieval run in Scala - c.f. requirements R1&R2.

are loaded into a two-column dataframe (keyed by “qid", the topic
number), these are transformed into a dataframe of result sets,
obtained from Terrier (keyed by “⟨qid,docno⟩”). Then a second
Transformer permits knowledge of the relevant and non-relevant
documents to be added to the dataframe by joining with the con-
tents of the qrels file, before evaluation.

While clearly more verbose than the simpler commandline API,
Listing 2 demonstrates equivalent functionality, and clearly high-
lights the needed data for the experiment. Moreover, the use of
objects suitable to be built into a Spark pipeline offers the pos-
sibility to build and automate pipelines. As we show below, this
functionality permits the powerful features of a functional language
to allow more complex experimental pipelines.

4.2 Training weighting models
Listing 3 demonstrates the use of Spark’s Pipeline and CrossVal-
idator components to create a pipeline that applies a grid-search to
determine the most effective weighting model and its correspond-
ing document length normalisation c parameter. Such a grid-search
can be parallelised across many Spark worker machines in a clus-
ter. We note that while grid-search is one possibility, it is feasible
to consider the use of a gradient descent algorithm to tune the c

//assuming various variables as per Listing 2.
val pipeline = new Pipeline()
.setStages(Array(queryTransform, qrelTransform))

val paramGrid = new ParamGridBuilder()
.addGrid(queryTransform.localTerrierProperties,

Array(Map["c"->"1"], Map["c"->"10"], Map["c"->"100"]))
.addGrid(queryTransform.sampleModel,

Array("InL2", "PL2"))
.build()

val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(new NDCGEvaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(5)

val cvModel = cv.fit(topics)

Listing 3: Grid searching theweightingmodel and document
length normalisation c parameters using Spark’s CrossVal-
idator - c.f. requirement R3.

val queryTransform = new FeaturesQueryingTransformer()
.setTerrierProperties(props)
.setMaxResults(5000)
.setRetrievalFeatures(List(

"WMODEL:BM25",
"WMODEL:PL2",
"DSM:org.terrier.matching.dsms.DFRDependenceScoreModifier"))

.setSampleModel("InL2")
val r1 = queryTransform.transform(topics)
//r1 is as per Listing 2, but now also has a column of 3
//feature values for each retrieved document
val qrelTransform = new QrelTransformer()

.setQrelsFile(qrels)
val r2 = qrelTransform.transform(r1)

//learn a Random Forest model
val rf = new RandomForestRegressor()

.setLabelCol("label")

.setFeaturesCol("features")

.setPredictionCol("newscore")
rf.fit(r2)

Listing 4: Training aRandomForests based learning-to-rank
model - c.f. requirements R4 & R5.

parameters. However, at this stage we do not yet have a paralleised
algorithm implemented that would make best use of a clustered
Spark environment.

4.3 Training learning-to-rank models
Finally, Listing 4 demonstrates the use of Spark’s in-built machine
learning Random Forest regression technique to learn a learning-to-
rank model. In this example, the initial ranking of documents is per-
formed by the InL2 weighting model, with an additional three query



dependent features being calculated for the top 5000 ranked docu-
ments for each query. Internally, this uses Terrier’s Fat framework
for implementing the efficient calculation of additional query depen-
dent features [8]. The resulting random forests model can be triv-
ially applied to a further set of unseen topics (not shown). The result-
ing Scala code is markedly more comprehensible to the equivalent
complex commandline invocations necessary for Terrier 4.2 [13].
Moreover, we highlight the uniqueness of our offering – while other
platforms such as Solr and Elastic have Spark tools, none offer the
ability to export a multi-feature representation suitable for conduct-
ing learning-to-rank experiments within Spark (c.f. R4 & R5).

Of course, the pipeline framework of Estimators and Transform-
ers is generic, and one can easily imagine further implementations
of both to increase the diversity of possible experiments: For in-
stance, new Estimators for increased coverage of learning-to-rank
techniques, such as LambdaMART [15]; Similarly, Transformers
for adapting the query representation, for example by applying
query-log based expansions [5] or proximity-query rewriting such
as Sequential Dependence models [9]. Once a suitable Pipeline
is configured, conducting experiments such as learning-to-rank
feature ablations can be conducted in only a few lines of Scala.

5 CONDUCTING IR EXPERIMENTS WITHIN
A JUPYTER NOTEBOOK ENVIRONMENT

The use of a Spark environment naturally fits with the use of Scala
Jupyter notebooks56. Jupyter is an open-source web application that
allows the creation and sharing of documents that contain code,
equations, visualisations and narrative text. Increasingly entire
technical report documents, slides and books are being written as
Jupyter notebooks, due to the easy integration of text, code and the
corresponding analysis tables or visualisations.

Jupyter notebooks are increasingly used to share the algorithms
and analysis conducted in machine learning research papers, sig-
nificantly aiding reproducibility [12]. Indeed, in their report on
the Daghstuhl workshop on reproducibility of IR experiments [4],
Ferro, Fuhr et al. note that sharing of code and experimental meth-
ods would aid reproducibility in IR, but omitted any mention of
notebooks.

Jupyter notebooks are interactive in manner, in that a code block
in a single cell can be run independently of all other cells in the note-
book. As a result, Jupyter is also increasingly used for educational
purposes – for example, teaching programming within undergrad-
uate degree courses [3, 14], as well as a plethora of data science or
machine learning courses [12]. O’Hara et al. [10] described four uses
for notebooks in classroom situations, including lectures, flipped-
classrooms, home/lab work and exams. For instance, the use of
notebooks within a lecturing situation easily permits the students
to replicate the analysis demonstrated by the lecturer.

We argue that these general advantages of notebooks can be
applied to experimental information retrieval education, through
the use of a Spark-integrated IR platform, such as that described in
this paper. In particular, our experience in teaching graduate-level
IR using Terrier suggests that reliance on a procedural comman-
dline mechanism for interacting with the IR platform is limiting

5 http://jupyter.org/ 6 We note that Jupyter notebooks are extensible through
plugins to Scala and other languages, i.e. not limited to Python.

the types of experiments achievable by the students within the
constraints of a graduate coursework. In contrast, our recent ex-
perience in teaching a text analytics/machine learning course to a
similar student cohort suggests that the students are able to easily
test and experiment with techniques to aid their understanding
through the agile nature of a notebook environment. We believe
that Terrier-Spark can bring the same advantages to conducting
modern (e.g. learning-to-rank) IR experiments.

6 CONCLUSIONS
In this demonstration paper, we have introduced a toolkit to per-
form IR experimentation within the Spark distributed computing
engine, by building upon and integrating the Terrier IR platform.
As argued above, we believe this will aid in (1) providing an ag-
ile experimental platform for IR, comparable to that enjoyed by
other branches of data science; (2) aid research reproducibility in
information retrieval by facilitating easily-distributable notebooks
that demonstrate the conducted experiments; and (3) facilitate the
teaching of information retrieval experiments in educational envi-
ronments. Terrier-Spark has been released as open source, and is
available from

https://github.com/terrier-org/terrier-spark
along with example Jupyter notebooks.
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