
On the 2-maximal independence number of a graph

David F. Manlove

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

Email davidm@dcs.gla.ac.uk.

Abstract

An independent set S of a graph G = (V, E) is k-maximal (k ≥ 1) if, for all subsets
A of S (where |A| ≤ k−1), and all subsets B of V \S (where |B| = |A|+1), (S\A)∪B
is non-independent. Halldórsson [12] uses k-maximal independent sets as a means of
approximating maximum independent sets in certain graph classes. Here we study
the parameter β−

0,2
(G), the smallest order of a 2-maximal independent set of a graph

G, from an algorithmic point of view. We obtain a linear time and space algorithm
for computing β−

0,2
(T) for a tree T and also for constructing a minimum 2-maximal

independent set of T . We also show that the decision problem related to computing
β−

0,2
is NP-complete for planar graphs of maximum degree 3.

1 Introduction

Independent sets in graphs have been extensively studied. The principal algorithmic focus
has been the investigation of how we may efficiently determine maximum independent
sets in a graph. The computational complexity of the problem of computing β0(G), the
cardinality of a maximum independent set in a graph G, is surveyed comprehensively by
Johnson [15], for a variety of classes of graphs.

Independent sets that are maximal have also been of interest. (An independent set I
for a graph G is maximal if no proper superset of I is independent). For instance, the
problem of counting the number of maximal independent sets in a graph has been shown
to be #P-complete [22]. Also, a graph is well-covered if every maximal independent set is
maximum – results in this area are surveyed by Plummer [21]. A much-studied parameter
is β−

0 (G), the cardinality of a minimum maximal independent set in G. The parameter
β−

0 is also referred to as the minimum independent domination parameter. Independent
domination was first studied by Cockayne and Hedetniemi [4]. The decision problem
related to finding β−

0 is NP-complete for bipartite graphs [8] and planar cubic graphs [17],
though polynomial-time solvable for chordal graphs [10] and trees [2], to name only a few
graph classes.

For a graph G, the definition of β−

0 (G) can be obtained by defining the strict partial
order ⊂G (strict set inclusion) on I(G), the set of all independent sets in G, and by
considering the minimum over all ⊂G-maximal elements of I(G). However, it is of interest
to consider other partial orders that may be defined on I(G), and the corresponding
minimaximal optimization problems [16] that result from their definition.

In this paper we define a partial order ≺G
k on I(G), for k ≥ 1, and consider the ≺G

k -
maximal (or simply k-maximal) members of I(G), for a given graph G = (V,E). An
independent set S is k-maximal if, for all subsets A of S (where |A| ≤ k − 1), and all
subsets B of V \S (where |B| = |A| + 1), (S\A) ∪ B is non-independent. The parameter

1

β−

0,k(G)1 will denote the minimum over all k-maximal independent sets for G. The concept
of k-maximal independence in graphs was introduced by Bollobás et al. [3], and several
non-algorithmic results concerning β−

0,k, for k ≥ 1, have been obtained [19, 5]. The related
concept of k-minimal domination was also introduced by Bollobás et al. [3], and further
details may be found in [20, 6, 7]. Halldórsson’s approximation algorithms for finding
maximum independent sets in various graph classes [12] involve constructing k-maximal
independent sets. Nevertheless, k-maximal independent sets are interesting in their own
right.

Investigating the computational complexity of β−

0,k was given as an open problem by

Cockayne et al. [5]. However, the parameter β−

0,2 has been studied by McRae [18], from an
algorithmic point of view. She showed that the decision problem related to determining
β−

0,2 is NP-complete for bipartite graphs and line graphs of bipartite graphs. In this
paper we give a linear algorithm for computing the cardinality of a minimum 2-maximal
independent set, and for constructing such a set. The algorithm is based on that of Beyer
et al. [2] for computing β−

0 (T). We also demonstrate that the decision problem related to
computing β−

0,2 is NP-complete for planar graphs of maximum degree 3.

The remainder of the paper is organised as follows. In Section 2, we define formally ⊂G
k

and other notions related to k-maximal independence. In Section 3 we present the linear-
time algorithm for computing β−

0 (T), given a tree T . The NP-completeness result for
planar graphs of maximum degree 3 is given in Section 4. Finally, in Section 5, we discuss
some possible directions for further study, based on hierarchies of k-maximal independence
parameters.

