Errata:
Keeping partners together: algorithmic results for the hospitals / residents problem with couples

Katarína Cechlárová1, David F. Manlove2 and Eric J. McDermid3

1 Institute of Mathematics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
 Email katarina.cechlarova@upjs.sk.

2 School of Computing Science, University of Glasgow, Glasgow, UK.
 Email david.manlove@glasgow.ac.uk.

3 Apple, inc., Austin, Texas, USA.
 Email em4617@gmail.com.

Theorem 3.8 and Corollary 3.9 in [2] are stated as follows:

Theorem 3.8. The problem of determining whether an HRS instance admits a stable matching is NP-complete, even if the size of each resident and the capacity of each hospital is at most 2, and the lengths of the residents’ and hospitals’ preference lists are at most 3 (these conditions holding simultaneously).

Corollary 3.9. The problem of determining whether an HRCC instance admits a stable matching is NP-complete, even if the joint preference list of each couple has at most 3 entries, and the capacity of each hospital is at most 2 (these conditions holding simultaneously).

However in the reduction given in the proof of Theorem 3.8 in [2], some preference lists may in fact be of length 4 (namely those of residents of the form r_s). A similar remark holds for Corollary 3.9 (i.e., some couples’ lists may contain as many as 4 pairs). In this note we present a revised proof of Theorem 3.8, which in turn establishes Corollary 3.9. In what follows we assume the notation and terminology used in [2].

Proof of Theorem 3.8. We reduce from a a restricted version of SAT. Let (2,2)-E3-SAT denote the problem of deciding, given a Boolean formula B in CNF in which each clause contains exactly 3 literals and, for each variable v_j, each of literals v_j and \bar{v}_j appears exactly twice in B, whether B is satisfiable. Berman et al. [1] showed that (2,2)-E3-SAT is NP-complete.

Hence let B be an instance of (2,2)-E3-SAT. Let $V = \{v_1, v_2, \ldots, v_n\}$ and $C = \{c_1, c_2, \ldots, c_m\}$ be the set of variables and clauses respectively in B. Let us construct an instance of HRS in the following way.

For each variable v_j there are 6 residents $r_{j1}^1, r_{j2}^2, \ldots, r_{j6}^6$, 4 residents $x_{j1}^1, x_{j2}^2, y_{j1}^1, y_{j2}^2$, 12 residents $q_{j1}^k, q_{j2}^k, q_{j3}^k$ ($1 \leq k \leq 4$), 6 hospitals $h_{j1}^1, h_{j2}^2, h_{j3}^3, h_{j4}^4, h_{j5}^T, h_{j6}^T$ and 12 hospitals
Table 1

<table>
<thead>
<tr>
<th>Resident</th>
<th>Size Preferences</th>
<th>Hospital Capacity</th>
<th>Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_j^1</td>
<td>h_j^1</td>
<td>h_j^1</td>
<td>r_j^4, r_j^1, r_j^3</td>
</tr>
<tr>
<td>r_j^2</td>
<td>h_j^2</td>
<td>h_j^2</td>
<td>r_j^3, r_j^2, r_j^4</td>
</tr>
<tr>
<td>r_j^3</td>
<td>h_j^3</td>
<td>h_j^3</td>
<td>r_j^1, r_j^5</td>
</tr>
<tr>
<td>r_j^4</td>
<td>h_j^4</td>
<td>h_j^4</td>
<td>r_j^2, r_j^6, r_j^7</td>
</tr>
<tr>
<td>r_j^5</td>
<td>h_j^5</td>
<td>h_j^5</td>
<td>r_j^5, x_j^1, x_j^2</td>
</tr>
<tr>
<td>r_j^6</td>
<td>h_j^6</td>
<td>h_j^6</td>
<td>r_j^6, y_j^1, y_j^2</td>
</tr>
<tr>
<td>x_j^1</td>
<td>h_j^T</td>
<td>$z(x_j^1)$</td>
<td>$p_{j,3}^k$</td>
</tr>
<tr>
<td>x_j^2</td>
<td>h_j^T</td>
<td>$z(x_j^2)$</td>
<td>$p_{j,1}^k$, $p_{j,3}^k$</td>
</tr>
<tr>
<td>y_j^1</td>
<td>h_j^F</td>
<td>$z(y_j^1)$</td>
<td>$p_{j,2}^k$, $p_{j,3}^k$, $p_{j,4}^k$</td>
</tr>
<tr>
<td>y_j^2</td>
<td>h_j^F</td>
<td>$z(y_j^2)$</td>
<td>$p_{j,3}^k$, $p_{j,4}^k$, $p_{j,5}^k$</td>
</tr>
<tr>
<td>$q_{j,1}^k$</td>
<td>$p_{j,2}^k$</td>
<td></td>
<td>$v(q_{j,3}^k)$</td>
</tr>
<tr>
<td>$q_{j,2}^k$</td>
<td>$p_{j,3}^k$</td>
<td></td>
<td>$v(q_{j,3}^k)$</td>
</tr>
<tr>
<td>$q_{j,3}^k$</td>
<td>$p_{j,3}^k$</td>
<td></td>
<td>$v(q_{j,3}^k)$</td>
</tr>
</tbody>
</table>

