Errata:

Keeping partners together: Algorithmic results for the Hospitals / Residents problem with Couples

Katarína Cechlárová¹, David F. Manlove² and Eric J. McDermid³

¹ Institute of Mathematics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia. Email katarina.cechlarova@upjs.sk.

> ² School of Computing Science, University of Glasgow, Glasgow, UK. Email david.manlove@glasgow.ac.uk.

> > ³ Apple, inc., Austin, Texas, USA. Email em4617@gmail.com.

Published in Journal of Combinatorial Optimization, volume 19, pages 279-303, 2010.

Theorem 3.8 and Corollary 3.9 in [2] are stated as follows:

Theorem 3.8. The problem of determining whether an HRS instance admits a stable matching is NP-complete, even if the size of each resident and the capacity of each hospital is at most 2, and the lengths of the residents' and hospitals' preference lists are at most 3 (these conditions holding simultaneously).

Corollary 3.9. The problem of determining whether an HRCC instance admits a stable matching is NP-complete, even if the individual preference list of each resident and the joint preference list of each couple has at most 3 entries, and the capacity of each hospital is at most 2 (these conditions holding simultaneously).

However in the reduction given in the proof of Theorem 3.8 in [2], some preference lists may in fact be of length 4 (namely those of residents of the form r_s). A similar remark holds for Corollary 3.9 (i.e., some couples' lists may contain as many as 4 pairs). In this note we present a revised proof of Theorem 3.8, which in turn establishes Corollary 3.9. In what follows we assume the notation and terminology used in [2].

Proof of Theorem 3.8. We reduce from a restricted version of SAT. Let (2,2)-E3-SAT denote the problem of deciding, given a Boolean formula B in CNF in which each clause contains exactly 3 literals and, for each variable v_j , each of literals v_j and \bar{v}_j appears exactly twice in B, whether B is satisfiable. Berman et al. [1] showed that (2,2)-E3-SAT is NP-complete.

Hence let B be an instance of (2,2)-E3-SAT. Let $V = \{v_1, v_2, \ldots, v_n\}$ and $C = \{c_1, c_2, \ldots, c_m\}$ be the set of variables and clauses respectively in B. Let us construct an instance of HRS in the following way.

For each variable v_j there are 6 residents $r_j^1, r_j^2, \ldots, r_j^6$, 4 residents $x_j^1, x_j^2, y_j^1, y_j^2$, 12 residents $q_{j,1}^k, q_{j,2}^k, q_{j,3}^k$ (1 $\leq k \leq 4$), 6 hospitals $h_j^1, h_j^2, h_j^3, h_j^4, h_j^T, h_j^F$ and 12 hospitals

resident	size	preferences	hospital	capacity	preferences
r_j^1	2	h_j^1 h_j^3	h_j^1	2	r_{j}^{4} r_{j}^{1} r_{j}^{3}
r_j^2	2	h_j^2 h_j^4	h_j^2	2	r_j^3 r_j^2 r_j^4
r_j^3	1	h_j^1 h_j^2	h_j^3	2	r_j^1 r_j^5
r_j^4	1	h_j^2 h_j^1	h_j^4	2	r_j^2 r_j^6
r_j^5	2	h_j^3 h_j^T	h_j^T	2	$r_{j}^{5} \ x_{j}^{1} \ x_{j}^{2}$
r_j^6	2	$h_j^4 \hspace{0.1in} h_j^F$	h_j^F	2	$r_j^6 \hspace{0.1 cm} y_j^1 \hspace{0.1 cm} y_j^2$
x_j^1	1	$h_{j}^{T} \ z(x_{j}^{1}) \ p_{j,3}^{1}$	z_i	2	$v_i^1 v_i^2 v_i^3$
x_j^2	1	$h_{j}^{T} \ z(x_{j}^{2}) \ p_{j,3}^{2}$	$p_{j,1}^k$	2	$q_{j,1}^k \ q_{j,3}^k \ q_{j,2}^k$
y_j^1	1	$h^F_j \ z(y^1_j) \ p^3_{j,3}$	$p_{j,2}^k$	1	$q_{j,2}^k q_{j,1}^k$
y_j^2	1	$h_{j}^{F} \ z(y_{j}^{2}) \ p_{j,3}^{4}$	$p_{j,3}^k$	1	$v(p_{j,3}^k) \ q_{j,3}^k$
$q_{j,1}^k$	1	$p_{j,2}^k \hspace{0.1 cm} p_{j,1}^k$			
$q_{j,2}^k$	1	$p_{j,1}^k p_{j,2}^k$			
$q_{j,3}^k$	2	$p_{j,3}^k \hspace{0.1 cm} p_{j,1}^k$			