2 Definitions related to k-maximal independence

We begin by defining a family of partial orders, ≺G
k , for a graph G and integer k ≥ 1.

Definition 2.1. Let G = (V,E) be a graph, and let I(G) denote the set of all independent
sets of G. Define the following relation on I(G):

⊂G
k =

(S′, S′′) ∈ I(G) × I(G) :

∃A ⊆ S′ ∧ |A| ≤ k − 1
∃B ⊆ V \S′ ∧ |B| = |A| + 1
S′′ = (S′\A) ∪ B

.

By taking ≺G
k = (⊂G

k)∗ (the transitive closure of ⊂G
k), we obtain a partial order that we

call (k − 1, k)-replacement.

Intuitively, for k ≥ 1 and two members S ′, S′′ of I(G), S ′ ⊂G
k S′′ if S′′ can be obtained

from S′ by deleting a set A of r − 1 elements from S ′ (where r − 1 ≤ k − 1) and adding
a set B of r elements from V \S ′. We note that, for k ≥ 2, ≺G

k is a refinement of ⊂G
k−1.

This is demonstrated by the following result, which follows by observing that ⊂G
i−1⊆⊂G

i .

Proposition 2.2. Let ≺G
k be the partial order of (k − 1, k)-replacement. Then, for all

i ≥ 2, ⊂G
i−1 is contained in ⊂G

i .

Corollary 2.3. For all k ≥ 1 and 1 ≤ i ≤ k, ⊂G
i is contained in ≺G

k .

1Mynhardt [19] and Cockayne et al. [5] refer to β−
0,k as βk. However, for k = 1, this choice coincides

with the maximum matching parameter (see Harary [13], for example), and for k = 2, this choice coincides
with the total matching parameter of Alavi et al. [1]. In our notation, the subscript ‘0’ of β−

0,k refers to
vertex independence (as in Harary [13]), the subscript ‘k’ refers to k-maximality, and the superscript ‘-’
refers to the minimum cardinality requirement.

2

We call an element S of I(G) ⊂G
k -maximal or k-maximal if there is no S ′ ∈ I(G) such

that S ⊂G
k S′. Since independence is a hereditary property [14] (i.e., every subset of an

independent set is independent), a 1-maximal member of I(G) is maximal. We may now
formally define the parameters β−

0,k (k ≥ 1) as follows:

β−

0,k(G) = min{|S| : S ∈ I(G) ∧ S is k-maximal}.

By the remarks in the preceding paragraph, β−

0 = β−

0,1. By Proposition 2.2, β−

0,k−1(G) ≤

β−

0,k(G) for k ≥ 2. Also, β−

0,k(G) ≥ k for k ≥ 1 [19]. In the remainder of this section, and
in Sections 3 and 4, we restrict our attention to the case k = 2.

We have already noted that β−

0 (G) ≤ β−

0,2(G). A simple example of where strict

inequality can occur is provided by P3, since β−

0 (P3) = 1, whereas β−

0,2(P3) = 2.
We now present some elementary definitions relating to graphs, and use them to obtain

a convenient criterion for an independent set to be 2-maximal. For a graph G = (V,E)
and vertex v ∈ V , define the open neighbourhood of v to be the set N(v) = {u ∈ V :
{u, v} ∈ E}. Define the closed neighbourhood of v to be the set N [v] = {v} ∪N(v). For a
set of vertices S ⊆ V and a vertex v ∈ V , the private S-neighbours of v are those vertices
in the set N [v]\N [S\{v}]. It turns out that a maximal independent set S is 2-maximal
if and only if S admits no augmenting P3, as the following result, due to McRae [18],
demonstrates. We include her proof for completeness.

Lemma 2.4 (McRae [18]). Let G = (V,E) be a graph. A maximal independent set of

vertices S ⊆ V is 2-maximal if and only if there do not exist vertices w, x and y of V such

that w ∈ S, x, y 6∈ S, {x, y} 6∈ E and x, y are private S-neighbours of w.