Figure 1: The constructed instance of HRS

$p_{j,1}^k$, $p_{j,2}^k$, $p_{j,3}^k$ \(1 \leq k \leq 4\). For each clause c_i there is one hospital z_i. Residents x_j^1 and x_j^2 correspond to the first and second occurrence of literal v_j, whilst residents y_j^1 and y_j^2 correspond to the first and second occurrence of literal \bar{v}_j, respectively.

The characteristics of agents and their preferences are given in Figure 1. Here, the subscripts and superscripts involving i, j and k range over the following intervals: $1 \leq i \leq m$, $1 \leq j \leq n$ and $1 \leq k \leq 4$. In the preference list of hospital z_i, the symbol v_i^s means the x- or y-resident that corresponds to the literal that appears in position s of clause c_i.

Conversely, in the preference list of x- or y-residents the symbol $z(.)$ denotes the z-hospital corresponding to the clause containing the corresponding literal. Also, in the preference list of $p_{j,3}^k$, the symbol $v(p_{j,3}^k)$ denotes x_j^k if $1 \leq k \leq 2$ and denotes y_j^{k-2} if $3 \leq k \leq 4$.

For each j, $1 \leq j \leq n$, let us denote

$$T_j = \{(x_j^1, h_j^T), (x_j^2, h_j^T), (r_j^6, h_j^F)\}, \quad F_j = \{(y_j^1, h_j^F), (y_j^2, h_j^F), (r_j^5, h_j^T)\}.$$

For brevity, hospitals h_j^T and h_j^F will be called **decisive hospitals**.

Now, let f be a satisfying truth assignment of B. Define a matching M in I as follows. For each variable $v_j \in V$, if v_j is true under f, put the pairs T_j into M and if v_j is false under f put the pairs F_j into M. In the former case add the pairs

$$(y_j^1, z(y_j^1)), (y_j^2, z(y_j^2)), (r_j^1, h_j^1), (r_j^2, h_j^2), (r_j^3, h_j^3), (r_j^4, h_j^4), (r_j^5, h_j^5),$$

and in the latter case add the pairs

$$(x_j^1, z(x_j^1)), (x_j^2, z(x_j^2)), (r_j^1, h_j^1), (r_j^2, h_j^2), (r_j^3, h_j^3), (r_j^4, h_j^4), (r_j^5, h_j^5).$$

Notice that as each clause $c_i \in C$ contains at most two false literals, hospital z_i has enough capacity for accepting all the allocated residents. Finally, add the following pairs for each j \(1 \leq j \leq n\) and k \(1 \leq k \leq 4\):

$$(q_{j,1}^k, p_{j,2}^k), (q_{j,2}^k, p_{j,4}^k), (q_{j,3}^k, p_{j,3}^k).$$
It is obvious that the defined matching is feasible; it remains to prove that it is stable. We show this by considering each type of residents corresponding to variable \(v_j \) in turn. Firstly we remark that residents \(q_{j,1}^k, q_{j,2}^k, q_{j,3}^k \) each have their first choice hospital (1 \(\leq k \leq 4 \)) so cannot be involved in a blocking pair. Now suppose that \(v_j \) is true under \(f \). Then:

- residents \(x_j^1, x_j^2, r_j^1, r_j^2 \) and \(r_j^5 \) have their most-preferred hospitals, so are not blocking.
- residents \(y_j^1 \) and \(y_j^2 \) prefer hospital \(h_j^F \), but this hospital is fully occupied by \(r_j^6 \), whom it prefers.
- resident \(r_j^2 \) prefers hospital \(h_j^2 \), but this hospital is full and does not prefer \(r_j^2 \) to a set of applicants of size at least 2.
- resident \(r_j^3 \) prefers hospital \(h_j^1 \), but this hospital is fully occupied by \(r_j^1 \), whom it prefers.
- resident \(r_j^6 \) prefers hospital \(h_j^4 \), but this hospital is fully occupied by \(r_j^2 \), whom it prefers.