Figure 1: The constructed instance of HRS

 $p_{j,1}^k, p_{j,2}^k, p_{j,3}^k$ $(1 \le k \le 4)$. For each clause c_i there is one hospital z_i . Residents x_j^1 and x_j^2 correspond to the first and second occurrence of literal v_j , whilst residents y_j^1 and y_j^2 correspond to the first and second occurrence of literal \bar{v}_j , respectively.

The characteristics of agents and their preferences are given in Figure 1. Here, the subscripts and superscripts involving i, j and k range over the following intervals: $1 \le i \le m$, $1 \le j \le n$ and $1 \le k \le 4$. In the preference list of hospital z_i , the symbol v_i^s means the x- or y-resident that corresponds to the literal that appears in position s of clause c_i . Conversely, in the preference list of x- or y-residents the symbol z(.) denotes the z-hospital corresponding to the clause containing the corresponding literal. Also, in the preference list of $p_{j,3}^k$, the symbol $v(p_{j,3}^k)$ denotes x_j^k if $1 \le k \le 2$ and denotes y_j^{k-2} if $3 \le k \le 4$.

For each $j, 1 \leq j \leq n$, let us denote

$$T_j = \{(x_j^1, h_j^T), (x_j^2, h_j^T), (r_j^6, h_j^F)\}, \qquad F_j = \{(y_j^1, h_j^F), (y_j^2, h_j^F), (r_j^5, h_j^T)\}$$

For brevity, hospitals h_j^T and h_j^F will be called *decisive hospitals*.

Now, let f be a satisfying truth assignment of B. Define a matching M in I as follows. For each variable $v_j \in V$, if v_j is true under f, put the pairs T_j into M and if v_j is false under f put the pairs F_j into M. In the former case add the pairs

$$(y_j^1, z(y_j^1)), (y_j^2, z(y_j^2)), (r_j^1, h_j^1), (r_j^2, h_j^4), (r_j^3, h_j^2), (r_j^4, h_j^2), (r_j^5, h_j^3), (r_j^5$$

and in the latter case add the pairs

$$(x_j^1, z(x_j^1)), (x_j^2, z(x_j^2)), (r_j^1, h_j^3), (r_j^2, h_j^2), (r_j^3, h_j^1), (r_j^4, h_j^1), (r_j^6, h_j^4).$$

Notice that as each clause $c_i \in C$ contains at most two false literals, hospital z_i has enough capacity for accepting all the allocated residents. Finally, add the following pairs for each $j \ (1 \leq j \leq n)$ and $k \ (1 \leq k \leq 4)$:

$$(q_{j,1}^k, p_{j,2}^k), (q_{j,2}^k, p_{j,1}^k), (q_{j,3}^k, p_{j,3}^k).$$

It is obvious that the defined matching is feasible; it remains to prove that it is stable. We show this by considering each type of residents corresponding to variable v_j in turn. Firstly we remark that residents $q_{j,1}^k, q_{j,2}^k, q_{j,3}^k$ each have their first choice hospital $(1 \le k \le 4)$ so cannot be involved in a blocking pair. Now suppose that v_j is true under f. Then:

- residents $x_i^1, x_j^2, r_j^1, r_j^4$ and r_j^5 have their most-preferred hospitals, so are not blocking.
- residents y_j^1 and y_j^2 prefer hospital h_j^F , but this hospital is fully occupied by r_j^6 , whom it prefers.
- resident r_j^2 prefers hospital h_j^2 , but this hospital is full and does not prefer r_j^2 to a set of applicants of size at least 2.
- resident r_j^3 prefers hospital h_j^1 , but this hospital is fully occupied by r_j^1 , whom it prefers.
- resident r_j^6 prefers hospital h_j^4 , but this hospital is fully occupied by r_j^2 , whom it prefers.

The case of a false variable can be proved similarly.