Proof. Suppose S ⊆ V is a maximal independent set. If there exist vertices w, x and y of V
such that w ∈ S, x, y 6∈ S, {x, y} 6∈ E and x, y are private S-neighbours of w, then it is clear
that S is not 2-maximal. Conversely suppose that S is not 2-maximal. Then there exist
vertices w, x and y of V such that w ∈ S, x, y 6∈ S and (S\{w}) ∪ {x, y} is independent.
As S is maximal independent, S\{w} dominates V \N [w]. Thus x, y ∈ N(w), and x, y
were private S-neighbours of w. Clearly also {x, y} 6∈ E.

This result is utilised in our algorithm for trees, which constructs a minimum cardi-
nality maximal independent set S of a tree T , with the added property that S admits no
augmenting P3.

3 Linear-time algorithm for trees

Before presenting the main result of this section, we make some further definitions relating
to trees. Our algorithm is adapted from the one used by Beyer et al. [2] to calculate β−

0 (T)
for a tree T , and we hence use similar notation. For a rooted tree T and any vertex v of
T , define Tv to be the subtree of T with root v. For a vertex v of T and a set of vertices
S ⊆ V (T), v is said to be bad with respect to S if v 6∈ S and no child of v is in S. As a
result of Lemma 2.4, the following necessary condition for an independent set S of a tree
T to be 2-maximal can easily be verified.

Lemma 3.1. Let T = (V,E) be a tree and S ⊆ V be independent. Then S is 2-maximal

implies that every v in S has at most one bad child with respect to S.

In view of this observation, we define the following five functions:

INN(v) : The smallest number of vertices S ⊆ V (Tv) in a 2-maximal independent set
for Tv that contains v, such that v has no bad children with respect to S.

3

INBC(v) : The smallest number of vertices S ⊆ V (Tv) in a 2-maximal independent set
for Tv that contains v, such that v has one bad child with respect to S.

OUTO(v) : The smallest number of vertices S ⊆ V (Tv) in a 2-maximal independent set
for Tv that does not contain v, such that v has exactly one child w in S, and
w has one bad child with respect to S.

OUTC(v) : The smallest number of vertices S ⊆ V (Tv) in a 2-maximal independent set
for Tv that does not contain v, such that either:

1. v has more than one child in S or

2. v has exactly one child w in S, and w has no bad children with respect
to S.

OUTN(v) : The smallest number of vertices S ⊆ V (Tv) in a 2-maximal independent set
for Tv that does not contain v nor any child of v.

Given the definitions of the five functions presented above, together with the fact that any
2-maximal independent set of a tree T rooted at u must include at least one of u and the
children of u, it follows that

β−

0,2(T) = min{INN(u), INBC(u), OUTO(u), OUTC(u)}.

The algorithm for finding a minimum 2-maximal independent set of a tree T uses
Lemma 3.1 and constructs a set of vertices S of T such that, for each vertex v with parent
u in S, v has at most one bad child, and also v cannot be augmented by a P3 whose
vertices are u, v and a child of v. The dynamic programming approach is based on the
following result, which demonstrates relationships between the above five functions for
adjacent vertices in a tree, and which also proves the correctness of the algorithm.

Theorem 3.2. Let T ′

u, T ′′

v be two subtrees of T rooted at u and v respectively, for two

vertices u and v of T . Let T be the tree with root u that is obtained by joining vertices u
and v by an edge. Then

1. INN(u) = INN ′(u) + min{OUTC ′′(v), OUTO′′(v)}

2. INBC(u) = min

INBC ′(u) + OUTC ′′(v),
INBC ′(u) + OUTO′′(v),
INN ′(u) + OUTN ′′(v)

3. OUTO(u) = min

{

OUTO′(u) + OUTC ′′(v),
OUTN ′(u) + INBC ′′(v)

}

4. OUTC(u) = min

OUTC ′(u) + OUTC ′′(v),
OUTN ′(u) + INN ′′(v),
OUTC ′(u) + INN ′′(v),
OUTC ′(u) + INBC ′′(v),
OUTO′(u) + INN ′′(v),
OUTO′(u) + INBC ′′(v)

5. OUTN(u) = OUTN ′(u) + OUTC ′′(v)

4

Proof. Let I be a minimum 2-maximal independent set for T and define I ′ = I ∩ V (T ′

u)
and I ′′ = I ∩ V (T ′′

v). We consider the following disjoint cases.