The case of a false variable can be proved similarly.

For the converse implication let us first prove two claims.

Claim 1. Each stable matching \(M \) contains for each \(j \) either all the pairs in \(T_j \) or all the pairs in \(F_j \).

Proof. Let \(M \) be a stable matching. Fix \(j \in \{1, 2, \ldots, n\} \). Notice first that both hospitals \(h_j^1 \) and \(h_j^F \) must be full, otherwise either \(h_j^1 \) will form a blocking pair with at least one of \(x_j^1 \) and \(x_j^2 \), or \(h_j^F \) will form a blocking pair with at least one of \(y_j^1 \) and \(y_j^2 \). Further, let us distinguish the following cases.

- \(\{(r_j^3, h_j^3), (r_j^6, h_j^F)\} \subseteq M \). Then, as there are no blocking pairs, \(\{(r_j^1, h_j^3), (r_j^2, h_j^F)\} \subseteq M \), which further implies \(\{(r_j^3, h_j^3), (r_j^1, h_j^F)\} \subseteq M \). This, however means that \((r_j^3, h_j^3) \) and \((r_j^1, h_j^F) \) are blocking pairs for \(M \), a contradiction.

- \(\{(x_j^1, h_j^3), (x_j^2, h_j^T), (y_j^1, h_j^F), (y_j^2, h_j^F)\} \subseteq M \). Now, to avoid blocking pairs, \(\{(r_j^5, h_j^3), (r_j^6, h_j^F), (r_j^3, h_j^3), (r_j^1, h_j^F)\} \subseteq M \). Then there are blocking pairs \((r_j^3, h_j^3) \) and \((r_j^1, h_j^F) \), again a contradiction.

Claim 2. In each stable matching \(M \) every resident in the set \(\{x_j^1, x_j^2, y_j^1, y_j^2 : 1 \leq j \leq n\} \) is matched to her first- or second-choice hospital.

Proof. For some \(j \) (1 \(\leq j \leq n \)), consider resident \(x_j^1 \) (the argument for \(x_j^2, y_j^1, y_j^2 \) is similar). Suppose firstly that \(x_j^1 \) is unmatched in \(M \). Then \((x_j^1, p_{j,3}^3) \) blocks \(M \), a contradiction.

Now suppose that \((x_j^1, p_{j,3}^1) \in M \). If \((q_{j,1}^1, p_{j,1}^1) \in M \) then \((q_{j,1}^1, p_{j,1}^2) \in M \), for otherwise \((q_{j,1}^1, p_{j,1}^1) \) blocks \(M \). But then \((q_{j,2}^1, p_{j,2}^1) \) blocks \(M \), a contradiction. Thus \(q_{j,3}^1 \) is unmatched in \(M \).

Now suppose that \((q_{j,3}^1, p_{j,3}^1) \in M \). For otherwise \((q_{j,2}^1, p_{j,1}^1) \) blocks \(M \). Also \((q_{j,1}^1, p_{j,1}^1) \) blocks \(M \). Hence \((q_{j,3}^1, p_{j,3}^1) \) blocks \(M \), a contradiction.

Conversely, suppose that \(M \) is a stable matching in \(I \). We form a truth assignment \(f \) in \(B \) as follows. Let \(j \) (1 \(\leq j \leq n \)) be given. If \(T_j \subseteq M \), set \(f(v_j) = T \), otherwise set \(f(v_j) = F \). Now let \(v_j \in V \) and suppose that \(f(v_j) = T \). Then by Claim 2, each of \(y_{j,1} \) and \(y_{j,2} \) is matched to her second choice hospital. Now suppose that \(f(v_j) = F \). Then by Claims 1 and 2, each of \(x_{j,1} \) and \(x_{j,2} \) is matched to her second choice hospital. Now let \(c_i \in C \) and suppose that all literals in \(c_i \) are false. By the preceding remarks about \(x_{j,1}, x_{j,2}, y_{j,1} \) and \(y_{j,2} \) we deduce that \(z_i \) is over-subscribed, a contradiction. Thus \(f \) is a satisfying truth assignment.
Corollary 3.9 then follows immediately by Theorem 3.8 and by Lemma 2.1 in [2].

References