For the converse implication let us first prove two claims.

Claim 1. Each stable matching M contains for each j either all the pairs in T_j or all the pairs in F_j .

Proof. Let M be a stable matching. Fix $j \in \{1, 2, ..., n\}$. Notice first that both hospitals h_j^T and h_j^F must be full, otherwise either h_j^T will form a blocking pair with at least one of x_j^1 and x_j^2 , or h_j^F will form a blocking pair with at least one of y_j^1 and y_j^2 . Further, let us distinguish the following cases.

- $\{(r_j^5, h_j^T), (r_j^6, h_j^F)\} \subseteq M$. Then, as there are no blocking pairs, $\{(r_j^1, h_j^3), (r_j^2, h_j^4)\} \subseteq M$, which further implies $\{(r_j^3, h_j^2), (r_j^4, h_j^1)\} \subseteq M$. This, however means that (r_j^3, h_j^1) and (r_j^4, h_j^2) are blocking pairs for M, a contradiction.
- $\{(x_j^1, h_j^T), (x_j^2, h_j^T), (y_j^1, h_j^F), (y_j^2, h_j^F)\} \subseteq M$. Now, to avoid blocking pairs, $\{(r_j^5, h_j^3), (r_j^6, h_j^4)\} \subseteq M$, which further implies $\{(r_j^1, h_j^1), (r_j^2, h_j^2)\} \subseteq M$. Then there are blocking pairs (r_j^3, h_j^2) and (r_j^4, h_j^1) , again a contradiction.

Claim 2. In each stable matching M every resident in the set $\{x_j^1, x_j^2, y_j^1, y_j^2 : 1 \le j \le n\}$ is matched to her first- or second-choice hospital.

Proof. For some j ($1 \le j \le n$), consider resident x_j^1 (the argument for x_j^2 , y_j^1 , y_j^2 is similar). Suppose firstly that x_j^1 is unmatched in M. Then $(x_j^1, p_{j,3}^1)$ blocks M, a contradiction. Now suppose that $(x_j^1, p_{j,3}^1) \in M$. If $(q_{j,3}^1, p_{j,1}^1) \in M$ then $(q_{j,1}^1, p_{j,2}^1) \in M$, for otherwise $(q_{j,1}^1, p_{j,1}^1)$ blocks M. But then $(q_{j,2}^1, p_{j,2}^1)$ blocks M, a contradiction. Thus $q_{j,3}^1$ is unmatched in M. Then $(q_{j,2}^1, p_{j,1}^1) \in M'$, for otherwise $(q_{j,2}^1, p_{j,1}^1)$ blocks M. Also $(q_{j,1}^1, p_{j,2}^1) \in M'$, for otherwise $(q_{j,3}^1, p_{j,1}^1)$ blocks M, a contradiction. □

Conversely, suppose that M is a stable matching in I. We form a truth assignment f in B as follows. Let j $(1 \le j \le n)$ be given. If $T_j \subseteq M$, set $f(v_j) = T$, otherwise set $f(v_j) = F$. Now let $v_j \in V$ and suppose that $f(v_j) = T$. Then by Claim 2, each of $y_{j,1}$ and $y_{j,2}$ is matched to her second choice hospital. Now suppose that $f(v_j) = F$. Then by Claims 1 and 2, each of $x_{j,1}$ and $x_{j,2}$ is matched to her second choice hospital. Now suppose that $f(v_j) = F$. Then by Claims 1 and 2, each of $x_{j,1}$ and $x_{j,2}$ is matched to her second choice hospital. Now let $c_i \in C$ and suppose that all literals in c_i are false. By the preceding remarks about $x_{j,1}, x_{j,2}, y_{j,1}$ and $y_{j,2}$ we deduce that z_i is over-subscribed, a contradiction. Thus f is a satisfying truth assignment.

Corollary 3.9 then follows immediately by Theorem 3.8 and by Lemma 2.1 in [2].

References

- P. Berman, M. Karpinski, and Alexander D. Scott. Approximation hardness of short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity Report, number 49, 2003.
- [2] E.J. McDermid and D.F. Manlove. Keeping partners together: Algorithmic results for the hospitals / residents problem with couples. *Journal of Combinatorial Optimization*, 19(3):279–303, 2010.