(1). Suppose that I contains u, and u has no bad children in T . Then u has no bad
children in T ′

u and v has at least one child in I. Hence |I ′| = INN ′(u), and the existence
of u implies that if v has only one child w in I, then w is allowed to have a bad child in
T ′′

v . Thus |I ′′| = min{OUTC ′′(v), OUTO′′(v)}.

(2). Suppose that I contains u, and u has one bad child in T . Then u has one bad child,
either (i) in T ′

u, or (ii) v is bad.
In (i), |I ′| = INBC ′(u), and v has at least one child in I. As in (1), the existence of

u implies that if v has only one child w in I, then w is allowed to have a bad child in T ′′

v .
Thus |I ′′| = min{OUTC ′′(v), OUTO′′(v)}.

In (ii), u has no bad child in T ′

u, so |I ′| = INN ′(u), and v has no children in I. Thus
|I ′′| = OUTN ′′(v).

(3). Suppose that I does not contain u, but is such that u has exactly one child w in I,
and w has a bad child in T . Then either (i) w ∈ I ′ or (ii) w is v.

In (i), |I ′| = OUTO′(u). Also, v must have a child in I, or else I ∪{v} is independent,
a contradiction. If v has only one child w which has a bad child, then I is not 2-maximal,
since u 6∈ I. Hence |I ′′| = OUTC ′′(v).

In (ii), |I ′| = OUTN ′(u). Also, |I ′′| = INBC ′′(v).

(4). Suppose that I does not contain u, but is such that either u has more than one child
in I, or u has exactly one child w in I, and w has no bad children in T . Then either (i) u
has a child in I ′, or (ii) v ∈ I, or (iii) both.

In (i), u cannot have a sole child w in I ′ such that w has a bad child, since v 6∈ I. Thus
|I ′| = OUTC ′(u). Also, v must have at least one child in I, or else I ∪{v} is independent,
a contradiction. If v has only one child w which has a bad child, then I is not 2-maximal,
since u 6∈ I. Hence |I ′′| = OUTC ′′(v).

In (ii), |I ′| = OUTN ′(u). Also, v cannot have a bad child in T ′′

v , for then I would not
be 2-maximal, as no child of u is in I ′. Hence |I ′′| = INN ′′(v).

In (iii), the existence of a child of u in I ′ means that v is permitted to have a bad
child in T ′′

v . Hence |I ′′| = min{INN ′′(v), INBC ′′(v)}. Also, the existence of v ∈ I means
that it is permissible for u to have a sole child w in I ′ such that w has a bad child. Hence
|I ′| = min{OUTC ′(u), OUTO′(u)}.

(5). Suppose that I does not contain u, nor any child of u. Then |I ′| = OUTN ′(u).
Also, v must have a child in I, or else I ∪ {v} is independent, a contradiction. If v has
only one child w which has a bad child, then I is not 2-maximal, since u 6∈ I. Hence
|I ′′| = OUTC ′′(v).

The above result forms the basis of the algorithm shown in Figure 1, which calculates
β−

0,2(T) for a tree T .
Given a tree T with N vertices, the five functions INN, INBC,OUTO,OUTC and

OUTN are initialised as follows. For a singleton subtree of T consisting only of some
vertex v, it is clear that INN(v) = 1 and OUTN(v) = 0. The values of the other three
functions INBC(v), OUTO(v) and OUTC(v) are however undefined. They are therefore
given value N , which is large enough not to affect the remainder of the procedure of
computing β−

0,2(T).
It may be verified that the algorithm in Figure 1 requires O(N) time for execution.

The initialization is clearly O(N), and the main loop is also O(N), since the values of the
five functions may be computed in a constant number of steps, for each iteration. It is
also clear that O(N) space is required.

5

procedure tree-min-2-max-ind-set (parent : array [2..N] of [1..N]) return N

-- Given a tree T with vertices 1, 2, . . . , N , calculate β−
0,2

(T). T is rooted at vertex 1 and the
-- vertices are numbered breadth-first from the root. T is represented by a parent array, i.e.
-- i = parent[j] if and only if i is the parent of j in T .

var i, j : N;
INN, INBC, OUTC, OUTN, OUTO : array [1..N] of N;

begin
for i in [1..N] loop -- Initialization

INN [i] := 1;
INBC[i] := N ; -- Indicates value undefined in this case
OUTO[i] := N ; -- Indicates value undefined in this case
OUTC[i] := N ; -- Indicates value undefined in this case
OUTN [i] := 0;

end loop;
for j in reverse [2..N] loop -- Propagate values towards root

i := parent[j];
INN [i] := INN [i] + min{OUTC[j], OUTO[j]};

INBC[i] := min

INBC[i] + OUTC[j],
INBC[i] + OUTO[j],
INN [i] + OUTN [j]

;

OUTO[i] := min

{

OUTO[i] + OUTC[j],
OUTN [i] + INBC[j]

}

;

OUTC[i] := min

OUTC[i] + OUTC[j],
OUTN [i] + INN [j],
OUTC[i] + INN [j],
OUTC[i] + INBC[j],
OUTO[i] + INN [j],
OUTO[i] + INBC[j]

;

OUTN [i] := OUTN [i] + OUTC[j];
end loop;
return min{INN [1], INBC[1], OUTO[1], OUTC[1]};

end tree-min-2-max-ind-set

Figure 1: Algorithm to find the minimum 2-maximal independence number of a tree.

6

x1
i

i
x2

i
x3

i
x4

i
1z

i
2z

i
3z

4
i

z
y

i
1

y
i
2

y
i
3

i
p

i
q iry

i
4

Figure 2: A typical vertex component from the constructed instance of minimum 2-

maximal independent set.

4 NP-completeness in planar graphs of maximum degree 3

In this section, we prove that the minimum 2-maximal independent set problem is
NP-complete, even for planar graphs of maximum degree 3. This decision problem takes
a graph G = (V,E) and integer K ∈ Z

+ as input, and asks whether β−

0,2(G) ≤ K.

Theorem 4.1. minimum 2-maximal independent set is NP-complete for planar graphs

of maximum degree 3.

Proof. Clearly minimum 2-maximal independent set belongs to NP. To show NP-
hardness, we give a transformation from the independent set problem for cubic planar
graphs [11, problem GT20]. Hence let G = (V,E) (a cubic planar graph) and K (a
positive integer) be an instance of independent set. Assume that V = {v1, v2, . . . , vn}.
We construct an instance G′ = (V ′, E′) (planar graph of maximum degree 3) and K ′

(positive integer) of minimum 2-maximal independent set.
Corresponding to every vertex vi ∈ V (1 ≤ i ≤ n), construct a vertex component Ci of

G′, as illustrated in Figure 2, containing vertices pi, qi, ri, x
j
i , y

j
i , z

j
i , for 1 ≤ j ≤ 4, edges

{x4
i , x

1
i }, {xj

i , x
j+1
i }, {y4

i , y
1
i }, {yj

i , y
j+1
i }, {z4

i , z1
i }, {zj

i , z
j+1
i }, for 1 ≤ j ≤ 3, and edges

{x3
i , ui}, {y

3
i , vi}, {z

3
i , wi}, {pi, qi}, {pi, ri}, {qi, ri}. We denote by Vi the vertices in Ci.

For each si ∈ {x1
i , y

1
i , z

1
i }, join si to a unique vertex sj ∈ {x1

j , y
1
j , z

1
j } in Cj such that

{vi, vj} ∈ E. There is obviously a degree of freedom involved in making such attachments,
however the actual choice of assignment does not affect the planarity of G′, nor the re-
mainder of the proof. It is clear that the graph G′ constructed is planar of maximum
degree 3. Set K ′ = 7n−K. We now show that G has an independent set of cardinality at
least K if and only if G′ has a 2-maximal independent set with cardinality at most K ′.

For, suppose that I is an independent set for G, where |I| = k ≥ K. We construct a
set S as follows. For each i (1 ≤ i ≤ n), if vi ∈ I, add the vertices x1

i , x
3
i , y

1
i , y

3
i , z

1
i , z3

i to
S. If vi /∈ I, add the vertices pi, x

2
i , x

4
i , y

2
i , y

4
i , z

2
i , z4

i to S. S is independent in G′, for if
{s1

i , t
1
j} ∈ E′, where s is x, y or z, and t is x, y or z, then {vi, vj} ∈ E. As I is independent

in G then without loss of generality vi /∈ I, so that none of x1
i , y

1
i or z1

i is in S. Also, S
is 2-maximal in G′, for S is certainly maximal. Also, S admits no augmenting P3 in G′.
For, if vi ∈ I (1 ≤ i ≤ n) then any P3 in G′ that augments s1

i or s3
i (where s is x, y or

z) must include at least one of the vertices s2
i , s

4
i , neither of which is available. If vi 6∈ I

(1 ≤ i ≤ n) then similarly any P3 in G′ that augments s2
i or s4

i (where s is x, y or z) must

7

include at least one of the vertices s1
i , s

3
i , neither of which is available. Also, it is clear

that no P3 in G′ can augment pi. Finally, |S| = 6k+7(n−k) ≤ 7n−K = K ′ as required.

Conversely suppose that S is a 2-maximal independent set for G′, where |S| ≤ K ′. For
a given i (1 ≤ i ≤ n), we consider the elements of S ∩ Vi. By the maximality of S, we see
that the vertices s2

i , s
4
i must be dominated by vertices of Vi (where s is x, y or z). Since

S is 2-maximal, we have that s1
i ∈ S if and only if s3

i ∈ S, where s is x, y or z. Also,
the maximality of S implies that s2

i ∈ S if and only if s4
i ∈ S, where s is x, y or z. Thus

|S ∩ Vi| ≥ 6.
It may be verified that |S ∩ Vi| = 6 if and only if S ∩ Vi = Wi, where

Wi = {x1
i , x

3
i , y

1
i , y

3
i , z

1
i , z3

i }.

Moreover, if Wi 6⊆ S∩Vi, then by the comments in the preceding paragraph, it is straight-
forward to check that |S ∩ Vi| = 7. Define

I = {vi ∈ V : S ∩ Vi = Wi}.

We firstly claim that I is independent in G. For, if {vi, vj} ∈ E, then {s1
i , t

1
j} ∈ E′, where

s is x, y or z and t is x, y or z. If vi ∈ I then x1
i , y

1
i , z

1
i ∈ S. But S is independent in G′, so

that t1j /∈ S. Thus by construction of I, vj /∈ I as required. Now let k = |I| and suppose
for a contradiction that k < K. Then |S| = 6k + 7(n − k) > 7n − K = K ′ which is a
contradiction. Hence k ≥ K as required.

5 Conclusion and open problems

The complexity results for β−

0,2 in trees and planar graphs presented here leave open the

algorithmic complexity of β−

0,2 in other classes of graphs, for example chordal graphs.

It is also interesting to consider the partial orders ≺G
k for k > 2, and the corresponding

parameters β−

0,k for k > 2. We have already seen that, for k = 1, 2, the decision problem

related to finding β−

0,k is NP-complete in bipartite and planar graphs, but polynomial-time
solvable for trees, and we conjecture that this is the case for each fixed k > 2.

As a variation on the above hierarchy of parameters, consider the following. For a
graph G and integer k ≤ β0(G) − 1, let β−

0,β0(G)−k
(G) denote the smallest order of a

(β0(G)− k)-maximal independent set of G. Now β0(G)− k ≤ β−

0,β0(G)−k
(G) ≤ β0(G) [19],

so that β−

0,β0(G)(G) = β0(G), in the case k = 0. Thus finding β−

0,β0(G)(G) is polynomial-

time solvable for G a bipartite graph [13]. However, for general k, we conjecture that the
associated decision problem is NP-complete for bipartite graphs.

We may also consider the parameters β−

0,k for line graphs L(G) of general graphs G,

for k ≥ 1. The analagous parameter to β−

0,k in line graphs is β−

1,k, the minimum k-maximal

matching parameter. Thus β−

1,k(G) = β−

0,k(L(G)). For k = 1, 2, the decision problem

related to finding β−

1,k in bipartite graphs is NP-complete [23, 18], and we conjecture that
this is the case for each fixed k > 2. As above, we may consider, for a graph G and
integer k ≤ β1(G) − 1, the parameter β−

1,β1(G)−k
(G). As before, β−

1,β1(G)(G) = β1(G), so

finding β−

1,β1(G)(G) is polynomial-time solvable for arbitrary graphs [9]. But for general k,
we conjecture that the related decision problem is again NP-complete.

Acknowledgement

The author would like to thank Rob Irving for valuable comments on previous drafts of
this paper.

8

References

[1] Y. Alavi, M. Behzad, L.M. Lesniak-Foster, and E.A. Nordhaus. Total matchings and
total coverings of graphs. Journal of Graph Theory, 1:135–140, 1977.

[2] T. Beyer, A. Proskurowski, S.T. Hedetniemi, and S. Mitchell. Independent domina-
tion in trees. In Proceedings of the 8th South-Eastern Conference on Combinatorics,

Graph Theory and Computing, pages 321–328. Utilitas Mathematica, 1977.

[3] B. Bollobás, E.J. Cockayne, and C.M. Mynhardt. On generalised minimal domination
parameters for paths. Discrete Mathematics, 86:89–97, 1990.

[4] E.J. Cockayne and S.T. Hedetniemi. Independence graphs. In Proceedings of the 5th

South-Eastern Conference on Combinatorics, Graph Theory and Computing, pages
471–491. Utilitas Mathematica, 1974.

[5] E.J. Cockayne, G. MacGillivray, and C.M. Mynhardt. Generalised maximal inde-
pendence parameters for paths and cycles. Quaestiones Mathematicae, 13:123–139,
1990.

[6] E.J. Cockayne and C.M. Mynhardt. On the product of k-minimal domination num-
bers of a graph and its complement. Journal of Combinatorial Mathematics and

Combinatorial Computing, 8:118–122, 1990.

[7] E.J. Cockayne and C.M. Mynhardt. Domination sequences of graphs. Ars Combina-

toria, 33:257–275, 1992.

[8] D.G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete

Applied Mathematics, 9(1):27–39, 1984.

[9] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[10] M. Farber. Independent domination in chordal graphs. Operations Research Letters,
1:134–138, 1982.

[11] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Francisco,
CA., 1979.

[12] M.M. Halldórsson. Approximating discrete collections via local improvements. In
Proceedings of SODA ’95: the 6th Annual ACM-SIAM Symposium on Discrete Algo-

rithms, San Francisco, pages 160–169. ACM-SIAM, 1995.

[13] F. Harary. Graph Theory. Addison-Wesley, 1969.

[14] S.T. Hedetniemi. Hereditary properties of graphs. Journal of Combinatorial Theory,

Series B, 14:94–99, 1973.

[15] D.S. Johnson. The NP-completeness column: an ongoing guide. Journal of Algo-

rithms, 6:434–451, 1985.

[16] D.F. Manlove. Minimaximal and maximinimal optimisation problems: a partial order-

based approach. PhD thesis, University of Glasgow, Department of Computing Sci-
ence, 1998.

[17] D.F. Manlove. On the algorithmic complexity of twelve covering and independence
parameters of graphs. Discrete Applied Mathematics, 91:155–175, 1999.

9

[18] A.A. McRae. Generalizing NP-completeness proofs for bipartite and chordal graphs.
PhD thesis, Clemson University, Department of Computer Science, 1994.

[19] C.M. Mynhardt. Generalised maximal independence and clique numbers of graphs.
Quaestiones Mathematicae, 11:383–398, 1988.

[20] C.M. Mynhardt and E.J. Cockayne. k-minimal domination numbers of cycles. Ars

Combinatoria, 23A:195–206, 1987.

[21] M.D. Plummer. Well covered graphs: a survey. Quaestiones Mathematicae, 16:253–
287, 1993.

[22] L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal

on Computing, 8(3):410–421, 1979.

[23] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal on

Applied Mathematics, 18(1):364–372, 1980.

10

